
Semi-blind Two-Stage Estimation of Carrier
Frequency Offset for OFDM and OFDMA Systems

Tadeu N. Ferreira, Sergio L. Netto, Marcello L. R. de Campos, Paulo S. R. Diniz

Abstract— Orthogonal Frequency-Division Multiplexing
(OFDM) is a technique used in several wireless communication
systems. One impairment present in OFDM-based systems is
the Carrier Frequency Offset (CFO). The objective of this
article is to propose a semi-blind two-stage CFO estimation
algorithm for OFDM and for an Orthogonal Frequency-Division
Multiple Access system. The proposed algorithm presents lower
root-mean squared error metrics in all of the tested scenarios
and a reduced complexity than other two-stage algorithms.
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I. INTRODUCTION

Wireless communication systems demand progressively
higher rates with an increasing set of applications. Orthogonal
Frequency-Division Multiplexing (OFDM) is a widespread
technique used in wireless systems. A straightforward exten-
sion of OFDM is the Orthogonal Frequency-Division Multiple
Access (OFDMA) [1] [2], providing groups of orthogonal
subcarriers for multiple users, such as in fifth-generation (5G)
wireless systems and IEEE 802.16m (Mobile Wi-MAX) [1].

One impairment that damages the performance of OFDM
and OFDMA is the Carrier Frequency Offset (CFO), which
is present due to loss of synchronism between transmitter
and receiver oscillators. CFO interference leads to loss of or-
thogonality among the sub-carriers, increasing the inter-carrier
interference (ICI) of the system. CFO estimation was initially
based on intuitive approaches, such as Moose’s algorithm [3],
or on Maximum Likelihood estimation [4]. Another approach
to estimate CFO is a set of subspace-based algorithms, such as
MUSIC (Multiple Signal Classification) [5]. In [6], two-stage
blind algorithms are presented with combinations of MUSIC
and ESPRIT (Estimation of Parameters via Rotational Invari-
ance Techniques). In [7], a CFO estimator for the IEEE 802.16
standard is described, while in [8], [9] CFO is estimated in a
mobile system environment.

The objective of this article is to propose a semi-blind
algorithm for CFO estimation in OFDM and OFDMA. The
proposed Moose-MUSIC algorithm uses the Moose’s algo-
rithm [3] as the first stage and MUSIC as the second stage.
Semi-blind algorithms generally need fewer samples than their
blind counterparts, which is observed in the proposed Moose-
MUSIC. Moreover, Moose-MUSIC runs in less time than other
two-stage algorithms.
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Section II shows the context of OFDM and OFDMA
systems, as well as the CFO interference. In Section III,
some CFO estimation algorithms are presented. In Section IV,
the proposed Moose-MUSIC algorithm is described. Sec-
tion V compares the computational complexity of the proposed
Moose-MUSIC to its counterparts. Section VI shows the re-
sults of the performance evaluation of the proposed algorithms
and other algorithms from the literature. In Section VII, the
main conclusions of this work are presented.

II. SYSTEM DESCRIPTION

OFDM provides a transmission using multiple sub-carriers.
It mitigates the effects of frequency-selective fading in com-
munication systems. The sub-carriers are designed to be mu-
tually orthogonal in order to avoid inter-carrier interference,
caused by the frequency-selective fading. Consider a system
with sampling period T . At time instant t = kT, k ∈ N, an
OFDM symbol s(k), k = 0, 1, 2, . . . , N is transmitted, where
N is the number of OFDM sub-carriers. The orthogonal sub-
carriers are generated by an IDFT (Inverse Discrete Fourier
Transform), which is applied to s(k) ∈ CN , that is, x(k) =
Ws(k), where W is the IDFT matrix, and x(k) is the time-
domain OFDM symbol. A cyclic prefix (CP) with length NCP

is then added to x(k), generating xCP(k).
The signal xCP(k) is transmitted through the channel with

impulse response h(k). In the receiver, signal yCP(k) =
xCP(k)∗h(k)+nCP (k) is acquired, where nCP (k) is a vector
containing N samples of additive white Gaussian noise and
NCP repeated samples. Then, y(k) is generated by removing
the CP from yCP(k), and, subsequently, y(k) is converted to
the frequency domain by a DFT (Discrete Fourier Transform),
i.e., c(k) = WHy(k). Finally, a one-tap equalization is
applied, generating an estimation of the transmitted symbol
ŝ(k) = b(k) ◦ c(k), where ◦ is the pointwise multiplication.
The insertion of a CP creates the following equivalence:

y(k) = Hc(k)x(k) + n(k), (1)

where Hc(k) ∈ CN is a circular convolution matrix. Due to
the effect of the IDFT/DFT pair, Hc(k) is a diagonal matrix.

