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Abstract— This paper presents a study regarding the impact
of using imperfect reference images containing targets and
artifacts in the performance of change detection methods. The
presented analysis uses a change detection method based on
Bayes’ Theorem recently proposed. The experimental evaluation
is carried out using wavelength-resolution SAR images obtained
using the CARABAS II SAR system. The experimental setup
considers two types of reference images, i.e., imperfect and
ground scene prediction (GSP) generated images. The imperfect
images are those available in the dataset. The GSP-generated
images are obtained by the GSP method and tend not to
contain targets and artifacts. Results indicate that the use of
reference images obtained by the GSP method provides a false
alarm reduction in the evaluated scenarios when compared with
the CDA implementation with imperfect reference images. For
instance, a FAR reduction from 0.667 to 0.229 is observed in an
evaluated setup.

Keywords— Change detection method, ground scene predic-
tion, Synthetic Aperture Radar (SAR), wavelength-resolution
SAR images.

I. INTRODUCTION

Synthetic aperture radar (SAR) is an important tool for
imaging the Earth’s surface. By choosing an appropriate opera-
tion frequency, it is possible to obtain an accurate image of the
surface without the need for solar light and under detrimental
weather conditions such as fog, rain, and snow [1]. These
characteristics make SAR imaging attractive for both civilian
[2] and military applications [3]. Of particular interest are
SAR systems operating at lower frequencies, with wavelengths
comparable with the dimensions of a resolution cell. These
wavelength-resolution systems can be used for natural disaster
monitoring and detecting targets concealed in foliage [4]. Due
to the longer wavelength, speckle is reduced in the processed
SAR image, and smaller objects such as small tree branches,
forest canopies, or ground vegetation of the illuminated area
are effectively eliminated from the image, as these objects
create a negligible backscatter compared to larger objects in
the resolution cell [5], [6].

Change detection in wavelength-resolution SAR is an im-
portant processing strategy for target detection. A change
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detection algorithm (CDA) detects differences between images
of the same area obtained at different times and classifies them
on a binary basis as either changed or unchanged [7]. In [8],
discrete wavelet transform is applied to the differential image
obtained through mean-ratio and log-ratio operations to detect
changes. In [9], a CDA technique based on a neighborhood-
based ratio operator is presented. More recently, deep learning
techniques have been used in change detection. For example,
in [10], images that first undergo morphological operations
are processed by a deep belief network to create a change
map. In [11], stacked contractive autoencoders are employed
to suppress the influence of speckle noise in the change map.
Convolutional neural networks are also used in change detec-
tion, such as in [12] and [13]. However, significant drawbacks
of deep-learning-based approaches include a high requirement
of data for training and the relatively high complexity of these
methods.

A simple CDA derived from an approximation of Bayes’
theorem was presented in [14]. This CDA uses a single
reference image to detect changes and estimate the proba-
bility of change for each pixel in the surveillance image.
This method uses the joint probability distribution and the
histograms estimated from reference and surveillance images.
The estimate can then be compared to a fixed threshold.
The method is simple and interpretable, but it improves over
traditional methods in terms of detection and false alarm rates.
Also, it can be used with limited data, unlike data-intensive
procedures such as machine learning techniques.

CDA performance depends on how well the reference image
corresponds to the actual ground truth. It was verified in [15]
that image stacks could yield better detection results since the
additional information is used to reduce the influence of imper-
fections in the reference image caused by elongated structures
such as fences and power lines. It is possible to perform GSP
with the image stack, creating an accurate reference image. For
instance, in [16], median pixel values of a stack of wavelength-
resolution images create an accurate representation of the
ground scene from a probability distribution perspective.

The main objective of this paper is to discuss the effect of
using imperfect reference images in CDAs, where imperfec-
tion is defined as the presence of targets and artifacts in the
image. To this end, an experimental setup is used based on real
data obtained by the CARABAS II system. The performance
of a CDA based on Bayes’ Theorem [14] is evaluated in
two scenarios: one using imperfect images and another using
reference images obtained from a GSP procedure [16]. The
GSP procedure tends to mitigate targets and artifacts. The
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results indicate that the use of GSP-generated reference images
reduces the false alarm rate in the evaluated scenarios com-
pared to the original implementation with imperfect reference
images.

The rest of this work is organized as follows. Section II
briefly describes the experimental data. Section III describes
the CDA based on Bayes’ Theorem. Section IV presents
the GSP method under analysis. Results are presented in
Section V, and Section VI contains final remarks.

