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Abstract—This paper presents the application of two signal-

processing techniques, Hanning window and zero padding, to the 

results of simulations of propagating waves using the FDTD 

method. Two problems involving rectangular resonant cavities are 

addressed: an empty cavity and a cavity partially filled with a 

dielectric. Frequency spectrum plots and tables with the numerical 

results demonstrate the difference between the results obtained 

from the simulations with and without the use of these techniques, 

highlighting the improvements in the graphs clarity and resolution 

as well as in the accuracy of the numerical results. 
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I. INTRODUCTION 

Problems involving propagating microwave fields are 
becoming increasingly frequent and, hence, methods for solving 
these problems are constantly being explored. Analysis of 
electromagnetic fields in resonant cavities have an important 
role in the development and testing of new techniques that 
improve numerical calculation of propagating fields. 
Furthermore, resonant cavities are used for many applications in 
engineering, such as microwave transmitters and receivers, 
bandpass filters, microwave ovens, oscillators etc. 

The finite-difference time-domain (FDTD) method is a 
powerful tool used to solve electromagnetic problems in the time 
domain. Problems involving field propagation in free space, 
antennas, diffractive optics, reverberation chambers and many 
other related subjects can be solved by this numerical technique, 
presented by Yee in 1966 [1]. This method, combined with the 
utilization of the fast Fourier transform (FFT) and other signal-
processing techniques such as windowing and zero padding, can 
lead to very detailed analysis of the resonant cavities. 

In computational simulations of resonant cavities, after the 
application of the FFT to the set of field samples, the resulting 
spectrum may have low frequency resolution, making it difficult 
to extract resonant frequency values with good accuracy. 
Aiming to gather information about the effect of the application 
of some signal-processing techniques in FFT graphs resolution 
and in the accuracy of numerical results, this paper presents the 
application of the Hanning window function and zero padding 
to two different problems involving rectangular resonant 
cavities – one consisting of an empty cavity and the other of a 
cavity partially filled with a dielectric material – both simulated 
by a computational program developed in MATLAB. 

II. NUMERICAL ANALYSIS TECHNIQUE 

The FDTD method is a numerical analysis technique used to 
solve Maxwell’s curl equation by discretizing the time and space 
derivatives of the electric and magnetic fields. 

  The Maxwell’s curl equations can be written as following [2]: 

 𝜕�⃗� 

𝜕𝑡
= − ∇⃗⃗ × �⃗� − 𝐽 𝑚 (1) 

 𝜕�⃗⃗� 

𝜕𝑡
= ∇⃗⃗ × �⃗⃗� − 𝐽 𝑒 (2) 

where 𝐽 𝑚 and 𝐽 𝑒 are the magnetic current density vector and the 
electric current density vector, respectively. 

Considering the discretization of both time and space 
domains, the method usually uses a second-order accurate 
central-difference approximation to the derivatives: 

 
𝑓′(𝑥) =

𝑓(𝑥 + ∆𝑥) − 𝑓(𝑥 − ∆𝑥)

2∆𝑥
+ 𝑂((∆𝑥)2) (3) 

where the last term represents the remainder term (which is not 
included in the numerical solution), corresponding to the 
approximation error. 

Further, the Maxwell’s curl equations in the discrete domain 
form can be obtained by separating the electric and the magnetic 
field vector components and applying the central-difference 
derivative to (1) and (2). Assuming the use of cartesian 
coordinates, the example for the 𝐻𝑥 equation is shown below: 

 
𝐻𝑥

 𝑛+
1
2(𝑖, 𝑗, 𝑘) − 𝐻𝑥

 𝑛+
1
2(𝑖, 𝑗, 𝑘)

∆𝑡
=

=
1

𝜇𝑥(𝑖, 𝑗, 𝑘)
(
𝐸𝑦

 𝑛(𝑖, 𝑗, 𝑘 + 1) − 𝐸𝑦
 𝑛(𝑖, 𝑗, 𝑘)

∆𝑧

−
𝐸𝑧

 𝑛(𝑖, 𝑗, 𝑘 + 1) − 𝐸𝑧
 𝑛(𝑖, 𝑗, 𝑘)

∆𝑦

− 𝜎𝑚𝑥(𝑖, 𝑗, 𝑘)𝐻𝑥
 𝑛(𝑖, 𝑗, 𝑘)  − 𝐽𝑚𝑖𝑥

 𝑛 (𝑖, 𝑗, 𝑘)) 

(4) 

Here, the notation used is similar to the one presented in the 

1966 Yee’s paper [1] and Taflove’s book [3], with slight 

differences. In this notation, i, j and k represent the indices of 

the elements of the matrices where the fields components values 

are stored in during the simulation (Fig. 1 and Fig. 2). 