A. Carrier Frequency Offset

When there is an impairment of the frequency generated
by the oscillators on the transmitter in relation to their
counterparts on the receiver, then a CFO θ appears. In this
article, CFO denominates a deterministic and cumulative phase
impairment [3], [6]. Most articles from the literature on CFO



estimation consider the random variation of phase as a generic
Phase Noise.

The received signal is given by y(k) = exp (jkθ)E x(k) ◦
h(k) + n(k), where

E = diag(1, exp (jθ), . . . , exp (j(N − 1)θ)), (2)

where diag(a) is a matrix with a as its diagonal and 0
elsewhere.
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Fig. 1. Diagram representing the simulated OFDM system with CFO
interference.

When the CFO is present in an OFDM system, there is
loss of the mutual orthogonality, which is provided by the
IDFT/DFT pair and by the CP. Then, the CFO should be
estimated and compensated, as shown in Fig. 1.

After compensation, the orthogonality is restored, and the
following relation is still valid: c(k) = WHy(k).

III. CFO ESTIMATION ALGORITHMS

In this section, two CFO estimation algorithms are de-
scribed. In Moose’s CFO estimation algorithm [3], the CFO es-
timation is performed using a few symbols, while MUSIC [5]
is a blind estimator based on the use of the noise subspace.
Both Moose’s algorithm and MUSIC are employed later on
for designing our proposed algorithm.

A. Moose’s CFO Estimation Algorithm

In Moose’s CFO estimation algorithm [3], a known train-
ing sequence is transmitted at discrete time instants k =
0, . . . , NT − 1, where NT is the number of training OFDM
symbols. Then, for each sub-carrier [3]:

θ̂ =
1

jN(NT − 1)

NT−1∑
k=1

yi(k)si(k − 1)

yi(k − 1)si(k)
, (3)

where yi(k) denotes the ith element of y(k), and si(k) is the
ith entry of s(k).

Moose’s algorithm provides a low-complexity estimation
of the CFO. On the other hand, its estimation presents a
resolution problem as the CFO increases, since it is affected
by the presence of a residual ICI.

B. MUSIC CFO Estimation Algorithm

MUSIC is a traditional blind technique used to estimate
Direction-of-Arrival in antenna array systems. It was later
adapted to the CFO estimation scenario [5]. MUSIC requires
the use of virtual sub-carriers, that is, unused sub-carriers
in the systems, where there is no transmitted data, and they
contain noise samples. The noise subspace of data is important
to the application of MUSIC [5].

Consider that data is transmitted on only P out of the N
sub-carriers. Then, there are N −P virtual sub-carriers in the
system. Consider sP (k) ∈ CP comprising the P effectively
transmitted symbols, and WP containing the P columns of
W corresponding to the non-virtual sub-carriers. The other
ones are assembled as the columns of W⊥. The time-domain
transmitted signal xP (k) = WP sP (k) is accordingly defined,
and a modeling of the transmit system is generated:

y(k) = EWPHP sP (k)e
(j(k−1)θ(N+NCP)), (4)

where HP contains the rows and columns of HC correspond-
ing to the indices of the non-virtual sub-carriers of s(k).

The performance of the estimation may be improved by us-
ing a Forward-Backward windowing [5]. Then, the following
variables are defined:

yiF (k) =
[
yi−1(k) yi−2(k) . . . yi+M−1(k)

]T
, (5)

yiB(k) =
[
yN−i(k) yN−i−1(k) . . . yN−i−M (k)

]T
,(6)

where M is the length of the window. Some other variables
are defined based on s(k):

s̃(k) = HP s(k) exp (j(k − 1)θ(N +NCP )), (7)

r(k) = exp (−jθ(N − 1))diag
([

1, exp (
j2π

N
), . . . ,

exp (
j2π(P − 1)(N − 1)

N
)

])
s̃∗(k). (8)

Then, the following relations are observed [5]:

yiF (k) = EM+1WM+1∆
is̃(k), (9)

yiB(k) = EM+1WM+1∆
ir(k), (10)

where ∆ = diag(exp (jθ), exp (j(θ + 2π/N)),
. . . , exp (j(θ + 2(P − 1)π/N))).

Consider now the correlation R, such that,

R =
1

K(N −M)

N−M∑
i=1

K∑
k=1

(yiF (k)+yiB(k))(y
i
F (k)+yiB(k))

H .