II. CARABAS-II SAR DATA SET

Of the wavelength-resolution SAR systems available [15],
one that has been proven efficient for change detection applica-
tions is the CARABAS-II, which produces SAR images at the
very high frequency (VHF) band (20-90 MHz) [4]–[17]. This
study considers 24 SAR images acquired by the CARABAS-II
system during a measurement campaign carried out in northern
Sweden in 2002. These images were documented in [7] and are
publicly available by the U.S. Air Force Research Lab (AFRL)
on the sensor data management system (SDMS) website [18].
Each image of the data set is formed by 3000 × 2000 pixels
and covers an area of 6 km2. The area is characterized by the
presence of forested regions, rivers, transmission lines, and
fences. Also, 25 military vehicles were inserted in order to
represent the targets of the scene [7].

The images can be grouped into four different missions,
representing four different target deployments. In this study,
we adopt the same nomenclature of [7], where the missions are
referred to as 2, 3, 4, and 5. Each mission is represented by six
platform passes performed with different flight headings. Let
0◦be defined as the north heading and let the heading angle
increase in the clockwise direction. Two passes were made
with a flight heading of 225◦, two with a flight heading of
135◦, and two with a flight heading of 230◦. Figure 1 shows
the images for each mission.

III. CDA BASED ON BAYES’ THEOREM

A. Overview

This section briefly describes the change detection method
based on Bayes’ Theorem presented in [14]. Bayes’ theorem
describes how the conditional probability of an event A,
given prior knowledge of a second event B, correlates to the
probabilities P (A) and P (B), with the variation

P (A|B) =
P (B|A)P (A)

P (B)
, (1)

where P (B|A) is the probability of event B given prior
knowledge of event A.

Change detection in SAR can be formulated in terms of
Bayes’ Theorem by considering the relations between data in
two complex images: the reference and surveillance images.
The reference image is used to measure the clutter present in
the scene, while the surveillance image has as its focus target
detection. Following Bayes’ theorem, the probability of the
pixel under test zU in the surveillance image being detected

as a change in relation to the same pixel zR in reference image
is

P (sT |zU , zR) =
P (zU |sT , zR)P (sT |zR)

P (zU |zR)
, (2)

where sT is the event of an actual change in the pixel under
test. The opposite event where there are no changes in the
pixel under test is denoted as sC . The probability P (sT |zR)
describes the probability of the evaluated pixel containing
a target given zR, and since the presence of a target is
independent of zR, it can be written as

P (sT |zR) = P (sT ) =
MK

N
, (3)

where M is the number of pixels occupied per change, i.e.,
target footprint, K is the number of detected changes, and N
is the number of pixels in the image.

The probability of a pixel amplitude zU occurring given zR
can be described as P (zU |zR). Additionally, this probability
P (zU |zR) can be represented by the probability of the two
mutually exclusive events sT and sC , and thus can be formu-
lated as

P (zU |zR) = P (zU |sT , zR)P (sT )

+ P (zU |sC , zR)[1− P (sT )].
(4)

Isolating P (zU |sT , zR), we have

P (zU |sT , zR) =
P (zU |zR)− P (zU |sC , zR)[1− P (sT )]

P (sT )
.

(5)

We then replace (5) in (2) to obtain

P (sT |zU , zR) = 1− P (zU |sC , zR)[1− P (sT )]

P (zU |zR)
. (6)

Considering that N ≫ MK and following the algebraic
manipulations in [14], P (sT |zU , zR) can be approximated by

P (sT |zU , zR) ≈ 1− P (zU , zR|sC)
P (zU , zR)

. (7)

The probability P (zU , zR|sC) can be obtained from a
probability distribution function modeling the background of
the SAR images, while P (zU , zR) is obtained directly from
a histogram of the SAR image. Assuming that an appropriate
pdf is chosen to represent P (zU , zR|sC), then the presence
of a change will result in P (zU , zR) increasing in relation to
P (zU , zR|sC) and as consequence P (sT |zU , zR) increases and
approaches 1. If P (sT |zU , zR) exceeds a predefined threshold
λ, a detection is declared.

B. Clutter-Plus-Noise Model

Traditionally, used distributions for modeling SAR im-
ages are the bivariate Rayleigh, bivariate Gamma, and K-
distributions [19], [17]. The bivariate Rayleigh is used in this
work for modeling P (zU , zR|sC), because of its simplicity
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(a) (b) (c) (d)

Fig. 1. Magnitude of CARABAS-II SAR images in different missions: (a) Mission 2, Pass 1 (225◦); (b) Mission 3, Pass 2 (135◦); (c) Mission 4, Pass 5
(230◦); and (d) Mission 5, Pass 6 (230◦).

