Modelo Semi-Empírico da Perda de Propagação para Comunicações Móveis *Indoor* na faixa de 800 MHz

Rosely A. Lima, Regiane N. S. Barbosa, Josiane do C. Rodrigues, Antonio de A. Neves, Simone G. C. Fraiha, Hermínio S. Gomes, Gervásio P. S. Cavalcante

Resumo — Este trabalho propõe um modelo de predição de perda de propagação em um ambiente *indoor*, através de uma campanha de medição em um prédio no centro de Belém-PA. O mesmo é baseado no modelo de perda no espaço livre, considerando o expoente de perda de percurso uma variável aleatória.

Palavras-chaves — Perda de propagação, medição *indoor*, comunicações móveis, distribuição Weibull, variável aleatória.

Abstract — This work proposes a path loss prediction model for indoor environment, through a measurement campaign in a building at Belém-PA downtown. This model is based on the free space model, considering the path loss exponent as a random variable.

Index Terms — Path loss, indoor measurements, mobile wireless, Weibull distribution, random variable.

I. INTRODUÇÃO

O grande crescimento de usuários da telefonia celular nos últimos anos somado ao surgimento das WLANs fez com que houvesse um maior interesse nos fenômenos inerentes ao ambiente *indoor*. Com a finalidade de predizer as perdas nesse tipo de ambiente, vários modelos foram propostos na literatura[1] – [6]. Esses modelos, em sua maioria, são baseados no modelo do espaço livre somado às perdas nos pisos e paredes entre o transmissor e receptor.

Neste trabalho é proposto um modelo de perda de propagação *indoor*, que considera o coeficiente de perda de percurso (γ) uma variável aleatória com comportamento descrito por uma função densidade de probabilidade Weibull. As perdas devido aos pisos são descritas por um termo, que é função do número de pisos entre a antena transmissora e receptora e do coeficiente de correlação entre os pisos.

Rosely A. Lima, Gervásio P. S.Cavalcante, Simone G.C. Fraiha, Hermínio S. Gomes, Universidade Federal do Pará, Antonio de Almeida Neves, Oi-TNL PCS S/A, Josiane do C. Rodrigues, Instituto de Estudos Superiores da Amazônia (IESAM), Regiane N. S. Barbosa, Amazônia Celular S/A, Belém-PA, Brasil, E-mails: rosely@ufpa.br, gervasio@ufpa.br, fraiha@ufpa.br,herminio@ufpa.br,antonio.neves@oi.net.br,josi@ufpa.br, regiane.barbosa@amazoiacelular.com.br

Este trabalho foi financiado pelo convênio Ericsson-UFPA, com parceria da Amazônia Celular.

Na seção II é feita uma descrição do ambiente de medição, na seção III são descritos o procedimento e equipamentos utilizados na campanha de medição. Na seção IV o modelo proposto é definido. Na seção V são apresentados os resultados obtidos pelo modelo.

II. AMBIENTE DE MEDIÇÃO

A campanha de medição *indoor* foi realizada em um prédio comercial de 9 andares sendo que apenas 5 desses foram analisados (5° ao 9°). Em cada andar há separações internas com divisórias navais e paredes de concreto.

A dimensão de cada andar é de 39,5 m (comprimento) x 18,4 m (largura), a fachada do prédio é envidraçada e os corredores, onde foram feitas as medições, têm parede de concreto de um lado e do outro, parede de compensado revestida com esponja e tecido. São utilizadas duas microcélulas para a cobertura celular do prédio (M1 e M2), sendo que a M2 fornece cobertura do térreo até o 4º andar, enquanto que M1 cobre do 5º até o 9º andar, conforme mostrado na Figura 1. A configuração das antenas para a cobertura *indoor* nesse prédio é de antenas distribuídas ligadas por uma rede de cabos de RF (Rádio Freqüência) coaxiais.

Fig. 1 - Disposição das Antenas Indoor no prédio de medição.

