
XL SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES E PROCESSAMENTO DE SINAIS - SBrT 2022, 25–28 DE SETEMBRO DE 2022, STA. RITA DO SAPUCAÍ, MG

TSN: Checker tool for output validation
Kelvyn L. M. Morais, Renan M. Silva, Aellison C. T. Santos, Vivek Nigam, Iguatemi E. Fonseca

Abstract— Time Sensitive Networking (TSN) provides
high performance deterministic communication using time
scheduling. Tools such as TSNsched are used to generate this
time schedule given a topology and a set of constraints. The
tool presented in this paper uses the schedule and log files
generated by TSNsched and proves its reliability by evaluating
its outputs in different criteria.

Keywords— Checker, TSNSched, Time Sensitive Network-
ing.

I. INTRODUCTION

Time Sensitive Networking (TSN) is a recent OSI layer 2
network protocol standard (IEEE 802.1QV [1]) that extends
Ethernet. It was developed to provide deterministic commu-
nication between devices in a local network. As it aims for
guaranteed packet delivery, it is being considered in many
safety-critical applications, with strict latency requirements,
such as in the communication of safety-critical flows inside
a vehicle [2].

Technically, TSN guarantees packet delivery by enforcing
schedules using timeslots where only a specific type of flows
are allowed to use. TSN schedules are enforced by the
packet queuing machinery in TSN switches. Since only the
traffic specified in the schedule can be sent in the network
during these timeslots, there are no packet collisions and
no need for re-transmission.

As the network size grows, designing TSN schedules
becomes increasing more difficult. Indeed, it has been
shown that this problem is NP-hard [2] and [3]. Developing
TSN schedules manually becomes unfeasible and error-
prone for larger networks. A much better approach is to
use automated tools, such as TSNsched [4], developed by
authors, that takes the network topology and flow specifica-
tion, e.g., expected traffic, and requirements, e.g., maximum
latency and jitter, and produce suitable TSN schedules.

However, a key problem in using such tools is that they
are seen as black-boxes and since they contain thousands
of lines of code and external tools, it is not clear whether
their output can be trusted. Indeed, during the development
of TSNsched, we encountered several mistakes on the
schedules due to bugs which were subsequently corrected.
This occurred despite we are using formal methods to
generate schedules [4].

Kelvyn L. M. Morais e Renan M. Silva, Universidade Federal da
Paraíba-UFPB, João Pessoa-PB, kmartinslenis30@hotmail.com, rmor-
eira@cc.ci.ufpb.br; Aellison C. T. Santos, Runtime Verification Inc., Ur-
bana, Illinois, USA, cassimiroaellison@gmail.com; Vivek Nigam, Huawei
Alemanha – Munique – Alemanha, PPGI. Prof. Colaborador no PPGI,
UFPB, João Pessoa-PB, vivek.nigam@gmail.com; Iguatemi E. Fonseca,
PPGI, UFPB, João Pessoa-PB,iguatemi@ci.ufpb.br. Este trabalho foi par-
cialmente financiado pelo CNPq e pela CAPES.

TSNSched
No Need to Trust Code base

TSN Checker
Trusted Code Base

Network specification

Requeriments
(Jitter, Latency)

TSN Schedule

Schedule is correct (yes / no)

Fig. 1. Illustration of the TSNchecker integration with TSNsched.

This paper addresses the problem of checking whether
TSN schedules are correct, that is, comply with TSN and
satisfy the network specifications and requirements. In par-
ticular, we take inspiration on safety monitors. As safety
monitors, we implemented a TSNchecker that, as illustrated
by Figure 1. The TSNchecker contains much fewer lines
of code (962 sloc) that perform the check of whether the
TSN schedule produced is correct. This means that there
is no longer need to trust the tool that generates the
schedule (and its thousands of lines of code), but only
trust TSNchecker and its 962 sloc lines of code. If the
TSNchecker returns that the TSN schedule is correct, then
it is safe to use it.

For the implementation of the TSNchecker, we made the
following contributions:

• Classification of Types of Checks: We identified
9 different categories of checks related to the TSN
standard and to the network specification/requirements.

