Modelo Estatístico de Perda de Propagação para Sistemas Móveis em Área Suburbana Densamente Arborizada

Simone G. C. Fraiha, Hermínio S. Gomes, Josiane C. Rodrigues, Gervásio P. S. Cavalcante

Resumo — A maioria dos modelos presentes na literatura não considera os efeitos das árvores no cálculo da perda de propagação. Neste trabalho é proposto um modelo estatístico associado a uma campanha de medição realizada em uma área suburbana com alta densidade de árvores nativas da região Amazônica.

Palavras-chaves — Propagação, Modelos de perda de propagação, distribuição Log-Logística.

Abstract — The majority of models present at literature doesn't consider the effect of trees in the path loss calculation. In this work is proposed a statistical model associated with a radio propagation measurement campaign that was carried out in a suburban area with high-density native trees of the Amazon region.

Index Terms — Propagation, Path loss model, Log-Logistic distribuition.

I. INTRODUÇÃO

Existem vários modelos na literatura, por exemplo, [1]–[5], que descrevem a perda de propagação em ambientes suburbanos, porém, nenhum desses modelos considera o efeito de perdas devido à presença de árvores. Neste trabalho, foi realizada uma campanha de medição em um ambiente com característica suburbana, porém, densamente arborizado. Nesta campanha foram percorridas 3 rotas e em cada uma delas a altura da antena transmissora foi variada para as posições 14 m, 44 m e 70 m. Para modelar esse ambiente foi utilizada a equação da perda no espaço livre [6], porém, com o expoente de perda de propagação (γ) sendo uma variável aleatória com função distribuição de probabilidade (pdf) Loglogística, do mesmo modo que a componente de sombreamento s. Para determinar a distribuição que melhor descreve essas variáveis aleatórias foi utilizado o critério do chi-quadrado.

A perda de propagação encontrada com modelo estatístico apresentou uma boa aproximação com a perda medida.

Na seção II está descrito o ambiente de medição. Na seção III, a campanha de medição, os equipamentos utilizados e as rotas percorridas são apresentados. A seção IV aborda o modelo de perda do espaço livre, somado ao fator de

Simone G.C. Fraiha, Hermínio S. Gomes e Gervásio P. S.Cavalcante, Universidade Federal do Pará – UFPA, Josiane C. Rodrigues, Instituto de Estudos Superiores da Amazônia – IESAM, Belém-Pará-Brasil, E-mails: fraiha@ufpa.br, herminio@ufpa.br, gervasio@ufpa.br, josi@ufpa.br.

Este trabalho foi financiado pelo convênio Ericsson-UFPA, com parceria da Amazônia Celular.

sombreamento, as variáveis aleatórias associadas e a adaptação desse modelo à perda de propagação medida.

II. AMBIENTE DE MEDIÇÃO

Uma campanha de medição foi realizada na área suburbana da cidade de Marituba, à aproximadamente 15 Km de Belém-PA. Esse ambiente apresenta prédios baixos, ruas estreitas e áreas densamente arborizadas; com vegetação típica da Floresta Amazônica, veja Figura 1.

A medição foi realizada em 3 ruas da área de teste. Objetivando observar o comportamento da perda de propagação, a altura da antena transmissora foi variada em três níveis (70 m 44 m e 14m).

Fig. 1 – Vista, a 70 m de altura, do ambiente de medição.

III. SETUP DE MEDIÇÃO

A antena transmissora utilizada na medição foi uma omnidirecional com ganho de 2 dBi, que irradiava uma onda CW de 890,43 MHz de freqüência. Esta antena foi fixada em uma torre de uma operadora celular local e foram utilizadas três alturas para melhor estudar o efeito das árvores sobre a perda no sinal recebido.

A antena receptora móvel, omnidirecional de ganho 3 dBi, foi fixada sobre um carro que percorreu três ruas da área suburbana da cidade de Marituba. Essas rotas estão indicadas na Figura 2.

