Análise de Degradação do Cancelador de Eco Híbrido FIR-IFIR

Luis Cláudius Coradine, Leonardo S. Resende, Carlos Aurélio F. da Rocha e Antonio Augusto R. Coelho

Resumo—Neste trabalho apresentamos uma análise da degradação introduzida pelo filtro interpolado no cancelador de eco híbrido FIR-IFIR. Através de uma abordagem conjunta, combinando filtragem transversal interpolada e otimização restrita, os filtros ótimos são determinados e uma medida de degradação, a qual é função da correlação do sinal de entrada, do grau de esparsidade do filtro IFIR e dos parâmetros do interpolador, é obtida.

Palavras-Chave—Cancelador de eco, filtro interpolado, análise de degradação.

Abstract—In this paper, we present an analysis of the degradation introduced by the interpolated filter into the FIR-IFIR hybrid echo canceller. Through a joint approach combining interpolated transversal filtering and linearly-constrained optimization, the optimum filters are determined and a degradation measure, which is a function of the input signal correlation, of the IFIR filter sparseness degree and of the interpolator parameters, is obtained.

Index Terms—Eco canceller, interpolated filter, degradation analysis.

I. INTRODUÇÃO

Filtros FIR interpolados têm sido empregados no esquema de filtragem de Wiener a fim de reduzir a complexidade de processamento, principalmente no que tange ao número de operações de multiplicação nas etapas de filtragem e adaptação. Tais filtros decorrem da remoção de algumas amostras da resposta impulsiva de um filtro FIR que se deseja projetar, as quais são recuperadas posteriormente por interpolação. Quanto a operação de interpolação, esta também é implementada por filtragem FIR (passa-baixas) de baixa ordem [1]-[3].

Em algumas aplicações, com o intuito de manter a complexidade de processamento do filtro a patamares praticáveis, costuma-se remover um número significativo de amostras de sua resposta ao impulso e, além disto, utilizar um interpolador rudimentar – em geral linear. O preço pago por isto é a perda de desempenho do sistema, que pode chegar a níveis inadequados. Surge, então, a necessidade de estudarmos a degradação introduzida pelo filtro FIR interpolado nos sistemas de filtragem de Wiener.

Recentemente, a filtragem de Wiener interpolada foi tratada como um problema de otimização com restrições lineares [4]-[6]. Uma nova estrutura de implementação foi apresentada e o filtro ótimo de Wiener interpolado foi definido. Além disto, a análise da degradação introduzida pelo filtro IFIR foi realizada. Já no contexto adaptativo, o emprego do algoritmo RLS tornou-se possível e tem sido sugerido.

Contudo, tal abordagem não contempla a estrutura de filtragem híbrida, FIR e IFIR, proposta por Abousaada [7] para cancelamento de eco em linhas telefônicas, onde a remoção das amostras ocorre somente numa parte e não ao longo de toda a resposta ao impulso do filtro. Logo, a definição dos filtros ótimos do cancelador Abousaada e a quantificação da degradação inserida neste sistema pelo filtro interpolado fazem-se necessários e constituem no objeto de proposta do presente trabalho.

II. FILTRAGEM DE WIENER COM RESTRIÇÕES LINEARES

Considere o esquema clássico de filtragem de Wiener representado na Figura 1 [8]. O sinal de erro, e(n), dado pela diferença ente o sinal desejado ou de referência, d(n), e sua estimativa, y(n), é descrito por

$$e(n) = d(n) - y(n)$$

= $d(n) - \mathbf{w}^{\mathsf{t}} \mathbf{x}(n)$, (1)

onde

 $\mathbf{x}(n) = \begin{bmatrix} x(n), x(n-1), \cdots, x(n-N+1) \end{bmatrix}^{\mathsf{t}}$ (2)

denota o vetor Nx1 contendo as N amostras mais recentes do sinal de entrada e

$$\mathbf{w} = \begin{bmatrix} w_0, w_1, \cdots, w_{N-1} \end{bmatrix}^{\mathsf{t}} \tag{3}$$

o vetor Nx1 de coeficientes do filtro transversal de ordem N-1. Sem perda de generalidade, todos os parâmetros são assumidos reais.