III – SETUP DE MEDIÇÃO

O sistema utilizado para a realização das medições de intensidade de sinal constitui-se de um transmissor (antena monopolo *indoor*, fixada no teto do 8° andar) e um receptor (antena monopolo e equipamento para coleta de dados). Esse equipamento possui um software que permite a coleta de intensidade de sinal na freqüência escolhida para a medição. que, nesse trabalho foi de 890,07 MHz (f = 0.03*Canal+870, Canal 669 - Banda A). O receptor permite configurar como entrada a planta baixa de cada andar para auxiliar na locomoção e referência do operador que for realizar a medição indoor. Assim sendo, foi realizado um walktest em cada um dos andares selecionados. O equipamento de coleta de dados é constituído pelos seguintes acessórios: uma mochila para equipamento *indoor* da Agilent/HP Technologies que foi utilizada como receptor para coletar o sinal do canal 669, uma bateria para alimentar o receptor e um computador Fujitsu Pen Tablet (no qual foi instalado o software VIPER da Agilent/HP Technologies), que está conectado ao receptor que possibilitará a execução da medição [7].

O *software* VIPER para ambiente *indoor*, possui o recurso de visualizar o nível de potência recebida (dBm) no canal que está sendo medido, assim como inserir as plantas baixas do prédio. Na realização do *walktest*, ele possibilita ao usuário marcar na tela do computador o percurso realizado em cada andar, proporcionando, deste modo, uma fácil visualização do nível de potência dos lugares onde se pretende realizar a medição.

Para a realização da campanha de medição, inicialmente, foram bloqueadas as antenas de todos os andares com exceção da antena do 8º que foi utilizada como transmissora. O próximo passo foi ativar a portadora do canal 669 para as medições e bloquear canais adjacentes. A primeira rota estabelecida foi no 8º andar, em linha de visada (a 1ª medida à 1m da antena transmissora). Nos demais pisos as medições foram realizadas somente nos corredores.

A antena transmissora estava a 2,4m de altura e a antena receptora estava a 1,50m.

Nas medições *indoor* foi utilizada a legenda da Figura 2 especificando os níveis de sinal medidos. Na Figura 3 são mostrados, a planta baixa do 8º andar e a rota de medição nesse andar. Na Figura 4 observa-se o corredor onde foram realizadas as medições no 7º andar. Os demais andares (5º, 6º e 9º) possuem a planta baixa similar a do 7º.

Fig. 2 - Legenda de Medições

Fig. 3 - Planta Baixa do 8º andar com a rota de medição.

Fig. 4 - Planta baixa do 7º andar, corredor com a rota de medição.

IV. MODELO

No ambiente *indoor* vários fenômenos interferem no mecanismo de propagação, de tal forma que o sinal recebido é formado a partir de reflexões, difrações e transmissão em pisos, paredes e móveis localizados entre o transmissor e receptor. As perdas nesse ambiente, portanto, são dependentes da planta-baixa, do material de construção do prédio e do *layout* dos móveis, o que torna a predição da perda de propagação *indoor* mais complexa do que no ambiente *outdoor*.

O modelo proposto neste trabalho utiliza o modelo de perda do espaço livre somado a um termo, que é função do coeficiente de correlação entre o piso onde está localizado o transmissor e o piso do receptor. Diferentemente do modelo do espaço livre, o fator γ (coeficiente de perda de percurso) é uma variável aleatória [8].

$$PL = A + 10\gamma \log_{10}(d/d_0) + f(n_p, \rho)$$
(1)

XXI SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES - SBT2004, 06-09 DE SETEMBRO DE 2004, BELÉM - PA

A. Componente A

A componente A é dada por

$$A = PL_0 + K , \qquad (2)$$

sendo PL_0 a perda na distância de referência (d_0) e K é uma constante empírica que melhor ajusta a perda medida e predita no andar de referência (piso de localização da antena transmissora).

B. Expoente de Perda de Percurso (γ)

O expoente γ para o espaço livre é igual a 2. Entretanto, para meios com características não homogêneas, γ é geralmente uma variável aleatória, dada por:

$$\gamma = \gamma_{det.} + \gamma_{alea.} \tag{3}$$

sendo $\gamma_{det.}$ a parte determinística e $\gamma_{alea.}$ a parte aleatória de γ . O $\gamma_{det.}$ foi obtido calculando-se um γ para cada andar, Figura 5. Os valores de γ foram ajustados por uma função cúbica dada por,

$$\gamma_{det} = ah^{3} + bh^{2} + ch + d$$
 (4)

sendo $a, b, c \in d$ os coeficientes do polinômio e h a distância vertical (altura) entre transmissor e receptor.