 

Fig. 1.  Notation of the indices of the elements of the matrices where the 

electric field components are stored in the computational program. 
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Fig. 2.  Notation of the indices of the elements of the matrices where the 

magnetic field components are stored in the computational program. 

The n and 𝒏 +
𝟏

𝟐
 index indicate the sampling instants 𝒏∆𝒕 

and (𝒏 +
𝟏

𝟐
) ∆𝒕 in the time domain, respectively, where ∆𝒕 is 

the step size. Fig. 3 illustrates the space discretization according 
to the Yee grid as well as a visualization of how a curl operation 
is calculated in it. 

 

Fig. 3.  Space discretization according to the Yee grid how a curl operation 

is calculated in it. 

Fig. 4 shows how the instants are arranged in the discrete 

time domain, in what is called the leapfrog scheme: 

 

Fig. 4.  Illustration of the leapfrog scheme, the staggering of the time 

instants in the time the domain. 

Now, having these discretization concepts, the necessary 
equations and the proper notation in mind, it is easier to see that 
the equation (4) leads to an FDTD update equation: 

 
𝐻𝑥

 𝑛+
1
2(𝑖, 𝑗, 𝑘) = 𝐶ℎ𝑥ℎ(𝑖, 𝑗, 𝑘)𝐻𝑥

 𝑛−
1
2(𝑖, 𝑗, 𝑘)

+ 𝐶ℎ𝑥𝑒𝑦(𝑖, 𝑗, 𝑘) (𝐸𝑦
 𝑛(𝑖, 𝑗, 𝑘 + 1)

− 𝐸𝑦
 𝑛(𝑖, 𝑗, 𝑘))

+ 𝐶ℎ𝑥𝑒𝑧(𝑖, 𝑗, 𝑘)(𝐸𝑧
 𝑛(𝑖, 𝑗 + 1, 𝑘)

− 𝐸𝑧
 𝑛(𝑖, 𝑗, 𝑘))

+ 𝐶ℎ𝑥𝑗𝑚(𝑖, 𝑗, 𝑘)𝐽𝑚𝑖𝑥
 𝑛 (𝑖, 𝑗, 𝑘) 

(5) 

where: 

 
𝐶ℎ𝑥ℎ(𝑖, 𝑗, 𝑘) =

2𝜇𝑥(𝑖, 𝑗, 𝑘) − ∆𝑡𝜎𝑚𝑥(𝑖, 𝑗, 𝑘)

2𝜇𝑥(𝑖, 𝑗, 𝑘) + ∆𝑡𝜎𝑚𝑥(𝑖, 𝑗, 𝑘)
 (6) 

 
𝐶ℎ𝑥𝑒𝑦(𝑖, 𝑗, 𝑘)

2∆𝑡

(2𝜇𝑥(𝑖, 𝑗, 𝑘) + ∆𝑡𝜎𝑚𝑥(𝑖, 𝑗, 𝑘))∆𝑧
 (7) 

 
𝐶ℎ𝑥𝑒𝑧(𝑖, 𝑗, 𝑘) = −

2∆𝑡

(2𝜇𝑥(𝑖, 𝑗, 𝑘) + ∆𝑡𝜎𝑚𝑥(𝑖, 𝑗, 𝑘))∆𝑦
 (8) 

 
𝐶ℎ𝑥𝑗𝑚(𝑖, 𝑗, 𝑘) = −

2∆𝑡

2𝜇𝑥(𝑖, 𝑗, 𝑘) + ∆𝑡𝜎𝑚𝑥(𝑖, 𝑗, 𝑘)
 (9) 

   

The method allows assigning different values of the 
properties of the medium where the fields exist at different 
positions, which allows the analysis of problems involving non-
homogeneous materials. 