Fig.1: Filtragem de Wiener.

A formulação da filtragem de Wiener com restrições lineares é descrita como [9]:

minimizar

$$\mathbf{E}\{e^{2}(n)\} = \mathbf{E}\{[d(n) - \mathbf{w}^{\mathsf{t}}\mathbf{x}(n)]^{2}\}$$
(4a)

Luis Cláudius Coradine, TCI/UFAL. Leonardo S. Resende e Carlos A. F. da Rocha, EEL/UFSC. Antonio A. R. Coelho, DAS/UFSC. E-mails: coradine@tci.ufal.br, {leonardo,aurelio}@eel.ufsc.br, aarc@das.ufsc.br. Este trabalho foi parcialmente financiado pelo Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) através do projeto nro. 472448/2003-0.

sujeito a

$$\mathbf{C}^{\mathrm{t}}\mathbf{w} = \mathbf{f} , \qquad (4b)$$

onde a matriz de restrição **C** NxK e o vetor de resposta **f** Kx1 estabelecem o conjunto de K equações lineares a ser satisfeito pelos N coeficientes do filtro transversal. Vale ressaltar que os elementos de **C** e **f** são constantes.

Assumindo que **C** tem posto cheio e K < N (o que implica em posto igual a K), as K restrições são linearmente independentes e (4b) possui mais de uma solução em **w**. A solução desejada é aquela que minimiza o erro quadrático médio.

O vetor de coeficientes ótimo é obtido pelo método dos multiplicadores de Lagrange [8] e é dado por:

$$\mathbf{w}_{\rm or} = \mathbf{R}^{-1}\mathbf{p} + \mathbf{R}^{-1}\mathbf{C}(\mathbf{C}^{\mathsf{t}}\mathbf{R}^{-1}\mathbf{C})^{-1}(\mathbf{f} - \mathbf{C}^{\mathsf{t}}\mathbf{R}^{-1}\mathbf{p}), \qquad (5)$$

$$\mathbf{R} = \mathrm{E}\{\mathbf{x}(n)\mathbf{x}^{\mathrm{t}}(n)\}$$
(6)

(7)

é a matriz de autocorrelação NxN de $\mathbf{x}(n)$ e

$$\mathbf{p} = \mathrm{E}\{\mathbf{x}(n)d(n)\}\$$

o vetor Nx1 de correlação cruzada entre $\mathbf{x}(n)$ e d(n).

Em (4), as restrições são inseridas de forma conjunta com o critério de otimização. A seguir, apresenta-se uma maneira indireta de incorporar as restrições no esquema de filtragem de Wiener.

A Estrutura GSC

Uma forma de implementação alternativa e indireta da filtragem de Wiener com restrições lineares é representada em diagrama de blocos na Figura 2. O esquema de filtragem restrita apresentado é conhecido como GSC (*Generalized Sidelobe Canceller*) [9]. Basicamente, o GSC é um mecanismo para transformar um problema de otimização restrita na forma não restrita.

Fig. 2: Implementação GSC da filtragem de Wiener restrita.

As colunas da matriz $\mathbf{C}_{\perp} Nx(N-K)$ constituem uma base para o complemento ortogonal do subespaço expandido pelas colunas de \mathbf{C} ($\mathbf{C}^{\mathsf{t}}\mathbf{C}_{\perp}=\mathbf{0}_{Kx(N-K)}$). Esta matriz é chamada de matriz de bloqueio de sinal. O vetor \mathbf{w}_{\perp} (N-K)x1 constitui um filtro irrestrito, enquanto que o vetor $\mathbf{q}=\mathbf{C}(\mathbf{C}^{\mathsf{t}}\mathbf{C})^{-1}\mathbf{f} Nx1$ um filtro que satisfaz as restrições ($\mathbf{C}^{\mathsf{t}}\mathbf{q}=\mathbf{f}$).

