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Abstract— The fast-moving evolution of new technologies is
driving the future mobile networks to a challenging pursuit
for high throughput and reliability. Emerging services will need
precise indicators to address contrasting requisites and link adap-
tation is a cardinal element. The received signal measurements
must provide complete information to perform appropriate and
timely decisions. Most communication systems employ statistics
based on error rates, but it is not sufficient to accomplish all
requirements. Additional information is necessary to define the
best parametrization for each application. This paper indicates
an approach to achieve this goal by monitoring processes directly
into the physical layer decoding.
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I. INTRODUCTION

For future mobile networks, the fine-tuning of a large
number of parameters will be required for the proper accom-
plishment of expected use cases. The definition of Physical
Layer (PHY) and Medium Access Control (MAC) parameters
must be based on new indicators, and not only the Channel
Quality Indicator (CQI) provided by the mobile devices. By
providing a precise estimation of the channel conditions, the
new indicators allow for a better decision regarding which
parameters shall be employed in each application scenario.

A major goal in the system parametrization is to define
which modulation order and channel coding rate shall be
used in a given communication link. Usually, the breaking
point Signal-to-Interference-Plus-Noise Ratio (SINR) for each
Modulation Coding Scheme (MCS), defined as the SINR that
leads to unacceptable error rate, is used as the main data to
switch among the available MCS.

Many algorithms use statistics based on errors to establish
these breaking points, such as Bit Error Rate (BER) or Block
Error Rate (BLER), which is paradoxical when it comes to
finding high levels of reliability. The ACK/NACK signals, used
in Hybrid Automatic Repeat Request (HARQ) scheme [1], [2],
can be used to identify the breaking point SINRs, but this
procedure also depends on a high error rate prospect. There
are several approaches available in the literature to estimate
the SINR using data-aided (DA) classes [3], [4], [5], [6]. The
results presented in the literature show that the performance
of the SINR estimation improves when previously known
transmit data is used in the receiver side.

On the other hand, the main drawback of these approaches
is the assumption that the reception processes are near to ideal.
Thus, inaccuracies related to channel estimation, for example,
are not taken into account. However, these imprecisions can be
quite significant, depending on the channel type and mapping

of pilot signals. A more realistic assessment of the system
status, with respect to a link condition, can be achieved
through the evaluation of events occurring internally in the
physical layer. To take the system processing imperfections
into account, it is necessary to consider the information
available in the reception algorithms used to recover the data.

As long as new services arise from the predicted mobile net-
works scenarios, as the Ultra Reliable and Low Latency Com-
munications (URLLC), innovative systems and algorithms are
demanded to meet all requirements. Challenging issues are
raised with this type of service, including redundancy, error
rate analysis and link adaptation [7], [8], [9]. The lack of more
complete and supportive information about link and system
conditions in this scenario is the motivation of this work.

The subject of this work is the improvement of link status
analysis, creating an indicator to select the most efficient MCS
index option, considering higher levels of reliability when
internal processing inaccuracies are present. The expected
indicator has to estimate the real error tendency of a link
according to the chosen coding and modulation scheme. It
must indicate a faster and more precise representative sample
of a low error rate. It must infer an error possibility before
its occurrence. Based on these fundamentals, the proposed
indicator is implemented using an Orthogonal Frequency Di-
vision Multiplexing (OFDM) system environment, but it can
also be employed in Single Carrier (SC) schemes. Other link
adaptation controls were applied for analysis and comparison
with respect to throughput and reliability.

To achieve the described objectives, the remaining of this
paper is organized as follows: Section II describes related
works, summarizing the advantages and disadvantages of the
analyzed schemes. Section III presents the approach to define
the indicator introduced in this work, while Section IV depicts
the system model and performance evaluation. Section V
presents the results and Section VI concludes this paper.

II. RELATED WORKS

Since the advent of 5G networks, with the introduction
of network slicing and multiple scenarios, researchers are
contributing with new methods to improve the CQI estimation.
Apart from the SINR evaluation and CQI definition, that
take part in the called Inner Loop Link Adaptation (ILLA),
the link adaptation control can consider an Outer Loop Link
Adaptation (OLLA) mechanism to compensate measurements
and processing inaccuracies [10], [11]. A final definition
criteria depends on BLER target and throughput maximization.

The conventional OLLA evaluation establishes margins
which are conditioned by statistics. If the discrepancy between
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the estimation and target is high, the process can introduce
a slow convergence. It can face an even worse scenario
depending on the channel variability [12]. The offset margins
introduced by OLLA to compensate ILLA inaccuracies can
establish considerable variations (from 10% to 30%) [13].