• Implementation and Tool-Chain Integration: We im-
plemented the checks in the TSNchecker and inte-
grated into the TSNsched tool-chain. This means that
TSNsched now calls the TSNchecker to validate the
TSN schedule produced to checks for its correctness.
If it is correct, then the schedule can be used. Other-
wise, an error message is returned. The code for the
TSNchecker and tool-chain can be found at [5].

• TSNchecker Validation: We validate TSNchecker with
several benchmarks that we accumulated during the
past years that we have been developing TSNsched. It
demonstrates that TSNchecker successfully identifies
errors in TSN schedules.

Finally, while we have used TSNchecker for validating
TSNsched outputs, since TSNchecker uses friendly inter-
faces based on JSON (JavaScript Object Notation) inputs,
it can also be used, in principle, to check TSN schedules
produced by other tools. We leave this investigation to future
work.

In Section II, we present the Classification of Types of
Checks: the Syntax and semantic categories. Section III
presents an implementation and results of our validation



XL SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES E PROCESSAMENTO DE SINAIS - SBrT 2022, 25–28 DE SETEMBRO DE 2022, STA. RITA DO SAPUCAÍ, MG

tool. In section IV, we show the related works. In section V,
we review our work and conclude talking about the future
work.

II. CATEGORIES

The amount of validations needed can be overwhelming
to a normal user, so we considered an approach to ease
management and issue tracking. The approach used is
to categorize the validations made by the tool into two
major groups: Semantic and Syntactic. These categories
are presented in more details in Sections II-A and II-B.

A. Syntactic

As the name suggests, this category validates the syn-
tactic aspect of the files, for instance, misspellings and
incorrect data types. This checker receives two files from
the user and the first step is to ensure all data meet the
requirements, such as data and file types to proceed the
validations as needed for the semantic validation. Syntactic
errors are easier to be noticed as they raise attention as
soon as spotted; for instance, some letters in the place of
a number.

1) Data Type: As mentioned earlier, a letter in the place
of a number, and other situations where we do not
get what is expected to configure a syntactic error. The
checker verifies the data type of information contained
on the file to ensure they are correct.

2) File Type: Just like the one before, this validation now
aims for the files types. This checker receives a JSON
(JavaScript Object Notation) and a log files that can
have the .log format extension or a simple text (.txt)
extension. So we make a quick verification to ensure
they correspond to these extensions.

B. Semantic

The semantic validations mean the correctness of the
data into a deeper analysis. The semantic differs from the
syntax at adopting a more technical view of the situation, so
it may not be so clear to the user that does not comprehend
the behavior of the TSNSched, some errors may even pass
unnoticed by experienced users as the topology grows too
large. To help the user, this semantic validations target
logical question, such as, whether the transmission of a
packet respects the transmission window of its port.

1) Switches: A switch stores the data related to the cycle
duration, the priorities assigned to flows, and the TSN
time slots allocated for each priority at each port.

• Ports: The ports contain important information for
TSNSCHED, such as, the start of packet trans-
mission, its cycle and transmission duration (also
known as transmission window).

2) Flow: This is a topic which validates the flow data.
There are on the JSON file the average latency, jitter,
data time of the packets and hops to end devices. The
complete details of each flow fragment can be found

on the log file, which provides the flowfragment infor-
mation needed for further verifications. The flow then
can be divided into a couple more specific subtopics,
they are: Paths and Packet Times. We discuss more
about them in their respective subtopics.

• Paths: The flows contain data about the hops
from the origin device to the end device. It de-
scribes each hop from the first device to the end
device by presenting the current and destination
nodes, and the priority of the hop. Considering
that, it might happen that a node may be missing
or the scheduling inserts a node in the wrong
place the checker validates the path to the end
devices ensuring it follows as pretended.

• Packet Times: A flow is broken into fragments,
each fragment containing data of the hops. The
JSON file includes the time when it left the pre-
vious node(departure time), the time it arrived at
the current node(arrival time), and the time when
it was sent to the next node(scheduled time). The
log file presents more details of the flow fragment,
such as the current hop (the origin and destination
nodes) and the priority of the fragment. This
information is the core of TSNsched, fitting them
on a schedule without inconsistencies is vital for
the deterministic network desired, nonetheless it
is important to verify them to ensure correctness
and reliability of the schedule.