Agora, o sinal de erro é dado por:

$$e(n) = d(n) - y_{c}(n) - y_{\perp}(n)$$

= $d(n) - \mathbf{q}^{t} \mathbf{x}(n) - \mathbf{w}_{\perp}^{t} \mathbf{C}_{\perp}^{t} \mathbf{x}(n)$. (8)

No sentido do erro quadrático médio, o vetor \mathbf{w}_{\perp} é escolhido de forma a minimizar a seguinte função custo:

$$J(\mathbf{w}_{\perp}) = \mathbf{E}\{e^{2}(n)\} = \mathbf{E}\{[d(n) - \mathbf{q}^{\mathsf{t}}\mathbf{x}(n) - \mathbf{w}_{\perp}^{\mathsf{t}}\mathbf{C}_{\perp}^{\mathsf{t}}\mathbf{x}(n)]^{2}\}$$
$$= \sigma_{d}^{2} - 2\mathbf{q}^{\mathsf{t}}\mathbf{p} + \mathbf{q}^{\mathsf{t}}\mathbf{R}\mathbf{q} - 2\mathbf{w}_{\perp}^{\mathsf{t}}\mathbf{C}_{\perp}^{\mathsf{t}}\mathbf{p} +$$

$$+ \mathbf{w}_{\perp}^{t} \mathbf{C}_{\perp}^{t} \mathbf{R} \mathbf{C}_{\perp} \mathbf{w}_{\perp} + 2 \mathbf{w}_{\perp}^{t} \mathbf{C}_{\perp}^{t} \mathbf{R} \mathbf{q} , \qquad (9)$$

onde σ_d^2 denota a variância do sinal desejado. A solução ótima é

$$\mathbf{w}_{\perp o} = [\mathbf{C}_{\perp}^{t} \mathbf{R} \mathbf{C}_{\perp}]^{-1} \mathbf{C}_{\perp}^{t} [\mathbf{p} - \mathbf{R} \mathbf{q}].$$
(10)

A próxima seção descreve a filtragem FIR interpolada e sua utilização no esquema de filtragem de Wiener.

III. FILTRAGEM IFIR

A técnica de filtragem FIR interpolada (IFIR_*interpolated finite impulse response*) foi introduzida por Neuvo et al. [1]. Seu objetivo é explorar as redundâncias nos coeficientes do filtro, através da remoção de algumas amostras da resposta ao impulso que são, posteriormente, recuperadas por interpolação. Obtém-se, assim, uma redução do número de operações aritméticas (multiplicação e soma) realizadas nos procedimentos de filtragem e atualização dos coeficientes de um filtro adaptativo.

Na forma de diagrama de blocos, o filtro IFIR pode ser visto como a cascata de dois sistemas (Figura 3). O primeiro representa um filtro FIR cuja resposta ao impulso é esparsa. Isto vale dizer que somente uma amostra, de cada conjunto de L amostras consecutivas de sua resposta ao impulso, é diferente de zero. Dito de uma outra forma, entre duas amostras diferentes de zero de sua resposta ao impulso, há L-1 amostras iguais a zero. Portanto, se o filtro esparso tem N coeficientes, $\lceil N/L \rceil$ amostras de sua resposta ao impulso são diferentes de zero e N- $\lceil N/L \rceil$ amostras são iguais a zeros, onde $\lceil \bullet \rceil$ representa a operação de arredondamento de \bullet para o próximo inteiro.

$\mathbf{x}(n)$		$\mathbf{x}_{\mathbf{i}}(n)$		
	ws		1	┝╸
NXI L		Ix1		1

Fig. 3: Filtragem IFIR.

O segundo sistema é um filtro FIR interpolador que tem como função estimar as amostras iguais a zero do filtro esparso. Este pode ser implementado com poucas operações aritméticas, sendo que seu número de coeficientes depende de L (L é conhecido como grau de esparsidade ou fator de interpolação). A estrutura completa requer aproximadamente 1/L da quantidade de operações aritméticas de um filtro FIR convencional equivalente.

