
XL SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES E PROCESSAMENTO DE SINAIS - SBrT 2022, 25–28 DE SETEMBRO DE 2022, STA. RITA DO SAPUCAÍ, MG

Road-Speed Estimation Using Convolutional Neural
Networks and Simulated φ-OTDR Traces

R. A. Colares and D. A. A. Mello

.
Abstract— We investigate distributed fiber optic sensing and

machine-learning-based image analysis for road-speed estima-
tion. Synthetic phase-sensitive optical time-domain reflectometer
(φ-OTDR) traces are generated by the simulation of random
road features such as car density and speed. Consecutive φ-
OTDR traces are stacked generating images that are submitted
to a convolutional neural network (CNN) for classification.
The evaluated CNN-based classifier exhibits high accuracy at
sufficiently high car densities.

Keywords— Distributed fiber optic sensing, phase-sensitive op-
tical time-domain reflectometer, convolutional neural network
classifier, road-speed estimation, traffic control.

I. INTRODUCTION

Most current long-haul optical links have dedicated out-of-
band optical time-domain reflectometers (OTDRs) using bro-
adband sources for online troubleshooting and maintenance.
While a conventional OTDR allows for detecting reflections
and fiber losses, a phase-sensitive OTDR (φ-OTDR) employs
a coherent light source to detect phase changes along the fiber.
The high sensitivity of φ-OTDRs to vibration and strain has
enabled the use of legacy optical fibers as distributed fiber
optic sensors [1] for several applications [2]–[8]. Recent works
have demonstrated that optical fibers installed alongside roads
can be particularly used for road-traffic monitoring [9]. These
works stack φ-OTDR traces to generate images illustrating the
traffic evolution along distance and time. Image generation is
then followed by machine-learning-based (ML-based) image
processing for estimating parameters such as car position,
speed, weight, and traffic density [10]. Furthermore, the vi-
bration caused by vehicles traversing degraded pavements
generates φ-OTDR anomalies that can be used to detect holes
and excessive roughness. In [10], traffic information is ob-
tained by normalization, morphological operations, Gaussian
smoothing and blob analysis of φ-OTDR stacked traces. The
road roughness level is evaluated by support vector machines
(SVMs) [10].

In spite the intense experimental research activity in dis-
tributed sensing using legacy fibers, the simulation of these
systems for the development of related ML-based techniques
has not been addressed. This paper evaluates convolutional
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Fig. 1: Road-speed estimation framework. φ-OTDR traces are
simulated and stacked to build images. Images are processed
by a CNN followed by a fully connected layer operating as a
classifier.

neural networks (CNNs) for road-speed estimation. Although
we focus on road speed, other parameters can be estimated
using the same framework. Synthetic φ-OTDR traces are gene-
rated by simulation using a validated model based on refractive
index perturbations [14]. Vehicles are randomly generated to
produce desired mean road speeds and car densities. The
simulated traces are stacked and processed by a CNN for
image classification and road-speed estimation, followed by
signal-to-noise (SNR) analysis and discussion. The remainder
of this paper is structured as follows. Section II presents the
system setup containing the φ-OTDR model and the CNN-
based classifier. The simulation results are presented and
discussed in Section III. Lastly, Section IV concludes the
paper.

II. SYSTEM SETUP

The evaluated system setup is depicted in Fig. 1. First, a
φ-OTDR simulation model generates synthetic backscattering
traces. Multiple φ-OTDR traces are stacked, generating images
representing the road traffic condition. The generated image
is subsequently submitted to a CNN classifier for road-speed
estimation. The following sections detail the simulation model
and the CNN classifier.