A cada modificação da altura da antena transmissora (14 m, 44 m e 70 m), o sistema receptor (antena e aparelho receptor, GPS e *notebook* com programa de aquisição e armazenamento de dados) percorria as 3 rotas de medição.

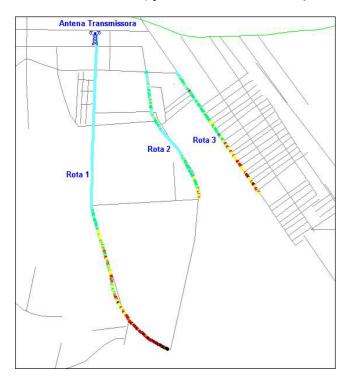


Fig. 2. Mapa com as rotas de medição.

IV. MODELO

Em sistemas reais de rádio comunicação, o modelo de perdas do espaço livre, não é o mais apropriado. Esse modelo usa o parâmetro γ (expoente de perda de propagação) para definir a lei de potência que relaciona a potência recebida e a distância rádio percorrida pelo receptor. Uma formulação mais geral para calcular essa perda de propagação (PL) pode ser expressa (em dB), como em [5], por:

$$PL = A + 10\gamma \log_{10}(d/d_0) + s; \quad d \ge d_0$$
 (1)

sendo A a perda no espaço livre (em dB) na distância de referência d_o e s o sombreamento[7]. No espaço livre $\gamma = 2$, contudo, para meios com características não homogêneas, γ é geralmente considerado como uma variável aleatória.

O parâmetro A, na distância d_0 , é dado por:

$$A = 32,46 + 20\log f + 20\log d_0 - G_T - G_R \tag{2}$$

sendo f a frequência da portadora dada em MHz, d_o a distancia de referência dada em km, G_T o ganho da antena transmissora e G_R o ganho da antena receptora.

Para o ambiente suburbano estudado, o expoente γ apresenta grande dependência com a altura da antena transmissora h_b e a partir dessa verificação, obteve-se uma expressão para representar esta dependência. Foi calculado então, a partir dos dados medidos, o γ para cada uma das rotas de medição e alturas da antena transmissora. Os valores de γ obtidos apresentaram um comportamento aleatório, podendo ser expresso por,

$$\gamma = \gamma_{det} + \gamma_{alea} \tag{3}$$

sendo γ_{det} a parte determinística e γ_{alea} a parte aleatória de γ . Foi obtido o γ_{det} calculando-se um γ médio para cada altura, Figura 3. Os valores médios de γ foram ajustados por uma função quadrática dada por,

$$\gamma_{det.} = a_{\gamma} h_b^2 + b_{\gamma} h_b + c_{\gamma} \tag{4}$$

sendo a_{γ} , b_{γ} e c_{γ} os coeficientes do polinômio.

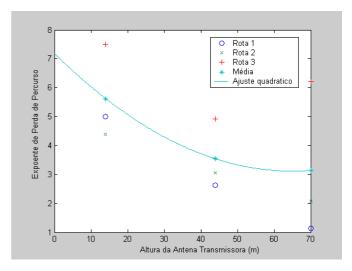


Fig.3 - Ajuste da parte deterministica de γ

A componente aleatória do expoente γ , de acordo com [7], pode ser expressa pela equação:

$$\gamma_{alea} = x\sigma_{\nu} \tag{5}$$

Combinando (4) e (5), obtém-se:

$$\gamma = a_{\gamma} h_b^2 + b_{\gamma} h_b + c_{\gamma} + x \sigma_{\gamma} \tag{6}$$

O comportamento aleatório da variável γ foi caracterizado por uma função densidade de probabilidade Log-logística [8], pois, pelo critério do *chi-quadrado* foi a distribuição que apresentou o melhor ajuste. Portanto, x é uma variável aleatória Log-logística padronizada, e σ_{γ} é o desvio padrão de γ .