O Filtro de Wiener Interpolado

A Figura 4 ilustra o esquema clássico de filtragem de Wiener, onde o filtro transversal foi substituído por um filtro IFIR. O vetor de coeficientes do filtro esparso, Nx1, é denotado por

$$\mathbf{w}_{s} = [w_{s_{0}}, w_{s_{1}}, \dots, w_{s_{N-1}}]^{t}$$
(11)

e o vetor de coeficientes do interpolador, Ix1, por

$$\mathbf{i} = [i_0, i_1, \dots, i_{I-1}]^{\mathsf{t}}$$
 (12)

Logo, o sinal de erro é expresso por

$$e(n) = d(n) - \mathbf{w}_{s}^{t} \mathbf{X}(n) \mathbf{i}, \qquad (13)$$

onde

$$\mathbf{X}(n) = [\mathbf{x}(n), \mathbf{x}(n-1), \dots, \mathbf{x}(n-I+1)]_{N \times I}.$$
 (14)

Fig. 4: Filtragem de Wiener interpolada.

A condição de esparsidade de \mathbf{w}_s pode ser facilmente obtida por um conjunto de restrições lineares fazendo (por exemplo, para *L*=2 e *N* ímpar):

$$\mathbf{C}^{t} = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 1 & 0 \end{bmatrix}_{K \times N}$$
(15)

e

$$\mathbf{f} = \begin{bmatrix} 0\\0\\\vdots\\0 \end{bmatrix}_{K \times 1} = \mathbf{0}_{K \times 1}, \qquad (16)$$

onde $K=N-\lceil N/L\rceil$. Claramente, impondo $\mathbf{C}^{\mathsf{t}}\mathbf{w}_{\mathsf{s}}=\mathbf{f}$ faz com que os elementos nas linhas pares de \mathbf{w}_{s} sejam iguais a zero no processo de otimização restrita.

Logo, o vetor \mathbf{w}_s ótimo do filtro de Wiener interpolado pode ser diretamente obtido a partir de (5):

$$\mathbf{w}_{so} = \mathbf{R}_{ii}^{-1}\mathbf{p}_{i} - \mathbf{R}_{ii}^{-1}\mathbf{C}(\mathbf{C}^{\mathsf{t}}\mathbf{R}_{ii}^{-1}\mathbf{C})^{-1}\mathbf{C}^{\mathsf{t}}\mathbf{R}_{ii}^{-1}\mathbf{p}_{i}, \qquad (17)$$

onde

$$\mathbf{R}_{ii} = E\{\mathbf{X}(n)\mathbf{i}\mathbf{i}^{t}\mathbf{X}^{t}(n)\}$$

$$= \sum_{i=0}^{I-1} \sum_{j=0}^{I-1} i_{i}i_{j}E\{\mathbf{x}(n-i)\mathbf{x}^{t}(n-j)\}$$

$$= \sum_{i=0}^{I-1} \sum_{j=0}^{I-1} i_{i}i_{j}\mathbf{R}(j-i) . \qquad (18)$$

$$\mathbf{p}_{i} = E\{\mathbf{X}(n)\mathbf{i}d(n)\}$$

$$= \sum_{i=0}^{I-1} i_{i}E\{\mathbf{x}(n-i)d(n)\}$$

$$= \sum_{i=0}^{I-1} i_{i}\mathbf{p}(-i) . \qquad (19)$$

e considerando que f=0.

Tirando proveito da estrutura GSC e das restrições de esparsidade, o esquema de filtragem de Wiener interpolada na Figura 4 transforma-se na forma representada pela Figura 5, já que **f=0** e, conseqüentemente, **q=0**.

i=0

Fig. 5: Implementação GSC da filtragem de Wiener interpolada.

Continuando, é fácil concluir, a partir de (15), que:

$$\mathbf{C}_{\perp} = \begin{bmatrix} 1 & 0 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 0 & 1 \end{bmatrix}_{\lceil N/L \rceil \times N}^{\mathsf{t}}$$
(20)

para o exemplo dado (L=2 e N ímpar).

É interessante observar que o vetor \mathbf{w}_{\perp} apresenta somente coeficientes com elementos não nulos. Isto vale dizer que \mathbf{w}_{\perp} não é um filtro esparso. É a pré-multiplicação de \mathbf{w}_{\perp} por \mathbf{C}_{\perp}^{t} que insere zeros entre seus elementos, tornando-o esparso. Ou seja, \mathbf{w}_{\perp} é o filtro de Wiener dizimado, \mathbf{C}_{\perp} e i respondem pelo processo de interpolação.