A. φ-OTDR model

The electric field of the backscattered light is modeled
assuming a longitudinal waveguide containing a set of discrete
frozen-in inhomogeneities of uniform length ∆z, interacting
with a light pulse with length d [11]–[13], as depicted in Fig.
2. The pulse length is assumed to be equivalent to the spatial
resolution of φ-OTDR, obtained as [14]
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Fig. 2: Discrete 1D model of the optical fiber for φ-OTDR
sensing. Several inhomogeneities of size ∆z inside the pulse
length impact on the intensity of φ-OTDR.

d =
cτ

2nave
, (1)

where c is the speed of light in vacuum, τ is the pulse width
in the time domain, and nave is the average effective refractive
index.

As there is interference among the light backscattered
from different inhomogeneities within the optical pulse, the
obtained trace shows a stochastically varying amplitude. The
contributions of the incident pulse electric field Ein, reflected
within pulse length d starting at position z, are summed up at
the photodetector as [14]

E(z) = e−αz+j2φ(z)
M∑

m=0

Ein(m)r(z +m∆z)ej2φ(z+m∆z),

(2)
where α is the power attenuation coefficient, φ(z) is the
accumulated optical phase from the fiber input to position z,
M = d/∆z is the number of scattering segments within a
pulse, and r(z+m∆z) is the reflection coefficient of segment
m. φ(z) is obtained by integration of propagation constant β,
thus

φ(z) =

∫ z

0

β(x)dx = 2π
ν0
c

∫ z

0

n(x)dx, (3)

where ν0 is the central optical frequency of the incident field.
The local effective refractive index n(z) is defined as

n(z) = nave +∆n(z), (4)

where ∆n(z) is the randomly generated local index variation.
In (2), losses within the pulse width are neglected. In general,
φ-OTDR architectures locate refractive index perturbations by
analyzing time-varying anomalies in |E(z)|2.

In the simulation of ∆n(z), the fiber is considered a long
grating with random amplitude and pitch [14], where light is
partially reflected at the interface between inhomogeneities.
The refractive index coherence length in an optical fiber is
in the order of 10 nm [15], making the evaluation of (2)
computationally expensive as millions and even billions of
inhomogeneities can be found in few kilometers of fiber. To
simplify the computational workload, ∆n(z) is replaced by a
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Fig. 3: CNN architecture used for image classification. Images
are submitted to convolutional layers followed by pooling and
dense layers, then classified into 24 classes. Dropout is used
for regularization.

discretized equivalent ∆n′(z) at each sampling point, spaced
by ∆d [16].

The reflection coefficient r(z) is calculated using the normal
incidence case of the Fresnel equation. The reflection coeffici-
ent at position zi depends on the refractive index at positions
zi and zi+1

r(zi) =
n(zi)− n(zi+1)

n(zi) + n(zi+1)
. (5)

In this work, we assume that strains generate an additional
refractive index change, ∆nε, given by [14]

∆nε = nave(1− 0.1n2
ave)ε, (6)

where ε is the applied strain.
A reference trace is obtained with random ∆n′(z) represen-

ting an unperturbed fiber, and perturbations with amplitude ε
are locally added representing car movements along the fiber.
Sequential traces of |E(z)|2 are subtracted, allowing to obtain
the vibration position. The traces are then stacked allowing
image creation along time and distance. The generated images
are then headed to a trained CNN model for speed estimation.

B. Neural network classification

The subtraction of the unperturbed and the perturbed φ-
OTDR traces is normalized and transformed into a single
vector of pixels (from 0 to 255, grayscale), and then conca-
tenated as power images along time and distance to represent
car movements along the road. After image generation, the
actual mean speed is used for labeling. The dataset contains
24000 labeled images, separated into 24 balanced classes from
0 to 120 km/h. For example, the first class corresponds to
images whose labeled mean speed is between 0 and 5 km/h.
The generated images are then separated into 24 balanced
classes and submitted to a CNN [17], [18] for training and
validation. 80% of the images are used for training and 20%
for validation. Additionally, extra 960 unseen images are used
for testing. New images are submitted to the trained CNN for
mean speed classification.