A função densidade de probabilidade Log-logística é dada por:

$$f(x) = \frac{p_{\alpha} \left(\frac{x - p_{\gamma}}{p_{\beta}}\right)^{p_{\alpha} - 1}}{p_{\beta} \left(1 + \left(\frac{x - p_{\gamma}}{p_{\beta}}\right)^{p_{\alpha}}\right)^{2}}$$
(7)

com parâmetro p_{γ} de localização, $p_{\beta} > 0$ parâmetro de escala e $p_{\alpha} > 0$ parâmetro de forma. A média μ desta distribuição é dada pela seguinte equação:

$$\mu = p_{\beta} \frac{\pi}{p_{\alpha}} \csc\left(\frac{\pi}{p_{\alpha}}\right) + p_{\gamma}, \qquad p_{\alpha} > 1$$
 (8)

A equação (1) em sua forma básica (sem o fator *s*) descreve a perda de propagação em um ambiente plano e homogêneo. O fator *s*, chamado de fator de sombreamento é adicionado para caracterizar as irregularidades do terreno [7]. Neste trabalho, esse fator caracterizará as descontinuidades abruptas da floresta devido às ruas, Figura 4.

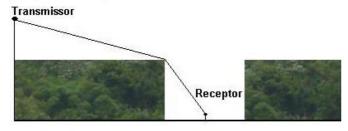


Fig. 4. Efeito de sombreamento devido à presença da floresta.

A componente de sombreamento *s* também varia aleatoriamente, de acordo com:

$$S = S_{det} + S_{alea} \tag{9}$$

sendo a componente determinística $s_{det.}$ obtida pelo melhor ajuste dos valores simulados e os resultados experimentais, para as várias alturas do transmissor. O valor médio de s foi adaptado por uma função quadrática, dada por:

$$s_{det.} = a_s h_b^2 + b_s h_b + c_s (10)$$

sendo a_s , b_s , c_s os coeficientes do polinômio.

A componente aleatória s_{alea} , segundo [7], pode ser expressa por:

$$S_{alaa} = y\sigma_{s} \tag{11}$$

Combinando (10) e (11), obtém-se:

$$s = a_s h_b^2 + b_s h_b + c_s + y \sigma_s \tag{12}$$

O comportamento aleatório da variável s é caracterizado por uma função densidade de probabilidade Log-logística, obtida de modo semelhante ao descrito para o expoente de perda de propagação, γ . Portanto y é uma variável aleatória Log-logística padronizada e σ_s é o desvio padrão de s.

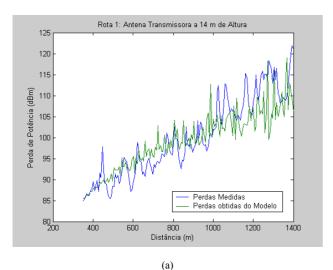
Combinando (1), (6) e (12) obtém-se a perda de propagação (*PL*) dada por:

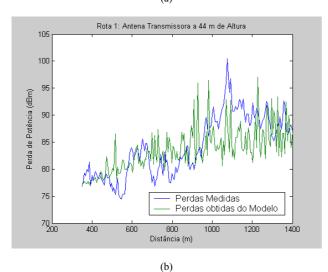
$$PL = \left[A + 10(a_{\gamma}h_{b}^{2} + b_{\gamma}h_{b} + c_{\gamma})\log_{10}(d/d_{0}) \right] + \left[10x\sigma_{\gamma}\log_{10}(d/d_{0}) \right] + a_{s}h_{b}^{2} + b_{s}h_{b} + c_{s} + y\sigma_{s}$$
(13)

V. RESULTADOS

Após o processamento dos resultados da campanha de medição obteve-se os valores das constantes de (13) mostrados na Tabela I. Foram consideradas para a simulação as alturas da antena transmissora (70m, 44m e 14m).