O sinal de erro é descrito como

$$e(n) = d(n) - \mathbf{w}_{\perp}^{t} \mathbf{C}_{\perp}^{t} \mathbf{X}(n) \mathbf{i}$$
(21)

e o erro quadrático médio por

$$J(\mathbf{w}_{\perp}) = \sigma_d^2 - 2\mathbf{w}_{\perp}^{\mathsf{t}} \mathbf{C}_{\perp}^{\mathsf{t}} \mathbf{p}_{\mathsf{i}} + \mathbf{w}_{\perp}^{\mathsf{t}} \mathbf{C}_{\perp}^{\mathsf{t}} \mathbf{R}_{\mathsf{ii}} \mathbf{C}_{\perp} \mathbf{w}_{\perp}.$$
 (22)

Já o vetor \mathbf{w}_{\perp} ótimo no esquema de filtragem de Wiener interpolada da Figura 5 é dado por:

$$\mathbf{w}_{\perp o} = [\mathbf{C}_{\perp}^{t} \mathbf{R}_{ii} \mathbf{C}_{\perp}]^{-1} \mathbf{C}_{\perp}^{t} \mathbf{p}_{i} .$$
(23)

Conseqüentemente, substituindo (23) em (22), o erro quadrático médio mínimo é expresso por:

$$J_{\min} = \sigma_d^2 - \mathbf{p}_i^{\mathsf{t}} \mathbf{C}_{\perp} [\mathbf{C}_{\perp}^{\mathsf{t}} \mathbf{R}_{ii} \mathbf{C}_{\perp}]^{-1} \mathbf{C}_{\perp}^{\mathsf{t}} \mathbf{p}_i$$
$$= \sigma_d^2 - \mathbf{p}_i^{\mathsf{t}} \mathbf{C}_{\perp} \mathbf{w}_{\perp o} . \qquad (24)$$

Por fim, vale ressaltar que as expressões do filtro ótimo de Wiener interpolado, apresentadas em (17) e (23), relacionamse da seguinte forma:

$$\mathbf{w}_{\rm so} = \mathbf{C}_{\perp} \mathbf{w}_{\perp o} \,. \tag{25}$$

IV. CANCELADOR DE ECO HÍBRIDO FIR-IFIR

Como mostrado na Figura 6, o cancelamento de eco em linhas telefônicas é realizado através de um filtro digital FIR, colocado em paralelo com a híbrida. Busca-se o filtro que melhor represente o sistema composto pelo circuito de extensão, híbrida e cargas associadas. Na verdade, o cancelamento de eco em linhas telefônicas resume-se a um problema típico de identificação de sistemas. Uma vez que o sistema é identificado, uma réplica do eco, $\hat{r}(n)$, pode ser gerada e subtraída do sinal a ser transmitido para o usuário remoto [10].

Fig. 6: Esquema de cancelamento de eco em linhas telefônicas.

O cancelador de eco híbrido FIR-IFIR, proposto por Abousaada em [7], baseia-se na constatação de que a resposta ao impulso do sistema gerador de eco pode ser dividida em duas partes com comportamentos distintos. A primeira parte (parte inicial ou principal), de curta duração, é caracterizada por grandes variações de amplitude entre amostras adjacentes (pouca correlação). Já a segunda parte (parte final ou cauda), de maior duração, é bem comportada, o que caracteriza a existência de uma forte correlação entre suas amostras.

Assim, como mostrado na Figura 7 (ver após a Seção de Referências, no final do artigo), o cancelador híbrido utiliza um filtro FIR convencional para modelar a parte principal do sistema gerador de eco e um filtro IFIR para modelar a cauda.