The CNN architecture is depicted in Fig. 3. Rescaling
(from 0–255 to 0–1) is used before the CNN to avoid strong
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Fig. 4: Simulated φ-OTDR traces for three different average
refractive indexes. Even a small change in refractive index or
wavelength leads to changes in intensity of backscattered light.

fluctuations during training and for faster convergence. A batch
size of 16 is empirically chosen due to better classification
rates. The neural network is designed with five convolutional
layers with 16 filters each, using a 3x3 kernel size for feature
extraction. A stride of 1 and 2 is applied for vertical and
horizontal filter displacement, respectively. The rectifier linear
unit (ReLU) activation function is used for all layers, followed
by a batch normalization layer.

After the last convolutional layer, a fully-connected layer
(FC layer) with 100 hidden and 24 output neurons is used for
classification. Softmax activation function is used in the output
layer, providing a probability indicator for the corresponding
output. Dropout is applied before hidden and output dense
layers for regularization, by randomly deleting a fraction of
neuronal connections. The CNN uses a learning rate of 0.001
and the categorical cross-entropy as a loss function. After
training and hyperparameter tuning, the classified mean speed
is compared with the labeled mean speed using 960 unseen
images.

III. RESULTS

Fig. 4 shows φ-OTDR traces for 1.456, 1.456 + 2 × 10−7

and 1.456 - 2 × 10−7 average refractive indexes. A variance
of 2 × 10−6 is applied for index fluctuations [14] in all
evaluated scenarios. As expected, subtle variations in the
average refractive index lead to different traces in intensity.
The φ-OTDR pulse peak power is set to 200 mW, according
to [9]. The simulation setup considers the retrieval of one
φ−OTDR trace per second. Each image is composed by
30 lines, representing 30 φ-OTDR concatenated traces. The
sampling interval ∆d is set to 0.1 m, yielding 5000 data points
in a 500-m road segment. Each 30×5000-data array is resized
to 30×500 and transformed into images. A maximum car size
of 4 m is considered with a 1-m minimum distance between
cars, leading to a maximum car density of 200 cars/km. Cars
are randomly generated aiming at a given car density. The
position of each car is uniformly selected in a 1500-m segment,
and only the last 500-m is used to generate images. This

TABLE I: General Simulation Parameters

Parameter Value

Car size 4 m
Fiber attenuation coefficient (α) 0.2 dB/km

Fiber average refractive index (nave) 1.456
Index Variance (σ2

∆n) 2 ×10−6

Inhomogeneity size (∆z) 0.1 m
Maximum car density 200 cars/km

Maximum speed (Vmax) 120 km/h
Pulse duration (τ ) 10 ns

Pulse peak power (P0) 200 mW
Sampling Period (∆d) 0.1 m

Sampling Rate 1 GS/s
Vibration Amplitude (ε) 0.2 µε

Wavelength (λ) 1550 nm

(a) Raw image with correct classification.

(b) Raw image with incorrect classification.

(c) Truncated image with correct classification.

Fig. 5: Examples of generated images. Image pre-processing
techniques such as binarization and truncation lead to more
discernible patterns in feature space, achieving better classifi-
cation results. The exemplified mean speeds are (a) 7.50 km/h
and (b,c) 62.55 km/h, respectively.

approach ensures that cars may enter the image within the 30-
s time frame. The simulation ensures a car spacing of at least
one meter. Each generated image corresponds to a specific
speed V0. The simulation parameters are summarized in Table
I.