(11)
The signal and noise subspaces of R are extracted by an

eigendecomposition. As shown in [5], the noise subspace Un

of R is related to W⊥. It is shown in [5] that, in a scenario
without CFO,

wH
i y(k) = wH

i WP s(k) = 0, i = 1, . . . , N−P. (12)

In the presence of CFO, Eq. (12) is transformed into

wH
i E−1y(k) = 0, i = 1, . . . , N − P. (13)



Then, the following cost function is defined [5]:

S(φ) =

L∑
i=1

K∑
k=1

‖wH
i Z−1(φ)y(k)‖2, (14)

where Z(φ) = diag(1, exp (jφ), . . . , exp (j(N − 1)φ)), such
that S(φ) is minimized when φ = θ. A grid search may be
performed for finding the minimum of S(φ), which is the
estimated θ̂.

C. CFO in Sub-Band CAS and Interleaved OFDMA

In the Orthogonal Frequency-Division Multiple Access
(OFDMA) [2], the available sub-carriers are distributed among
the users according to a pre-defined algorithm. When a Sub-
Band Carrier Assignment Scheme (CAS) is adopted, adjacent
sub-carriers are attributed to each of the users. When an
interleaved allocation for OFDMA is used [2], the sub-carriers
are not distributed in blocks to the users. In general, there is
a round-robin allocation.

Moose’s algorithm is adapted in a straightforward manner
to the Sub-band CAS OFDMA and the interleaved OFDMA
environment. For the MUSIC algorithm, the unused sub-
carriers of each user may be considered virtual.

IV. PROPOSED SEMI-BLIND TWO-STAGE CFO
ESTIMATION

In [6], a two-stage algorithm was proposed, using combi-
nations of ESPRIT (Estimation of Parameters via Rotational
Invariance Techniques) and MUSIC. In this paper, we propose
the scheme shown in Fig. 2.
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Fig. 2. Scheme of the proposed algorithm.

Since Moose’s algorithm is trained, but requires few sam-
ples to provide an adequate estimation, its combination
with MUSIC is considered a semi-blind two-stage algorithm.
Moose provides a low-complexity estimation with few sam-
ples, but not very accurate. On the other hand, MUSIC may
be used to refine the initial estimation of Moose. A summary
of the proposed algorithm is presented in Table I.

V. COMPUTATIONAL COMPLEXITY

In this section, the computational complexity of the pro-
posed algorithm is compared to some other algorithms from
the literature [3], [6], [10]. The complexity of ESPRIT [10]
and E-t-M (ESPRIT-then-MUSIC) are based on the analysis
in [6].

In our proposed Moose-MUSIC, ESPRIT is replaced by
Moose as the first stage of the algorithm. Since Moose’s
algorithm presents a much smaller computational complexity
than ESPRIT, then our proposed Moose-MUSIC algorithm
presents a smaller computational complexity than E-t-M.

TABLE I
SUMMARY OF THE PROPOSED MOOSE-MUSIC ALGORITHM FOR OFDM.

OFDM/OFDMA:
Generate s(k), k = 0, 1, 2, . . . , N ,
Perform IDFT x(k) = WHs(k),
Add CP to x(k),
Transmit xCP(k) through the channel,
Receive y(k) = Hc(k)x(k) + n(k).
OFDMA: All the sub-carriers belonging to other users are
treated as virtual.
Moose (Training):

For each sub-carrier: θ̂T =
1

jN(NT − 1)

∑ yi(k)si(k − 1)

yi(k − 1)si(k)
.

MUSIC:
Assemble a dense grid centered at θ̂T,
For each θi of the grid: S(φi) =

∑
‖wH

i Z−1(φ)y(k)‖2,
Find φ̂ = minS(φi).

In Table II, there is a summary of the computational com-
plexity of the algorithms, where T � P denotes the number of
training symbols. FLOPs (Floating Point Operations) are used
as defined in [11]. Due to the short training stage, the proposed
Moose-MUSIC presents a smaller computational complexity
than the previous ESPRIT-MUSIC proposal. Moose’s algo-
rithm presents the lowest complexity among the compared
algorithms, but it is a trained algorithm, where only trained
OFDM are transmitted through the sub-carriers.

TABLE II
SUMMARY OF THE COMPUTATIONAL COMPLEXITY FOR THE PROPOSED

AND BENCHMARK ALGORITHMS.

Algor. Operation Complexity
ESPRIT Subs. Separation 29P 3 + (8/3)M3+

+15P 2M
E-t-M Subs. Separation 29P 3 + (8/3)M3+

+15P 2M + 4P 2+
+2(M + 1)2

(g < G) Search: Multipl. gKP 3(N − P )
Search: Addition gKP (P − 1)(N − P )
Search: Comp. 4P 2 + 2(M + 1)2

Moose Division KP
Arc Tan [12] 6KP

Mean 2KP
Proposed Division TP

Arc Tan [12] 6TP
Mean 2TP

Subs. Separation 4P 2 + 2(M + 1)2

Search: Multipl. G(K − T )P 3(N − P )
Search: Addition G(K − T )P (P − 1)(N − P )
Search: Comp. 4P 2 + 2(M + 1)2