Fig.5 - Ajuste da parte deterministica de γ

A componente aleatória do expoente γ pode ser expressa pela equação:

$$\gamma_{alea.} = x\sigma_{\gamma} \tag{5}$$

Combinando (4) e (5), obtém-se:

$$\gamma = ah^3 + bh^2 + ch + d + x\sigma_{\gamma} \tag{6}$$

O comportamento aleatório da variável γ foi caracterizado por uma função densidade de probabilidade Weibull [5], pois, pelo critério do *chi-quadrado* foi a distribuição que apresentou o melhor ajuste. Portanto, x é uma variável aleatória Weibull, e σ_{γ} é o desvio padrão de γ .

A função de densidade de probabilidade (fdp) Weibull é dada por:

$$f(r) = \begin{cases} \frac{\alpha}{\beta^{\alpha}} r^{\alpha - 1} e^{\left(\frac{-r/\beta}{\beta}\right)^{\alpha}}, r \ge 0\\ 0, r < 0 \end{cases}$$
(7)

sendo $\alpha > 0$ e $\beta > 0$ seus parâmetros de forma e escala, respectivamente.

C. O Fator de Perda por Piso

O termo $f(n_p, \rho)$ em (1) é uma função do número de pisos (n_p) entre o transmissor e receptor e do coeficiente de correlação (ρ) entre o andar de referência e o andar de localização do receptor e dado por:

$$f(n_{p},\rho) = \sum_{n=1}^{n_{p}} K(n+1) \frac{\rho}{n}$$
(8)

O coeficiente de correlação (ρ) é definido por [9]:

$$\rho = \frac{\sum_{k} (x_{k} - \bar{x})(y_{k} - \bar{y})}{\sqrt{\sum_{k} (x_{k} - \bar{x})^{2}} \sqrt{\sum_{k} (y_{k} - \bar{y})^{2}}}$$
(9)

sendo os $x_{k's}$ as perdas de percurso medidas no andar de referência e $y_{k's}$ as perdas no andar em que se deseja medir a correlação (todas as perdas devem estar em dB). Os parâmetros $\bar{x} \in \bar{y}$ são os respectivos valores médios. O coeficiente de perda igual ou próximo a zero indica que os $x_{k's}$ e os $y_{k's}$ são descorrelatados [9].

D. Equação Geral

Combinando (1), (2), (6) e (8), obtém-se a equação geral do modelo.

$$PL[dB] = PL_0 + K + 10(ah^3 + bh^2 + ch + d)\log_{10}\left(\frac{d}{d_0}\right)$$
(10)
+10x $\sigma_{\gamma} \log_{10}\left(\frac{d}{d_0}\right) + \sum_{n=1}^{n_p} K(n+1) \cdot \frac{\rho}{n}$

V. RESULTADOS

A. Perda entre os andares

Após o processamento dos resultados da medição, para uma melhor comparação entre a potência recebida em cada andar, os resultados dos cinco andares medidos foram colocados no mesmo gráfico, Figura 6.

Fig. 6 - Resultado das medições em cada andar.

Os resultados encontrados na Tabela I apresentam baixa correlação, significando que não se pode predizer as perdas em um andar simplesmente pelo conhecimento das perdas em qualquer um dos outros. Nota-se que a correlação entre os andares 8 e 9 é menor que a metade da correlação entre os andares 8 e 7, que são os andares adjacentes ao 8° . Esse comportamento é justificado pelo comportamento da irradiação da antena transmissora, fixada no teto do 8° andar, que irradia para baixo (monoplo).

TABELA I COEFICIENTES DE CORRELAÇÃO.

Entre os andares	Coeficiente de Correlação ($ ho$)	
8 <u>°</u> e 9 <u>°</u>	0,2382	
8 <u>°</u> e 8 <u>°</u>	1,000	
8° e 7°	0,5692	
8 <u>°</u> e 6 <u>°</u>	0,4285	
8° e 5°	0,3297	

A Tabela II mostra os valores dos coeficientes da curva deterministica de γ .