and effectiveness in change detection applications [19], [20].
The Rayleigh bivariate probability distribution function is

fzU ,zR(zU ,ΩU ; zR,ΩR|ρ) =
4zRzU

ΩRΩU (1− ρ)
exp

[
− 1

1− ρ

(
z2R
ΩR

+
z2U
ΩU

)]
×

I0

(
2
√
ρ

1− ρ

zRzU√
ΩRΩU

)
,

(8)

where ΩR = z̄2R and ΩU = z̄2U , with z̄U and z̄R representing
mean values of z2U and z2R, respectively. I0(·) is the zero-order
modified Bessel function, and ρ the correlation coefficient of
z2R and z2U , is given by

ρ =
cov(z2U , z

2
R)√

var(z2U )var(z2R)
, (9)

where cov and var denote covariance and variance, respec-
tively. The parameters of this distribution can be estimated
directly from the whole image data in the surveillance and
reference images via a maximum-likelihood estimator.

C. Change Detection Method

From the knowledge of the probability distribution functions
(pdf) of P (zU , zR) and P (zU , zR|sC), it is possible to calcu-
late P (sT |zU , zR) for every pixel in the surveillance image.
To reduce runtime processing, the computation in (7) is only
applied to positive changes in zU that satisfy zU > zR +∆z.
∆z is a small increment in magnitude from the reference
image, chosen according to prior knowledge of the image data
statistics. Based on the previous consideration, only targets
appearing in zu are computed as changes. The probability
P (sT |zU , zR) is automatically clamped to zero if the condition
is not satisfied. Moreover, P (zU , zR|sC) is clamped to 0 in
case (7) becomes negative due to a mismatch in the choice of
the distribution model in P (zU , zR|sC) and the data histogram.

A binary map is generated for the surveillance image,
comparing it to a threshold λ, with every pixel assigned the

value of 1 for P (sT |zU , zR) ≥ λ and 0 otherwise. The CDA
as described is illustrated in Figure 2. Erosion and dilation are
applied to this binary mask to remove small false alarms and
merge fragmented detections. It was originally implemented
in [14], referred to as non-iterative Bayes’ theorem CDA.

P(zU,zR | sC)

P(sT| zU, zR)

Binary mask

P(zU,zR)

zU,zR zU,zR

Histogram formation Parameter estimation

Conditional probability

Apply threshold

Surveillance image and reference image

Morphological operations

Results

Fig. 2. Block diagram of the evaluated CDA based on the Bayes’ theorem.

IV. GROUND SCENE PREDICTION

The target detection performance of a CDA is highly depen-
dent on the fidelity of the reference image to the ground scene.
Often in change detection applications, a single pair of images
taken from an image data set is used as surveillance and
reference images, with the reference image frequently having
interfering targets and other artifacts [14], [15], [17], [20]. One
way to avoid this problem is through GSP approaches over an
image stack, where a better reference image can be obtained.

Recently, [16] proposes a GSP based on auto-regressive
models for the following metrics, median, mean, trimmed
mean, and intensity mean. The reference image from the GSP
was tested in a CDA, and it was verified that the median
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provided a more accurate representation of the reference
images in terms of the average, standard deviation, skewness,
kurtosis, as well as goodness-of-fitness measures like the mean
absolute percentage error and the median absolute error [16].
Three different stacks with eight images can be formed from
the CARABAS II data. These stacks are composed of images
with similar flight headings [5], [16], creating stability over
time. We define stability as the relative invariability of the
image statistics. Following [16], we refer to 225◦, 135◦, and
230◦ stacks as numbers 1, 2, and 3, respectively. Once the
stack is formed with the targets in different positions (i.e.,
two images of each mission within the stack), applying these
statistical methods will mitigate the pixels-amplitude related
to the presence of targets from the image stack. Consequently,
the GSP can be obtained, as shown in Figure 3.

(a) (b) (c)

Fig. 3. GSP image obtained for three stacks using the median (adapted from
[16]): (a) Stack 1 (225◦); (b) Stack 2 (135◦); and (c) Stack 3 (230◦).

V. EXPERIMENTAL RESULTS

To assess the impact of using target-free reference images,
we present an experimental evaluation based on the CDA
presented in [14], assuming the reference images are generated
via the median method in [16]. Herein, the proposed method
is named the median-based GSP method over the Bayes’
theorem CDA. The experimental evaluation considers all the
24 images from the data set presented in Section II. The
methods’ performance is assessed in terms of the probability
of detection (Pd), i.e., the ratio of the number of detected
targets to the known number of targets, and the false alarm
rate (FAR) - here defined as the number of false alarms per
square kilometer. For the analysis, every object detected by
the method was considered a change, even those produced by
target fragmentation and image formation issues.