The statistical variation of refractive index generates outliers
in subtracted traces with poor data point representation. To
circumvent this problem and eliminate spurious peaks we
truncate subtracted traces to 10 times the mean value. Fig.
5a shows an example of a correctly classified raw image, i.e.,
without truncation. An image corresponding to incorrect clas-
sification is shown in Fig. 5b, revealing unintelligible features
related to mean speed. The same image after truncation is
shown in Fig. 5c, revealing clear features related to mean
speed. For comparison, a truncated image dataset reaches a
classification accuracy higher than 93% with 1000 images
per class. If raw images were used, at least 2000 images
per class would be needed to reach similar result using the
same architecture. The model was trained for 25 epochs. Fig.
6 shows training and validation loss and accuracy along the
training process. It is possible to see that the validation loss
(red line) and accuracy (blue line) cease to improve at the
20th epoch, while training loss and accuracy barely improve,
pointing to negligible overfitting after 20th epoch. Due to high
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Fig. 6: Loss and accuracy curves for CNN training and
validation. It can be inferred that after 20th epoch, no accuracy
improvement is evidenced and overfitting is prone to occur.
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Fig. 7: Results of a CNN classifier applied to 960 unseen data
balanced into 24 classes. It can be seen classification errors
occur generally in neighbor classes.

validation accuracy and small loss, the model corresponding
to the 20th epoch is used for classification.

Fig. 7 shows the performance of the road-speed classifier for
960 unseen images. A suitable performance is observed for the
entire investigated range of investigated parameters, reaching
93.71% validation accuracy and classification errors occurring
only in neighboring classes. 92.90% of correct classification
is reached for unseen data. We observed that most errors
correspond to images whose actual speed is in the threshold
between classes.

We also investigate the robustness of the investigated classi-
fier against noise. As there are several φ−OTDR architectures,
with and without amplification [19]–[22], and to better gene-
ralize the results, we evaluate the classifier performance under
different SNR conditions. We generate SNR levels ranging
from 0 dB to 50 dB considering additive white Gaussian
noise (AWGN) added to the traces before subtraction. Fig.
8 presents the fraction of correctly classified images versus
SNR for car densities of 1, 3, 5, 10, 50, 100 and 150
cars/km. As expected, at low SNRs and low car densities
vertical patterns generated by refractive index fluctuations
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Fig. 8: Results of a CNN classifier applied to noise-added
images (SNR from 0-50 dB). High classification accuracy is
exhibited for 30-dB SNR and above.

are more prominent than diagonal patterns generated by car
movements, impairing pattern recognition. Poor performance
is particularly observed at high speeds, where the low number
of registered points impairs performance. This problem is
alleviated when the car density is increased. Accordingly, we
observe a higher classification rate is reached for higher car
densities. The results of Fig. 8 reveal a high accuracy (100%
in the investigated dataset) for car densities higher than 10
cars/kilometer and SNRs higher than 30 dB. The influence of
the average car speed on the classification accuracy is shown in
Fig 9(a)-(d). The accuracy is degraded at high speeds and low
car densities due to the lack of data points available for feature
recognition, dispersing pixels and impairing the straight-line-
like aspect of the collected traces. Despite these limitations,
100% correct classification is reached for SNRs higher than
20 dB and more than 50 cars/kilometer.

IV. CONCLUSION

We evaluate a φ-OTDR-based sensing system for road-
speed estimation based on CNNs. Synthetic φ-OTDR traces
are simulated using a refractive index perturbation approach
to represent car vibrations. Concatenated φ-OTDR traces form
images representing traffic evolution along time and distance.
These images are divided in 24 classes and processed by a
CNN for training and validation. Image pre-processing using
truncation leads to higher validation accuracies in smaller
datasets. The simulated neural network exhibits a suitable
performance in the simulated range of parameters, reaching
93.71% validation and 92.90% test accuracy over unseen data,
where classification errors occur only on neighboring classes.
SNR analysis is carried out by adding noise to φ-OTDR traces
and submitting the subtraction of noisy images to a CNN
for classification. We observe a high classification rate for
car densities higher than 10 car/km and SNRs higher than
30 dB or car densities higher than 50 car/km and SNRs
higher than 20 dB. Future works include the investigation
of additional parameters and events such as road roughness,
sudden deceleration, and the computation of the SNR for
different φ−OTDR architectures.
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Fig. 9: Impact of car speeds on the classification accuracy. Accuracy is impaired for low car densities and high car speeds
because of low resolution in the collected traces.
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