III. IMPLEMENTATIONS AND EXPERIMENTAL RESULTS

The TSNSCHED provides a tool for scenario genera-
tion that generates a topology based on the configuration
passed by the user [4]. The parameters for the configuration
are the Number of Flows, Size of the Configuration (1 -
small, 2 - medium and 3 - large), Packet Periodicity (2000 -
normal, 1000 - high or 500 - very high) and Max Branching.
We made a scenario with the following setup:

1) Number of Flows: 11.
2) Size of the Configuration: 2.
3) Packet Periodicity: 500.
4) Max Branching: 2.
When TSNSCHED is executed, we can set up how the

output is generated [4]. We opted to generate a JSON and
Log files with the time of the packets included. Both of them
containing data about the execution of TSN, such as the
time the packets took to be sent and the interval in which it
was sent. The Checker works based on six criteria defined
for evaluation those are: Type checking value, Well formed
hops, Consistent path nodes and transmission windows
consistency which is divided into 3 parts the cycle, window
and sent order. They are further explained in their respective
subsections. Table I shows a resume of the criteria.

A. Type checking value

Checks for any negative number on the output because
it is an impossible value of time when considering the real



XL SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES E PROCESSAMENTO DE SINAIS - SBrT 2022, 25–28 DE SETEMBRO DE 2022, STA. RITA DO SAPUCAÍ, MG

TABLE I
CHECKER CRITERIA OF VALIDATION.

Validation Description

Type checking value
Checks whether all timestamps of

time of departure, arrival and
scheduled are positive.

Well-formed hops

Checks if the sum of the
Time of sent and

Duration time of transmission
is equal to the scheduled time.

Consistent path nodes

Checks the path to a certain device
given on the flow and
compares it through

the file to ensure it is consistent.

Transmission windows
consistency - Cycle

Checks if a packet does not overpass
its cycle and if two packets

are being transmitted at same
time on the same port.

Transmission windows
consistency – Priority Window

Checks if each packet is
being transmitted at

its correspondent
priority window.

Transmission windows
consistency – Sent Order

Check if the packets at
the same port of same

priority are being
transmitted in arrival

order(FIFO like).

world scenario because everything timestamp is relative to
at least its own start, therefore the minimum value is 0. Both
Log and JSON files brings us the data needed to verify,
those are the departure, arrival, scheduled, Slot Duration
and Slot Start times as can be seen in Figure 2 and Figure
3.

Fig. 2. Packet Arrival, Departure and Scheduled times.

B. Well formed hops

TSN schedules and controls the transmission of packets
on the flows based on time, as it is a time-sensitive network,
therefore time is the most important subject to be consid-
ered. It is crucial that the flows respect their schedules to
minimize latency and jitter. On the output there are three

variables of time on the flow fragments, they are: the arrival
time, departure time and scheduled time. Those three are
chained together since the arrival time represents when
the packet arrived at the current node, the departure time
represents when the packet left the previous node and the
scheduled time represents when the packet is to be sent
to the next node. The tool checks if the nodes are well
scheduled by comparing this information of a node with its
previous, more precisely, there is a need to ensure that the
departure time of a node is equal to the scheduled time of
the previous node as seen in Figure 2 otherwise there is a
scheduling problem.

Although it is not critical, it is good that a port remains
open until the transmission is done which is can be verified
by the adding of slot start and slot duration (slot start
+ slot duration = scheduled time) otherwise a warning is
generated.

C. Consistent path nodes

At runtime, it might happen that TSNSCHED inserts a
node on the path to a certain device that is not supposed to
exist. Therefore, checking whether the paths are consistent
with its schedule is important to avoid packets from following
a route not intended, which is to raise the jitter. This tool
validates it by comparing the path for each device on each
flow with each hop on each flow fragment, so we can ensure
they are the same.