TABELA II PARAMETROS DO MODELO PARA O AMBIENTE ESTUDADO

Parâmetros do Modelo	Ambiente indoor
a(em m ⁻³)	0,064029
$b(em m^{-2})$	-1,0687
c(em m ⁻¹)	5,3863
d	-1,2923
σ_{γ}	0,59609

As Figuras 7-10 mostram a comparação das perdas entre os valores medidos e os preditos pelo modelo proposto. A Tabela III mostra os valores de erros obtidos.

Fig. 7 – Gráfico de comparação das perdas no 5º andar em função da distância.

Fig. 8 – Gráfico de comparação das perdas no 6º andar em função da distância

Fig. 9 – Gráfico de comparação das perdas no 7º andar em função da distância.

Fig. 10 – Gráfico de comparação das perdas no 8º andar em função da distância

Andar	Erro entre o Medido e o Predito (dB)	Desvio Padrão (dB)	
5°	5,37	7,36	
6°	6,24	19,58	
7 °	7,36	16,43	
8 °	6,25	17,43	

TABELA III ERRO MÉDIO

Considerando-se que a iluminação da antena (monopolo) é para os andares abaixo do andar de referência (8°) o nono andar não foi inserido no cálculo de erro. Muito embora o modelo proposto possa ser aplicado quando o sistema irradiador iluminar todos os andares igualmente.

VI. CONCLUSÃO

Neste trabalho foi proposto um modelo semi-empírico para estimar a perda de percurso em um enlace de comunicação móvel, em ambiente indoor, na faixa de 800 MHz. O modelo incorpora a perda nos pisos através de uma função do número de pisos entre o transmissor e o receptor e do coeficiente de correlação. Além disso, o expoente de perda de percurso é uma variável aleatória descrita por uma função densidade de probabilidade Weibull. Para validar o modelo proposto uma campanha de medição foi realizada em um prédio de escritório, com características bem diferentes entre os diversos andares devido ao tipo de material de construção do prédio, a sua planta baixa e o layout dos móveis. Os resultados obtidos pela simulação, o erro entre os valores preditos e medidos e o desvio padrão são animadores, demonstrando que o modelo proposto apresenta uma boa estimativa das perdas para ambientes indoor multi-pisos. Outras distribuições estão sendo analisadas e novas campanhas de medição estão sendo realizadas para uma melhor qualificação do expoente de perdas de percurso e por conseguinte uma melhor estimativa das perdas nesses ambientes.

AGRADECIMENTOS

Engenheiros Daniela Pereira e Mauro Ferreira – Amazônia Celular S/A.

REFERÊNCIAS

- [1] W. C. Y. Lee, Mobile Communications System. New York: Wiley, 1993.
- [2] S. R. Saunders, Antennas and Propagation for Wireless Communication
- Systems. New York: Wiley, 1999. [3] J. D. Parsons. *Mobile Radio Propagation Channel*. New York, Wiley, 2000.
- [4] T. S. Rappaport, Wireless Communications Principles and Practice. USA, Prentice Hall, 2002.
- [5] T. K. Sarkar, Z. Ji, K. Kim, A. Medouri, M. S-Palma, A Survey of Various Propagation Models for Móbile Communication, IEEE Antennas and Propagation Magazine, vol. 46. no. 3, June 2003.
- [6] F. Fuschini, V. D-Esposti, G. Falciasecca, A Statistical Model for Over Rooftop Propagation, IEEE Transaction on Antennas and Propagation, vol. 52, no.1, January 2004.
- [7] Getting Started Guide Agilent Technologies E7473A, E7474A, E7475A, E7476A, E7477A - Indoor Wireless Solutions.
- [8] V. Erceg, L. J. Greenstein, S. Y. Tjandra, S. R. Parkoff, A. Gupta, B. Kulic, A. A. Julius, R. Bianchi, "An Empirically Based Path Loss Model for Wireless Channels in Suburban Environments", IEEE Journal in Selec. Area Comm., vol. 1.17, pp. 1205-1211, July 1999.
 [9] K. S. Butterworth, K. W. Sowerby, A.G. Williamson, A 1.8 GHz Indoor
- [9] K. S. Butterworth, K. W. Sowerby, A.G. Williamson, A 1.8 GHz Indoor Wideband Propagation Study at The University of Auckland, School of Engineering Report No 569, September 1996.