A. O Cancelador Híbrido Ótimo

Como mostrado na Figura 8, o esquema do cancelador híbrido proposto em [7] pode ser abordado via GSC. A parte superior corresponde às amostras iniciais (parte principal) da resposta ao impulso do cancelador e a parte inferior responde pelas amostras finais (cauda). Para ilustrar como as matrizes $C_{\perp m} \in C_{\perp t}$ são formadas, considere que o cancelador tem *N*=5 coeficientes, com *M*=2 coeficientes na parte principal e *T*=3 na cauda. Considere, também, que a cauda tem um grau de esparsidade *L*=2. Logo:

> $\mathbf{C}_{\perp m} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}_{N \times M}$ (26a) $\mathbf{C}_{\perp t} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{bmatrix}_{N \times [m \times 1]}$ (26b)

Observe que $\mathbf{q}_{m} = \mathbf{q}_{t} = \mathbf{0}_{N}$, uma vez que $\mathbf{f}_{m} = \mathbf{0}_{N-M}$ e $\mathbf{f}_{t} = \mathbf{0}_{N-\lceil T/L \rceil}$.

Fig. 8: Implementação GSC do cancelador híbrido.

O sinal de erro é descrito como

$$e(n) = d(n) - \mathbf{w}_{\perp m}^{t} \mathbf{C}_{\perp m}^{t} \mathbf{x}(n) - \mathbf{w}_{\perp t}^{t} \mathbf{C}_{\perp t}^{t} \mathbf{X}(n) \mathbf{i}$$
(27)
e o erro quadrático médio por

$$J(\mathbf{w}_{\perp m}, \mathbf{w}_{\perp t}) = \sigma_d^2 - 2\mathbf{w}_{\perp m}^t \mathbf{C}_{\perp m}^t \mathbf{p} + \mathbf{w}_{\perp m}^t \mathbf{C}_{\perp m}^t \mathbf{R} \mathbf{C}_{\perp m} \mathbf{w}_{\perp m} + - 2\mathbf{w}_{\perp t}^t \mathbf{C}_{\perp t}^t \mathbf{p}_i + \mathbf{w}_{\perp t}^t \mathbf{C}_{\perp t}^t \mathbf{R}_{ii} \mathbf{C}_{\perp t} \mathbf{w}_{\perp t} + + 2\mathbf{w}_{\perp t}^t \mathbf{C}_{\perp t}^t \mathbf{R}_i \mathbf{C}_{\perp m} \mathbf{w}_{\perp m}, \qquad (28)$$

onde

e

$$\mathbf{R}_{i} = \mathrm{E}\{\mathbf{X}(n)\mathbf{i}\mathbf{x}^{\mathrm{t}}(n)\}$$

$$= \sum_{i=0}^{I-1} i_i \mathbb{E}\{\mathbf{x}(n-i)\mathbf{x}^{\mathsf{T}}(n)\}\$$
$$= \sum_{i=0}^{I-1} i_i \mathbb{R}(-i), \qquad (29)$$

sendo que \mathbf{R}_{ii} e \mathbf{p}_i são definidos em (18) e (19), respectivamente.

Observe que o último termo em (28) corresponde ao valor esperado do produto cruzado dos sinais de saída das partes principal e cauda. Se considerarmos que o sinal x(n), presente na entrada do cancelador, é modelado como ruído branco gaussiano, estacionário e de média zero, este termo se anula, uma vez que $\mathbf{C}_{\perp t}^{t} \mathbf{R}_{i} \mathbf{C}_{\perp m} = \mathbf{0}$. Ou seja, $y_{\perp m}(n)$ e $y_{\perp t}(n)$ são estatisticamente descorrelacionados ($\mathrm{E}\{y_{\perp m}(n)y_{\perp t}(n)\}=0$) e, conseqüentemente, $\mathbf{w}_{\perp m}$ e $\mathbf{w}_{\perp t}$ podem ser otimizados separadamente. As soluções ótimas são dadas por:

$$\mathbf{w}_{\perp mo} = [\mathbf{C}_{\perp m}^{t} \mathbf{R} \mathbf{C}_{\perp m}]^{-1} \mathbf{C}_{\perp m}^{t} \mathbf{p}$$
(30)

e

$$\mathbf{w}_{\perp to} = [\mathbf{C}_{\perp t}^{t} \mathbf{R}_{ii} \mathbf{C}_{\perp t}]^{-1} \mathbf{C}_{\perp t}^{t} \mathbf{p}_{i} .$$
(31)