The first comparison in Figure 4 is between the receiver
operating characteristic (ROC) curve with the reference as a
GSP-generated image and the ROC curve produced with the
standard reference images in [14]. For the sake of simplicity,
we adopted the same image pairs as in [14] and [7]. The
detection threshold λ is varied across a wide range of values to
measure the probability of detection Pd as a function of FAR.
The values of ∆z were the same used in [14] and [17], i.e.,
[0.2, 0.3, 0.4]. The curves with the same colors and markers
were obtained using the same values for ∆z, with the solid
line representing the CDA using GSP, and the dashed line the
original implementation presented in [14].
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Fig. 4. The probability of detection Pd as a function of FAR for the original
implementation of the Bayes’- Theorem-based CDA (dashed lines) and for
the implementation using median-based GSP (solid lines)

It can be noticed that, as a result of the more accurate
reference image provided by the GSP, i.e., no targets and fewer
artifacts, there was a significant improvement in reducing
the FAR. For the case of ∆z = 0.4, Pd is approximately
97.4% for a FAR of about 0.2 using the median-based GSP
implementation against a Pd approximately equal to 92.4% for
the imperfect reference image implementation. For a compara-
tively higher FAR of about 1, Pd is approximately 99.2% using
the median-based GSP implementation against a Pd ≈ 98.7%
for the imperfect reference image implementation.

To further investigate the effects of reference images, we
present the results for a specific test setup in Table I, as
evaluated in [14]. For fair comparisons and readability, we
should have practically the same Pd in the two scenarios. As
can be observed, for the approximate Pd of 0.985, the FAR
reduced from 0.667 to 0.229. This reduction is mainly due to
the removal of targets and image artifacts from the reference
images. As discussed in [14], this adverse effects require more
sophisticated false alarm reduction techniques than the ones
considered in [14]. Indeed, using reference images in CDA
from GSP methods is a possible way to reduce the occurrence
of false alarms related to these issues.

VI. CONCLUSION

This paper presents a preliminary study regarding the impact
of using reference images containing targets and artifacts
(imperfect images) in the performance of change detection
methods for wavelength-resolution SAR images. This initial
analysis uses a recently proposed change detection method
based on Bayes’ theorem. It is important to emphasize that
most of the CDA proposed for wavelength-resolution SAR
images use reference images contaminated by targets. For
comparison purposes, we used imperfect or GSP-generated
images as reference images as input of the studied CDA.
Experiments were performed for the CARABAS-II data set.
A performance improvement was observed in all evaluated
scenarios when GSP-generated images were used. Also, we
observed that the GSP strategy could be extended to other
change detection algorithms and SAR data sets.
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TABLE I
PERFORMANCE COMPARISON BETWEEN CDA WITH IMPERFECT REFERENCE IMAGE (IRI-CDA) [14] AND CDA WITH GSP-REFERENCED (GSP-CDA)

FOR λ = 0.3 AND ∆z = 0.4.

Experiment
Number

Surveillance Image Detected Targets
(IRI-CDA)

Probability of Detection
(IRI-CDA)

False Alarms
(IRI-CDA)

FAR
(IRI-CDA)

Detected Targets
(GSP-CDA)

Probability of Detection
(GSP-CDA)

False Alarms
(GSP-CDA)

FAR
(GSP-CDA)mission pass

1 2 1 25 1 0 0 25 1 0 0
2 3 1 25 1 6 1 25 1 3 0.5
3 4 1 25 1 0 0 25 1 0 0
4 5 1 25 1 4 0.67 25 1 2 0.33
5 2 2 25 1 0 0 25 1 0 0
6 3 2 25 1 0 0 25 1 0 0
7 4 2 25 1 1 0.17 25 1 1 0.17
8 5 2 25 1 0 0 25 1 0 0
9 2 3 25 1 2 0.33 25 1 1 0.17

10 3 3 24 0.96 0 0 24 0.96 0 0
11 4 3 25 1 2 0.33 25 1 2 0.33
12 5 3 25 1 2 0.33 25 1 0 0
13 2 4 25 1 0 0 25 1 0 0
14 3 4 25 1 0 0 25 1 0 0
15 4 4 25 1 1 0.17 25 1 1 0.17
16 5 4 23 0.92 1 0.17 23 0.92 0 0
17 2 5 25 1 2 0.33 25 1 0 0
18 3 5 19 0.76 54 9 18 0.72 23 3.83
19 4 5 25 1 0 0 25 1 0 0
20 5 5 25 1 21 3.5 25 1 0 0
21 2 6 25 1 0 0 25 1 0 0
22 3 6 25 1 0 0 25 1 0 0
23 4 6 25 1 0 0 25 1 0 0
24 5 6 25 1 0 0 25 1 0 0

Total 591 0.985 96 0.667 590 0.983 33 0.229
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