For instance, assume that the path to a device called
dev5 has its origin on dev38 and passes through switch7,
switch0 and switch1 finishing at dev5, we expect that each
flowFragments associated to this path to be consistent with
the one described earlier.

D. Transmission windows consistency - Cycle

There cannot be two or more packets being transmitted
at the same time on the same port, and the transmission
cannot overpass its cycle duration in order to avoid delay
problems on the network. For instance, if a packet is to
be sent somewhere between 0 and 500 microseconds, it
cannot be sent after this interval which is to be paused and
then resumed afterwards based on the priority policy. Each
switch have an array of ports, each containing an array of
slots. Inside prioritySlotsData there is the slotsData for each



XL SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES E PROCESSAMENTO DE SINAIS - SBrT 2022, 25–28 DE SETEMBRO DE 2022, STA. RITA DO SAPUCAÍ, MG

Fig. 3. Each slot data of a port.

transmission, it shows us the start and the duration of the
transmission. The purpose here is to validate each slotsData

to ensure their start is not the same and also if they do not
finish their transmission after the cycle is over. Figure 3 is
an example of the prioritySlotsData brought on the JSON.
Assume we have a certain port with a cycle duration of
20 microseconds and two slots of transmission, we must
ensure that both slots are started at different moments and
that they will not last until after the 20th microsecond.

E. Transmission windows consistency - Priority Window

Each packet has a priority assigned to it, and so it must
be transmitted at its correspondent priority window. This
checker parses the JSON file looking for the flows and
switches data to get the priority and node of each hop. By
parsing the flow data, it takes each hop and save its priority,
then compares whether there is a port on a specific switch
transmitting a packet with the saved priority.

For example, assume there is a hop from the switch9 to
the switch1 with a priority assigned of 7, there is need to
be a port on the switch9 with a transmission of priority: 7
as can be seen in Figure 4 and Figure 3.

Fig. 4. Hop from a switch1 to a switch9 with a priority assigned of 7.

F. Transmission windows consistency - Sent Order

When there are multiples packets on a port with the same
priority, we must ensure they are being sent in the order of
arrival just like a queue, where the first that comes in is the
first that goes out. This tool validates it by checking the start
of transmission of each slot data on a port and compare
them. An array indexes its items in the order they are added,
so we can assume the index of the array represents the
order of arrival, based on that, the first item must have a
slotStart lesser than the next one and so on. Figure 3 shows
an example of a forwarding packet situation where two slots
have a priority of 7, but the first of the queue is set to be
started after the second one and they both have the same
priority, this is to raise an error because the first one have
arrived earlier and so must be sent before the next one.

G. Results

We generated a scenario to show the implementation
of each criteria of validation, then we measured the time
each method took to be executed, as can be seen in
Table II. One problem was found and raised an error on this
scenario which have not passed in the Sent Order criteria
as explained on III-E and shown in Figure 3.

TABLE II
EXECUTION TIME FOR EACH METHOD ON THE SCENARIO TESTED.

Method Execution time (ms)
Well Formed Hops 452

Check Logs 683
Port Transmission 1

Transmission Window 0
Time Packets 2097
Check Hops 12

Priority Window 7649
Packets ASAP 346

Total Program time 12312

This scenario is one of several that were tested. The
result for the others scenarios can be seen on Table III,
Figure 5 and Figure 6. In Figure 5 is illustrated in a graphic
the amount of problems and warnings raised for each file,
the one used to explain our implementations throughout the
paper is identified as file F. In Figure 6 we present the mean
time in milliseconds that each method took to be executed
and also the program’s total execution time which is way
less than what a human would take to check each criteria
manually.

TABLE III
PROBLEMS AND WARNINGS FOUND FOR EACH FILE TESTED.

File Problems Found Warnings
A 0 9
B 0 13
C 0 3
D 0 4
E 0 12
F 1 8
G 0 11
H 0 12



XL SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES E PROCESSAMENTO DE SINAIS - SBrT 2022, 25–28 DE SETEMBRO DE 2022, STA. RITA DO SAPUCAÍ, MG

Fig. 5. Amount of problems and warnings found for each file.

Fig. 6. Illustration of the overall execution time for each method.