Já o erro quadrático médio mínimo é obtido substituindo (30) e (31) em (28), tendo como resultado:

$$J_{\min} = \sigma_d^2 - \mathbf{p}^{t} \mathbf{C}_{\perp m} [\mathbf{C}_{\perp m}^{t} \mathbf{R} \mathbf{C}_{\perp m}]^{-1} \mathbf{C}_{\perp m}^{t} \mathbf{p} + - \mathbf{p}_i^{t} \mathbf{C}_{\perp t} [\mathbf{C}_{\perp t}^{t} \mathbf{R}_{ii} \mathbf{C}_{\perp t}]^{-1} \mathbf{C}_{\perp t}^{t} \mathbf{p}_i = \sigma_d^2 - \mathbf{p}^{t} \mathbf{C}_{\perp m} \mathbf{w}_{\perp mo} - \mathbf{p}_i^{t} \mathbf{C}_{\perp t} \mathbf{w}_{\perp to} .$$
(32)

A consideração acima é válida para transmissão de dados em linhas telefônicas, a qual pode ser modelada como ruído branco. Entretanto, quando as amostras do sinal de entrada são correlacionadas, como no caso do sinal de voz, o último termo em (28) é diferente de zero. Portanto, $\mathbf{w}_{\perp m}$ e $\mathbf{w}_{\perp t}$ não podem ser otimizados independentemente.

Podemos adotar como solução sub ótima para $\mathbf{w}_{\perp m}$ a própria expressão em (30). Seja o vetor $\mathbf{w}_{\perp mso}$ denotar esta solução sub ótima. Neste caso, a solução sub ótima para $\mathbf{w}_{\perp t}$, em função de $\mathbf{w}_{\perp mso}$, é dada por:

$$\mathbf{w}_{\perp tso} = [\mathbf{C}_{\perp t}^{t} \mathbf{R}_{ii} \mathbf{C}_{\perp t}]^{-1} \mathbf{C}_{\perp t}^{t} [\mathbf{p}_{i} - \mathbf{R}_{i} \mathbf{C}_{\perp m} \mathbf{w}_{\perp mso}].$$
(33)

Substituindo, agora, (30) e (33) em (28), obtemos a seguinte expressão para o erro quadrático médio mínimo:

$$J_{\min} = \sigma_d^2 - \mathbf{p}^{\mathsf{t}} \mathbf{C}_{\perp m} [\mathbf{C}_{\perp m}^{\mathsf{t}} \mathbf{R} \mathbf{C}_{\perp m}]^{-1} \mathbf{C}_{\perp m}^{\mathsf{t}} \mathbf{p} + -[\mathbf{p}_i - \mathbf{R}_i \mathbf{C}_{\perp m} \mathbf{w}_{\perp mso}]^{\mathsf{t}} \mathbf{C}_{\perp t} [\mathbf{C}_{\perp t}^{\mathsf{t}} \mathbf{R}_{ii} \mathbf{C}_{\perp t}]^{-1} \mathbf{C}_{\perp t}^{\mathsf{t}} [\mathbf{p}_i - \mathbf{R}_i \mathbf{C}_{\perp m} \mathbf{w}_{\perp mso}]$$
$$= \sigma_d^2 - \mathbf{p}^{\mathsf{t}} \mathbf{C}_{\perp m} \mathbf{w}_{\perp mso} - [\mathbf{p}_i - \mathbf{R}_i \mathbf{C}_{\perp m} \mathbf{w}_{\perp mso}]^{\mathsf{t}} \mathbf{C}_{\perp t} \mathbf{w}_{\perp tso}. (34)$$

B. Análise de Degradação

A métrica utilizada para avaliar o desempenho do cancelador, no que diz respeito à atenuação do eco, é definida como [8]:

$$\zeta \equiv \frac{\sigma_r^2}{\sigma_e^2},\tag{35}$$

onde

$$\sigma_r^2 = \mathrm{E}\{r^2(n)\}\tag{36}$$

$$\sigma_e^2 = \mathbb{E}\{e^2(n)\} \\ = \mathbb{E}\{[r(n) - \hat{r}(n)]^2\}$$
(37)

denotam, para x(n)=0, as variâncias dos ecos total e residual, respectivamente.