TABELA I PARAMETROS DO MODELO PARA O AMBIENTE ESTUDADO


Parâmetros do Modelo	Terreno plano densamente	
	arborizado	
a_{γ} (em m ⁻²)	0,00096405	
b_{γ} (em m^{-1})	-0,12535	
Cγ	7,1901	
σ_{γ}	σ, 10,0441	
a_s (em m ⁻²)	0,0058087	
b_s (em m^{-1})	-0,68201	
C _s	34,965	
$\sigma_{\scriptscriptstyle \rm S}$	8,6417	


A verificação da validade do modelo proposto foi possível a partir da comparação entre a perda de propagação simulada e a perda obtida através das medidas realizadas. Para a simulação da perda de propagação utilizou-se uma função densidade de probabilidade log-logística com parâmetro p_{γ} em torno de zero; p_{β} proporcional ao desvio padrão instantâneo da perda das medidas e p_{α} em torno de 4 de acordo com os dados medidos. As Figuras 5 (a)-(c) mostram os resultados da comparação entre as perdas medidas e obtidos a partir do modelo para a Rota 1 com a antena transmissora a 14 m, 44m e 70 m, respectivamente.

A Tabela II mostra o erro médio entre a perda medida e a obtida pelo modelo, para todas as rotas consideradas.

TABELA II ERRO MÉDIO ENTRE PERDA MEDIDA E PREDITA PELO MODELO.

Rota	Altura da	Erro Médio	Desvio
1.0 00	Antena (m)	(dB)	Padrão (dB)
1	14	3,9006	10,3022
	44	3,7033	5,3170
	70	3,2217	2,9429
2	14	4,6807	14,0006
	44	4,7173	9,0899
	70	4,3788	11,7284
3	14	3,8762	2,0477
	44	3,5598	3,9650
	70	4,4714	3,1801

Rota 1: Antena Transmissora a 70 m de Altura 100 95 Perda de Potência (dBm) 90 80 erdas Medidas Perdas obtidas do Modelo 70 L 200 400 600 800 1000 1200 1400 Distância (mi

Fig. 5 – Comparação das perdas de potência para a rota 1: (a) h_b = 14 m, (b) h_b = 44 m e (c) h_b =70 m

(c)

VI. CONCLUSÃO

Este trabalho propôs um modelo estatístico associado a uma campanha de medição realizada em uma área suburbana com alta densidade de árvores nativas da região Amazônica. Com o modelo estatístico de perda de propagação apresentado obteve-se uma predição com erro médio de 4,05 dB em relação a perda medida, esse valor é razoável para esse tipo de predição. A metodologia utilizada, baseada em variáveis aleatórias, é muito útil para representar ambientes caracterizados por não homogeneidades. Outras distribuições estão sendo analisadas e novas campanhas de medição estão sendo realizadas para uma melhor qualificação do expoente de perdas de percurso e por conseguinte uma melhor estimativa das perdas nesses ambientes.

AGRADECIMENTOS

Engenheiros Daniela Pereira e Ernesto Yoshida – Amazônia Celular S/A.

REFERÊNCIAS

- [1] W. C. Y. Lee, *Mobile Communications System*. New York: Wiley, 1993
- [2] S. R. Saunders, Antennas and Propagation for Wireless Communication Systems. New York: Wiley, 1999.
- [3] T. S. Rappaport, Wireless Communications Principles and Practice. USA, Prentice Hall, 2002.
- 4] Q. Cao, M. Zhang, Mobile Radio Propagation Studies at 900 MHz in Suburban Beijing, Antennas, Propagation and EM Theory. Proceedings 6th International Symposium on, Oct. 28-Nov. 1, 2003.
- [5] T. K. Sarkar, Z. Ji, K. Kim, A. Medouri, M. S.-Palma, A Survey of Various Propagation Models for Mobile Communication, IEEE Antennas and Propagation Magazine, Vol. 45, No.3, June 2003.
- [6] J. D. Parsons. Mobile Radio Propagation Channel. New York, Wiley, 2000.
- [7] V. Erceg, L. J. Greenstein, S. Y. Tjandra, S. R. Parkoff, A. Gupta, B. Kulic, A. A. Julius, R. Bianchi, "An Empirically Based Path Loss Model for Wireless Channels in Suburban Environments", IEEE Journal in Selec. Area Comm., Vol. 1.17, pp. 1205-1211, July 1999.
- [8] A concise Summary of @RISK Probability Distribution Functions. Copyright 2002 Paradise Corporation.