Other algorithms available in the literature can achieve a
better performance by using the statistics of the received data.
One example is the algorithm based on Bayesian learning
proposed in [14]. However, in this case, the simulated target
BLER values (0.1 to 0.3) are not considered as a high
reliability service category. The OLLA convergence speed can
also be accelerated by adjusting the initial offset parameter, as
described in [15]. This approach indicates how important is a
precise and successful initial CQI estimation in the ILLA.

Proposed methods applying Machine Learning (ML) have
emerged to improve link adaptation efficiency, achieving suc-
cessful results [16]. In [17], Reinforcement Learning (RL)
techniques are applied. Many other machine learning pro-
cedures are used to optimize the OLLA convergence and
performance [18], [19], [20]. However, better results could be
achieved using more robust inner information.

III. ERROR CORRECTION AMPLITUDE INDICATOR

The traditional ILLA feedback is based on a lookup table
where an SINR determines a CQI index. Empirically, the
breaking point SINR for each MCS can be found by varying
the SINR while computing the average error rate, as can be
seen in Figure 1. When the SINR approaches its breaking
point, the error probability increases, indicating a decrement
in the Quality of Service (QoS).

After mapping these values, safety margins and hysteresis
can be applied according to the degree of reliability, required
data rate and QoS factors that manage the current service. As
can be seen, the lack of information about what is happening
immediately before the occurrence of errors creates a blind
region to estimate the error probability and the reliability de-
gree. In this paper, we propose to use the statistical information
available on the receiver side to create a better mapping of the
quality of the link over the SINR, as depicted in Figure 2.

In the bit detection processing, the involved operations
carried out by the PHY decoder are capable of generating in-
formation about corrected errors. When a Forward Error Cor-
rection (FEC) scheme indicates the number of bits successfully
corrected, this data is directly provided. Some Reed-Solomon
encoding implementations, e.g., and Intelectual Property (IP)
blocks provide this information.

Fig. 1: Breaking point estimation based only in the SINR.

Fig. 2: Breaking point estimation based on the inner receiver
statistics.

Otherwise, in schemes like Low Density Check Parity Code
(LDPC) and Polar Code, a data preprocessing is necessary to
calculate this value. In these cases, considering hard decoding
as a detection processing without correction algorithms, a sig-
nal can be created comparing this detection with the complete
algorithm detection to estimate a reliability level.

According to this approach, an indicator named Error Cor-
rection Amplitude (ECA) is introduced. As a definition, it can
be stated as:

ECA is the intervention degree applied by the decoding sys-
tem compared to the detection without correction algorithms
or probabilistic analysis techniques.

In practical terms, this indicator can be used to measure the
proximity that the decoding system is from an error occurrence
or from an expected error rate value.

IV. SYSTEM MODEL AND PERFORMANCE EVALUATION

Actually, polar encoding is used in Fifth Generation of
Mobile Networks (5G) channel control messages. However,
it is a promising technique to be employed in data channels
for future mobile networks. Hence, a model to generate the
ECA index is proposed based on this technique, using the
block diagram shown in Figure 3.

After the channel estimation and the equalization process,
the demapper retrieves the data for the Logarithmic Likelihood
Ratio (LLR) evaluation, which will be used by the Polar
decoder to recover the transmitted bit-stream. In parallel, the
hard decoder provides non-corrected data. It is a simple task,
demanding very low processing resources. Lookup tables can
be used, for instance. The ECA processing block compares the
sequences obtained in each chain and evaluates the Hadamard
distance between them.

Fig. 3: Block diagram for generating the ECA index.
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The Polar Coding systems were implemented using the
AFF3CT library [21]. It is open-source software coded in C++,
licensed by Massachusetts Institute of Technology (MIT),
which supports a wide variety of FEC algorithms. Four mod-
ulation orders, varying from Quadrature Phase-Shift Keying
(QPSK) up to 256-Quadrature Amplitude Modulation (QAM),
are combined with 9 different codes rates to generate 22
MCSs. This distribution scheme was elaborated only for
validation and proof of concept purposes. Table I presents all
MCSs considered in this paper.

TABLE I: MCS definition and breaking point SINR, assuming
a codeword length of N = 2048 bits.