III. NUMERICAL STABILITY AND SIZES OF CELLS 

The values of Δt were calculated following the Courant-

Friedrichs-Lewy stability condition, consulted from the 
Taflove’s book from 1995 [3]: 

 

Δ𝑡 ≤ √𝜇𝜀√(
1

Δ𝑥
)
2

+ (
1

Δ𝑦
)
2

+ (
1

Δ𝑧
)
2

 (10) 

The sizes of the cells were chosen considering the geometry 
divisibility and the criterion also consulted from Taflove’s work 
[3]: 

 
Δ𝑥, Δ𝑦 and Δ𝑧 ≤

𝜆

10
 (11) 

As the simulation of the cavity partially filled with dieletric 
used magnetic properties to simulate symmetry, the sizes used 
for Δx and Δy had to minimize the imprecision caused by the 

staggered positions of the electric and the magnetic properties. 

IV. PROBLEMS CONFIGURATIONS AND PARAMETERS 

Two different configurations were used to verify the validity 
of using signal processing techniques to improve the results 
obtained with de FDTD method. 

The first configuration consists of an empty cavity 

measuring 80 mm  50 mm  20 mm. The simulation of this 
problem uses cubic cells with 1 mm side and is executed twice 
– one with 217 and other with 215 time steps, both using 

t = 1,11 ms. The second example is a cavity partially filled 
with a dielectric material of 𝜀𝑟 = 16, as shown in Fig. 5. 
Actually, in this case, two magnetic walls were used to simulate 
symmetry and reduce the cavity in a quarter. 
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Fig. 5.  Configuration of the cavity partially filled with a dielectric. 

The sizes of the cells used in this simulation are: 

 𝑑𝑥 ≅ 0.9975062344139650872817955 𝑚𝑚  

 𝑑𝑦 ≅  0.9990009990009990009990010 𝑚𝑚  

 𝑑𝑧 = 6,25 𝑚𝑚  

and the number of time steps is 218, with t = 2.1057 ps. 

V. SPECTRAL ANALYSIS 

For each problem, the resonant frequencies were obtained by 
applying the fast Fourier transform (FFT) to a set of field 
samples at an arbitrary point of the space domain. This set of 
samples usually consists of the values of a field component in all 
the time steps of the simulation, though these sample values may 
also be taken only at certain time steps separated by a fixed 
interval. The numbers of time steps are powers of 2 due to the 
FFT implementation. 

The spectral analysis of the empty cavity simulation was 
made for frequencies up to 600 MHz and its resonant 
frequencies were compared with the analytical results obtained 
using: 

 

𝑓𝑟 =
1

2√𝜇𝜀
√(

𝑚

𝑎
)
2

+ (
𝑛

𝑏
)
2

+ (
𝑝

𝑐
)
2

 (12) 

where a, b, and c are the sizes of the resonant cavity in each 
cartesian dimension and m, n and p are natural numbers that 
indicate the propagation modes of the electromagnetic waves 
inside the cavity. 

The analysis of the partially filled cavity included 
frequencies up to 10 GHz. The resonant frequencies obtained by 
the simulation were compared to the results obtained by Bardi et 
al. [4]. 

VI. SIGNAL-PROCESSING TECHNIQUES 

Two signal processing techniques were applied to the 
numerical results to facilitate the visualization of resonance 
peaks, improve the accuracy of their resonance frequencies, 
enable certain analyses, or reduce the computer memory used to 
store the output data. 

As the type of window used affects the spectrum plot 
obtained by the FFT, its choice is crucial for plot analysis. When 
the FFT is executed over only a time interval of the simulation 
(or the simulation just stops and the FFT is then applied to it), 
that means that a rectangular window is being used. This 
windowing is not always the best choice, as it may lead to a plot 

that makes some resonant frequencies impossible to be 
observed. 

The Hanning window [5], represented by the graph in Fig. 6, 
is applied by multiplying its amplitude at each sampling instant 
by the corresponding field samples. 

 

Fig. 6.  Graph representation of a Hanning window. 

The other signal-processing technique tested in this 
simulation for comparison is the zero padding technique [5], 
which consists of adding zeros to the time series of field samples 
to increase the number of points in the FFT graph, improving the 
frequency resolution. In all the problems, the number of zeros 
added to the time series were 4 times the previous number of its 
elements, as shown in Fig. 7. 

 

Fig. 7.  Zeros added to the samples array by the zero padding technique. 

VII. RESULTS 

The comparison between parts of the FFT graphs for the 
empty cavity simulation obtained without and with the Hanning 
window can be seen in Figs. 8 and 9, respectively. 