IV. RELATED WORK

In general, validation is often an important subject of
study, as it can help to avoid or fix any problem that
may occur. There are several others studies in the area of
computer-aided verification and checkers as shown on Con-
ference on Computer-Aided Verification [6] which most of
them are not actually TSN specific, however they served to
inspired our work. M. Illarramendi et al. [7] presented a tool
that enables the developers to generate automatically reflec-
tive UML State Machine controllers and the Runtime Safety
Properties Checker (RSPC) which checks a component-
based software system’s safety properties defined at design
phase. The checker detects when a system safety property
is violated and starts a safe adaptation process to prevent
the hazardous scenario. Thus demonstrating that the safety
of the system is enhanced.

Aravind Machiry et al. [8] presented on their work a
fully-automated static analysis tool capable of performing
general bug finding using both pointer and taint analyses
that are flow-sensitive, context-sensitive, and field sensitive
on kernel drivers. A more close related work is presented
by Tatjana Kapus [9] which employed a probabilistic model
checker using PRISM that work on network simulation by
receiving the network as a kind of state machine and the
queries about the probabilities sought in the form of logical
formulas and then calculates the probabilities.

V. CONCLUSION AND FUTURE WORK

We had ran this tool over several scenarios, each being
generated with different settings to validate a great variety
of scenarios and complexities to measure Checker’s overall
performance on finding problems, whereas no errors were
found among the many files we have checked. It did raise
some warnings.

We found this tool to be very useful at quickly looking for
problems on the schedule by looking at its output, allowing
us to quickly work on fixing them to improve the scheduling
reliability and to validate TSNSCHED when running large
scenarios where it would be unfeasible and unpractical to
check manually. The results found were very satisfying,
and we will continue working on developing new criteria
to extend our validation versatility to improve the checker’s
usefulness and worth. As TSNSCHED is constantly being
updated, so will be the checker.

REFERENCES

[1] IEEE 802.1Qbv - Enhancements for

Scheduled Traffic. Available online at
http://www.ieee802.org/1/pages/802.1bv.html, last
accessed on October 30th 2021. IEEE.

[2] Silviu S Craciunas and Ramon Serna Oliver. “Com-
bined task- and network-level scheduling for distributed
time-triggered systems”. In: Real-Time Systems 52.2
(Mar. 2016), pp. 161–200.

[3] Wilfried Steiner. “An Evaluation of SMT-Based Sched-
ule Synthesis for Time-Triggered Multi-hop Networks”.
In: 2010 31st IEEE Real-Time Systems Symposium.
2010, pp. 375–384.

[4] Aellison Cassimiro T. dos Santos, Ben Schneider, and
Vivek Nigam. “TSNSCHED: Automated Schedule Gen-
eration for Time Sensitive Networking”. In: 2019 Formal

Methods in Computer Aided Design (FMCAD). 2019,
pp. 69–77.

[5] "Kelvyn Lenis M. de Morais". “TSN-Checker”.
In: Checker’s source code available on
https://github.com/KelvynLenis/TSN-Checker.

[6] Hana Chockler and Georg Weissenbacher, eds. Com-

puter aided verification. en. 1st ed. Lecture notes in
computer science. Cham, Switzerland: Springer Inter-
national Publishing, July 2018.

[7] Miren Illarramendi et al. “CRESCO Framework and
Checker: Automatic generation of Reflective UML State
Machine’s C++ Code and Checker”. In: 2020 IEEE

International Symposium on Software Reliability Engi-

neering Workshops (ISSREW). 2020, pp. 25–30.
[8] Aravind Machiry et al. “DR. CHECKER: A Soundy

Analysis for Linux Kernel Drivers”. In: 26th USENIX Se-

curity Symposium (USENIX Security 17). Vancouver,
BC: USENIX Association, Aug. 2017, pp. 1007–1024.
ISBN: 978-1-931971-40-9.

[9] Tatjana Kapus. “Using PRISM model checker as a
validation tool for an analytical model of IEEE 802.15.4
networks”. In: Simulation Modelling Practice and The-

ory 77 (2017), pp. 367–378. ISSN: 1569-190X.