The proposed Moose-MUSIC presents an asymptotic com-
putational complexity in the order of O(P 4), whereas Moose’s
algorithm has an asymptotic complexity of KP . The ESPRIT
algorithm has a computational complexity in the order of
O(P 3 +M3), while E-t-M presents a complexity of O(P 4).
In our simulations, P = 36, M = 35 and K varies with
values 20 and 50. Then, for the used configuration, the
asymptotic computational complexity of ESPRIT is in the
order of 105 FLOPs, the complexity of Moose is in the order of
103 FLOPs, whereas E-t-M and the proposed Moose-MUSIC
present computational complexity in the order of 106 FLOPs.



VI. SIMULATION RESULTS

The performance of the proposed algorithms was evaluated
by computer simulations. The figure of merit is the CFO
normalized by inter-subcarrier spacing (NRMSE):

NRMSE =

√√√√ 1

Q

Q∑
i=1

(θ̂ − θ)2

2π/N
, (15)

where Q is the number of Monte Carlo (MC) runs. The
algorithms have been simulated for Q = 200 MC runs in the
ensemble in a transmission through a random channel with
10 taps. The signal is transmitted using N = 64 subcarriers,
where N−P = 28 of them are virtual. The Cramer-Rao lower
bound (CRLB) for the CFO estimation scenario is plotted
according to the Eq. (30) of [13].

In the first setup, we are addressing the well-known charac-
teristics of good performance with few OFDM symbols of both
Moose algorithm and of the semi-blind class of algorithms.
In this scenario, 20 OFDM symbols are transmitted with
3 training symbols. In the proposed algorithm, the Moose
algorithm works on the first two OFDM symbols. The results
are shown in Fig. 3. As depicted in Fig. 3, the proposed
algorithm presents the best performance in comparison to
the benchmark algorithms when a small number of OFDM
symbols are used.
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Fig. 3. Results for different values of CFO and 20 OFDM symbols.

In the second scenario, the number of OFDM symbols is
increased to 50, while maintaining 3 training OFDM symbols.
The results are shown in Fig. 4. The proposed algorithm
presents a slightly better perfor- mance than the benchmark
algorithms when 50 symbols are used for the whole range of
CFOs.

The sub-band CAS OFDMA scenario was also simulated,
where the target user transmits in 12 sub-carriers. The CFO
detection is assumed to be performed separately for each user,
then the other users’ sub-carriers are treated as virtual sub-
carriers. Fig. 5 shows the results for this scenario when 20
symbols are transmitted. Note that the performance advantage
of Moose-MUSIC reduces for a short transmitted sequence,
due to the use of few sub-carriers per user.
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Fig. 4. Results for different values of CFO and 50 OFDM symbols.
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Fig. 5. Results for sub-band CAS OFDMA scenario with 20 OFDM symbols.

A simulation was performed with a noisy environment, with
a signal-to-noise ratio (SNR) of 30 dB, and 20 OFDM blocks,
with 3 training bits. Results are shown in Fig. 6. The perfor-
mance of Moose-based algorithm are affected by the presence
of noise. Nevertheless, Moose-MUSIC still presents a superior
performance in comparison to the benchmark algorithms.

Interleaved OFDMA was simulated, with the results pre-
sented in Fig. 7. ESPRIT was slightly changed in order to
use non-continguous sub-carriers, similarly to [14]. RMSE for
all the algorithms present similar results. Table III shows the
measured running time for different parts of the algorithm. It
is noticeable that Moose-MUSIC presents a shorter running
time than M-t-M and E-t-M.

TABLE III
MEASURED RUNNING TIME PER MC RUN FOR PARTS OF ALGORITHMS.

Part Running Time (s)
Subspace Separation 0.0115

ESPRIT 0.00768
MUSIC 19.5
Moose 0.000416
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Fig. 6. Results for the sub-band CAS OFDMA scenario with 20 transmitted
OFDM symbols and SNR = 30 dB.
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Fig. 7. Results for the interleaved OFDMA scenario with 20 OFDM symbols.
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VII. CONCLUSION

This article presents the semi-blind Moose-MUSIC algo-
rithm for CFO estimation in OFDM and OFDMA systems.

Proposed Moose-MUSIC shows a superior performance in
terms of NRMSE when a small number of samples is used,
without increasing the computational complexity when com-
pared to the blind counterpart MUSIC. Moose-MUSIC still
presents an advantage over the benchmark algorithms when
a larger number of symbols are transmitted, as well as in an
OFDMA scenarios of transmission. Moreover, Moose-MUSIC
needs a shorter running time than both E-t-M and M-t-M.
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