 

Fig. 8.  Frequency spectrum of the Hx component of the empty cavity 

simulation without using the Hanning window. 
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Fig. 9.  Frequency spectrum of the Hx component of the empty cavity 

simulation using the Hanning window. 

The FFT graphs, showing the frequencies from 350 to 550 
MHz, resulted from the simulation of the cavity partially filled 
with a dielectric without and with the use of the Hanning 
window, respectively, are presented in Figs. 10 and 11. 

 

Fig. 10.  Frequency spectrum of the Ex component of the partially filled 

cavity simulation without using the Hanning window. 

 

Fig. 11.  Frequency spectrum of the Ex component of the partially filled 

cavity simulation using the Hanning window. 

The frequency spectrum graph, from 8.8 GHz to 9.67 GHz, 
of the simulation of the empty cavity problem executed with 215 
time steps, without and with the utilization of zero padding, are 
shown, respectively, in Figs. 12 and 13. 

 

Fig. 12.  Frequency spectrum of the Hx component of the empty cavity 

simulation without the use of zero padding. 

 

Fig. 13.  Frequency spectrum of the Hx component of the empty cavity 

simulation with the use of zero padding. 

Table I presents a comparison between the analytical values 
of the resonant frequencies and their corresponding peak values 
of the frequency spectrum obtained by the simulations of the 
empty cavity executed with 215 time steps, with and without the 
use of signal-processing techniques. 

TABLE I.  COMPARISON BETWEEN RESONANT FREQUENCIES OF THE 

EMPTY CAVITY SIMULATED FOR 215
 TIME STEPS WITH DIFFERENT 

COMBINATIONS OF SIGNAL-PROCESSING TECHNIQUES. 

Analytical 
Rectangular 

window and no 
zero padding 

Hanning 
window 

Hanning 
window and 
zero padding 

value 
(GHz) 

value 
(GHz) 

error 
(%) 

value 
(GHz) 

error 
(%) 

value 
(GHz) 

error 
(%) 

3.535 3.557 0.62 3.557 0.62 3.539 0.11 

4.799 4.824 0.52 4.824 0.52 4.803 0.08 

6.282 6.303 0.33 6.303 0.33 6.282 0.00 

6.371 6.391 0.31 6.391 0.31 6.374 0.05 

7.071 7.078 0.10 7.078 0.10 7.071 0.00 

7.726 7.730 0.05 7.730 0.05 7.722 0.05 

8.072 8.082 0.12 8.082 0.12 8.071 0.01 

8.219 8.240 0.26 8.240 0.26 8.219 0.00 

8.287 8.311 0.29 8.293 0.07 8.286 0.01 
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8.380 8.399 0.23 8.399 0.23 8.377 0.04 

8.900 8.909 0.10 8.909 0.10 8.899 0.01 

9.187 9.191 0.04 9.191 0.04 9.180 0.08 

9.369 9.385 0.17 9.385 0.17 9.367 0.02 

9.598 9.596 0.02 9.614 0.17 9.599 0.01 

9.743 9.754 0.11 9.754 0.11 9.737 0.06 

9.779 9.790 0.11 - - 9.786 0.07 

9.837 9.842 0.05 9.842 0.05 9.828 0.09 

The resonant frequencies obtained from the previous 
problem, with and without the use of the same signal-processing 
techniques, but this time simulated with 217 time steps, are given 
in Table II, along with the values obtained analytically. 

TABLE II.  COMPARISON BETWEEN RESONANT FREQUENCIES OF THE 

EMPTY CAVITY SIMULATED FOR 217
 TIME STEPS WITH DIFFERENT 

COMBINATIONS OF SIGNAL-PROCESSING TECHNIQUES. 

Analytical 
Rectangular 

window and no 
zero padding 

Hanning 
window 

Hanning 
window and 
zero padding 

value 
(GHz) 

value 
(GHz) 

error 
(%) 

value 
(GHz) 

error 
(%) 

value 
(GHz) 

error 
(%) 