MCS Modulation K Spectral Effic. (bits/s/Hz) SINR (10−6)

1 QPSK 1024 1.0000000 3.8 dB
2 QPSK 1192 1.1640625 4.6 dB
3 QPSK 1368 1.3359375 5.5 dB
4 QPSK 1536 1.5000000 6.2 dB
5 QPSK 1704 1.6640625 7.3 dB
6 QPSK 1792 1.7500000 7.8 dB
7 16-QAM 1024 2.0000000 10.3 dB
8 16-QAM 1192 2.3281250 11.3 dB
9 16-QAM 1368 2.6718750 12.2 dB

10 16-QAM 1536 3.0000000 13.2 dB
11 16-QAM 1704 3.3281250 14.3 dB
12 16-QAM 1792 3.5000000 14.9 dB
13 64-QAM 1280 3,7500000 16.1 dB
14 64-QAM 1368 4,0078125 16.8 dB
15 64-QAM 1480 4.3359375 17.9 dB
16 64-QAM 1600 4.6875000 18.9 dB
17 64-QAM 1704 4.9921875 19.7 dB
18 64-QAM 1792 5.2500000 20.4 dB
19 256-QAM 1368 5.3437500 24.4 dB
20 256-QAM 1536 6.0000000 25.3 dB
21 256-QAM 1704 6.6562500 26.4 dB
22 256-QAM 1792 7.0000000 27.1 dB

A transceiver, implemented using Software-Defined Radio
(SDR) and GNU Radio [22], has been used to evaluate the
performance of the proposed indicator under real operating
conditions. Figure 4 depicts the block diagram of the test setup.

For each fixed MCS index, the SINR control block auto-
matically sets the Additive White Gaussian Noise (AWGN)
power level by sweeping the α parameter and sends the real
SINR value to the data acquisition block. The reception block
processes the ECA and the average BER, delivering the results
synchronously to the data acquisition block. The reception
block also configures its current MCS index via the control
channel and the payload data is used to calculate the BER
statistics. This collected data is shown in Figure 5.

Fig. 4: Data collection diagram.

Fig. 5: ECA vs SINR.

The ECA (δ) calculation is executed for each frame and can
be determined using (1).

δ =

m∑
i=1

|yi − gi|

Λ
, (1)

where gi is the i-th bit produced by the hard decoding, yi is the
i-th bit produced by the soft decoding and m is the number of
payload bits in the frame. The Λ parameter is the maximum
number of hard bit errors allowed in the frame to achieve
the soft BER target. This parameter is determined applying
a fixed SINR (Table I) for each MCS index, obtained via
simulations. Considering the lower spectral efficiency, ≈ 109

bits were computed to establish a reasonable average value of
Λ. With this procedure, the ECA index is linked to a target
BER of 10−6. Lower target BER can be used.

In order to evaluate the performance of the proposed SINR
approach, errors where introduced in the SINR measurements.
The simulations do not include interference. To provide a
controlled environment, only white gaussian noise is added.
Two measurement inaccuracies were inserted: a nonlinear
distortion and an overestimation.

When SINR measurement is obtained using pilots, pream-
bles or cyclic prefixes, the imprecision of channel estimation
and interpolation processes are not taken into account. In
this case, the overestimated SINR option simulates a situation
where the SINR value, measured by the reception block, is
0.5 dB better than the real one provided by the control block.

The nonlinear distortion comes from the average ratio of the
symbol power to the error power. The error is the difference
between the received data symbols and the decided symbols
from the constellation grid. Using (2), the SNR value of a kth
received symbol is based on the squared error, given by [23]:

∥ek∥2 = ak + bk, (2)

where

ak =

{
(|ℜ(xk)| − |ℜ(x̂k)|)2, if |ℜ(xk)| ≤ dmax

(|ℜ(xk)| − dmax)
2, otherwise,

(3)

bk =

{
(|ℑ(xk)| − |ℑ(x̂k)|)2, if |ℑ(xk)| ≤ dmax

(|ℑ(xk)| − dmax)
2, otherwise,

(4)

with xk is the kth received symbol, x̂k is the closest symbol in
the M -QAM constellation and dmax is the maximum absolute
value of the current constellation coordinate. The average
SINR per frame is defined as
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γdB = 10 log

( n∑
k=1

∥ek∥2

n

)
, (5)

where n is the number of received symbols in the frame. When
a received symbol crosses the constellation grid, an incorrect
error value is generated. The difference between the real SINR,
provided by the SINR control block, and the measured SINR
with imperfections, provided by the reception block, is shown
in Figure 6. For comparison purposes, three different modes
were implemented to control the link adaptation. The system
diagram is shown in Figure 7. To evaluate only the results
provided by the ILLA, there is no OLLA scheme. Based
on SINR and ECA, a plain operation is adopted, where the
MCS index can remain unchanged or it can be increased or
decreased by one unit, depending on the target achievement.
To reduce the control complexity, high mobility characteristics
were not considered. The decision is processed at the end of
each frame.

To proceed with the link adaptation control, the estimated
MCS index is sent via the loop back to the transmission block.
The MCS index configuration is synchronously applied during
one entire frame length.

The direct control mode chooses the MCS index based on
the breaking point SINR according to the lookup table (column
5 in Table I). The hysteresis control mode also employs the
same lookup table. However, an offset (+1dB) is added to
the breaking point SINR to establish a fall forward action
threshold. An offset (+0.5dB) is also added to the breaking
point SINR to establish a fallback action threshold. It creates
a safety margin and lower variance.

The ECA control mode defines an immediate fallback action
if its value is greater than 1.0. The fall forward action, on the
other hand, depends on the lookup table based on data shown
in Figure 5. The ECA value is estimated addressing this lookup
table with the current MCS index increased by one unit. The
fall forward is executed whenever this estimated ECA value
is smaller than 1.0.
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Fig. 6: Measured SINR with imperfections.

Fig. 7: System diagram.

V. RESULTS

The SINR control block automatically provides the α and
real SINR values, as can be seen in Figure 7. The setup range
is from 4.2dB to 27.5dB with steps of 0.1dB. A payload data
comprises 21670 symbols per frame. The number of elements
used to establish average values is 600 frames per SINR step.
The achievement index is the average ratio of successful target
achievement occurrence (BER < 10−6) to the total events.
One evaluation is executed per SINR step. As the channel
is AWGN, parameters like the number of pilots, Cyclic Prefix
(CP) and subcarrier frequency spacing do not affect the results.

Figure 8 shows the results for the three control modes
using SINR values with overestimation. Figure 9 exhibits the
obtained results for the three modes using SINR values based
on grid-based decision method, which generates a nonlinear
response. From the simulations in these two scenarios, the
total transmitted bits for each type of MCS index control
were computed, as well as the BER and respective target
achievement index. The tables II and III present these results.

TABLE II: Transmitted bits with overestimated SINR.

Mode Transmitted bits (Mb) Achievement %
Direct 11.134 0.43
ECA 10.918 99.57

Hysteresis 10.372 100.00

TABLE III: Transmitted bits with nonlinear measured SINR.

Mode Transmitted bits (Mb) Achievement %
Direct 10.982 30.34
ECA 10.826 95.30

Hysteresis 10.172 100.00

As can be seen in Figures 8 and 9, most of the time the
direct control mode exceeds the target limit. Collecting the
number of transmitted bits, for the case of SINR measurement
with overestimation error, the ECA control mode provided a
5.26% gain compared to the hysteresis control mode.

Fig. 8: BER using the overestimated SINR (0.5 dB).
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Fig. 9: BER using SINR with nonlinear response.

Similarly, when nonlinear error is applied, a 6.43% gain
is verified. The direct and hysteresis control mode could be
tuned to equalize the gains. However, this procedure would
only fit these particular situations. Using the ECA, the target
is achieved automatically for different scenarios.

As can be seen in Figure 6, the estimation error is significant
in regions after fallback limits. A fast-changing link condition
and delayed fallbacks can establish even greater gains.

Scrutinizing the data close to the BER target limit, it is
evinced that the number of hard bit errors is hundreds of times
greater than the number of soft bit errors. As a result, this
attribute provides faster statistics about low error rates.

Figure 10 shows some examples of BER information ob-
tained via the ECA indicator. It is a robust information,
considering the amount of received bits.

Fig. 10: Measured ECA vs soft BER.

VI. CONCLUSION

The simulations show that the MCS control, using the ECA
indicator for the link adaptation, improves the throughput
by keeping the demanded reliability strictly. The proposed
indicator is consistent with expected attributes. It estimates
the real error tendency and indicates a faster and more precise
sample of low error rates. It can infer error possibilities before
the occurrence, extracting BER statistics with low processing
and without payload consumption. For future work, other
coding techniques, such as LDPC, can use a similar approach.
Machine learning techniques can use the proposed indicator
as an input element to achieve higher accurate adaptability.
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