3.535 3.539 0.10 3.539 0.10 3.536 0.03 

4.799 4.802 0.07 4.802 0.07 4.799 0.00 

6.282 6.281 0.01 6.281 0.01 6.280 0.03 

6.371 6.374 0.05 6.374 0.05 6.369 0.03 

7.071 7.074 0.04 7.074 0.04 7.068 0.04 

7.726 7.725 0.01 7.725 0.01 7.720 0.08 

8.072 8.073 0.01 8.073 0.01 8.068 0.05 

8.219 8.223 0.05 8.223 0.05 8.217 0.02 

8.287 8.289 0.02 8.289 0.02 8.283 0.05 

8.380 8.377 0.03 8.377 0.03 8.375 0.06 

8.900 8.900 0.01 8.900 0.01 8.897 0.03 

9.187 9.182 0.05 9.182 0.05 9.178 0.10 

9.369 9.367 0.02 9.367 0.02 9.365 0.04 

9.598 9.596 0.02 9.596 0.02 9.594 0.04 

9.743 9.737 0.07 9.737 0.07 9.735 0.08 

9.779 9.781 0,02 9.780 0.02 9.775 0.04 

9.837 9.829 0,08 9.838 0.02 9.827 0.10 

Table III presents a comparison between the analytical 
values of the resonant frequencies and their corresponding peak 
values of the frequency spectrum obtained in the simulations of 
the partially filled cavity executed with 218 time steps, with and 
without the use of signal-processing techniques. 

TABLE III.  COMPARISON BETWEEN RESONANT FREQUENCIES OF THE 

PARTIALLY FILLED CAVITY SIMULATED WITH DIFFERENT COMBINATIONS OF 

SIGNAL-PROCESSING TECHNIQUES. 

Analytical 
Rectangular 

window and no 
zero padding 

Hanning 
window 

Hanning 
window and 
zero padding 

value 
(MHz) 

value 
(MHz) 

error 
(%) 

value 
(MHz) 

error 
(%) 

value 
(MHz) 

error 
(%) 

256.7 259.1 0.93 259.1 0.93 258.0 0,51 

373.0 373.2 0.05 373.2 0.05 372.1 0,24 

473.3 472.8 0.11 472.8 0.11 471.0 0,49 

507.6 507.3 0.06 507.3 0.06 506.5 0,22 

553.7 554.4 0.13 554.4 0.13 552.2 0,27 

592.3 590.6 0.29 590.6 0.29 592.0 0,05 

 

VIII. CONCLUSION 

By the comparisons between Figs. 8 and 9 and between Figs. 
8 and 9, it is visible that the application of the Hanning window 
to the array of field samples highlights the resonant frequencies 
in the FFT graph. The first and the second peaks are almost 
undetected in Fig. 10, which shows the FFT graph of the 
partially filled cavity simulation with the use of rectangular 
window. However, according to Table I, Table II and Table III, 
the Hanning window by itself made negligible or no difference 
in the values obtained in the simulations, with few exceptions. 

Zero padding, in its turn, improved the results for the empty 
cavity simulation with low sample rate (Table I), even making 
two resonant frequencies visible. On the other hand, it didn’t 
contribute significantly to the simulation with a higher sample 
rate (Table II) and, in addition, it increased the error of the values 
obtained from the partially filled cavity simulation (Table III), 
which also has a relatively high sample rate. Figs. 11 and 10 
highlight the differences in resolution and in accuracy of the FFT 
graph from the empty cavity simulation with 215 time steps. 

Thus, the use of Hanning window was relevant to improve 
the resolution and clarity of the spectrum graphs, while it did not 
make significant difference on the accuracy of resonant 
frequencies values. As the aim of the zero padding technique 
consists of increasing the spectrum frequency resolution, its 
utilization was only pertinent for simulations with a sample rate 
lower than a certain number, which depends on the geometry 
and parameters of each problem. 

REFERENCES 

[1] K. S. Yee, “Numerical Solution of Initial Boundary Value Problems 
Involving Maxwell’s Equations in Isotropic Media”, IEEE Transitions 
on Antennas and Propagation, v. ap-14, no. 3, pp. 302–307, May 1966. 

[2] A. Elsherbeni and V. Demir, The Finite-Difference Time-Domain 
Method for Electromagnetics with MATLAB® Simulations. 1. ed. 
SciTech Publishing, 2009. 

[3] A. Taflove, Computation Electrodynamics: The Finite-Difference Time-
Domain Method. 1. ed. Artech House, 1995. 

[4] I. Bardi, O. Biro and K. Preis, “Finite element scheme for 3D cavities 
without spurious modes”, IEEE Transactions on Magnetics, vol. 27, no. 
5, pp. 4036-4039, Sept 1991. 

[5] J. O. Smith, Spectral Audio Signal Processing. W3L Publishing, 2011. 