Assim, de posse da expressão do erro quadrático médio mínimo, podemos avaliar o desempenho do cancelador em função da correlação do sinal de entrada, do grau de esparsidade L e do interpolador.

A fim de mensurarmos a degradação introduzida pelo filtro IFIR no cancelador híbrido, considere que a híbrida a ser identificada é modelada por um processo MA (*moving average*) de ordem 255, com resposta impulsiva mostrada na Figura 9.

Fig. 9: Resposta ao impulso da híbrida.

No que se refere à modelagem do sinal proveniente do assinante remoto, considera-se: *i*) ruído branco gaussiano de média zero e variância unitária e *ii*) ruído colorido gerado por um processo AR (*autoregressive*), assintoticamente estacionário, de ordem 2, e governado pela seguinte equação de diferença [8]:

$$u(n) - 0, 1u(n-1) - 0, 8u(n-2) = v(n), \qquad (38)$$

onde v(n) é um ruído branco gaussiano, de média zero, com variância $\sigma_v^2 = 0.27$, escolhida de forma que a variância de u(n) seja unitária. O espalhamento dos autovalores da matriz de correlação de u(n) é $\chi(n) = 313,3256$, o que caracteriza um sinal bem correlacionado.

As curvas de degradação de desempenho para os canceladores híbridos ótimos são mostradas na Figura 10, tendo como sinal remoto tanto o ruído branco como o colorido. O número de coeficientes da parte principal foi fixado em M=150 e os 106 coeficientes restantes foram atribuídos à cauda (T=106).

Como era de se esperar, em ambos os casos, o melhor desempenho do cancelador ocorre para L=2. Observamos também que, independente de L, o desempenho do cancelador híbrido é sempre superior para sinais descorrelacionados. Por outro lado, a taxa de decaimento do desempenho para ruído branco em função de L é maior do que para ruído colorido.

Fig. 10: Desempenho do cancelador híbrido.

V. CONCLUSÕES

Neste trabalho, verificamos que a degradação introduzida pelo filtro IFIR no cancelador híbrido pode ser estimada e que tal degradação depende da correlação do sinal de entrada, do grau de esparsidade do filtro IFIR e dos parâmetros do interpolador. Isto foi possível graças a uma abordagem de otimização restrição aplicada ao problema de filtragem transversal interpolada. Tal abordagem é geral, visto que pode ser estendida a filtros com diferentes formas de esparsidade.

REFERÊNCIAS

- Y. Neuvo, C.Y. Dong, and S.K. Mitra; "Interpolated Finite Impulse Response Digital Filters". IEEE Trans. on Acoust., Speech and Signal Processing; vol. ASSP-32; pp. 563-570; June 1984.
- [2] T. Saramaki, Y. Neuvo, and S.K. Mitra; "Design of Computationally Efficient Interpolated FIR Filters". IEEE Trans. on Circuits and Systems; vol. 35; pp. 70-88; January 1988.
- [3] R. Lyons; "Interpolated Narrowband Lowpass FIR Filters". IEEE Signal Processing Magazine; vol. 20; nro. 1; pp. 50-57; January 2003.
- [4] L. S. Resende, C. A. F. da Rocha and M. G. Bellanger; "A Linearly-Constrained Approach to the Interpolated FIR Filtering Problem". Proceedings of the IEEE-ICASSP'2000, Istanbul, TURKEY; May 2000.
- [5] L. S. Resende, C. A. F. da Rocha and M. G. Bellanger; "A New Structure for Adaptive IFIR Filtering". Proceedings of the IEEE-ICASSP'2000, Istanbul, TURKEY; May 2000.
- [6] L. S. Resende, C. A. F. da Rocha and M. G. Bellanger; "Degradation Analysis for Interpolated Wiener Filtering". Proceedings of the European Signal Processing Conference (EUSIPCO'2002); Toulouse, FRANCE; September 2002.
- [7] A Abousaada, T. Aboulnasr, and at al; "An Echo Tail Canceller Based on Adaptive Interpolated FIR Filtering". IEEE Trans. on Circuits and Systems – II: Analog and Digital Signal Processing; vol. 39; nro.7; pp. 409-416; July 1992.
- [8] S. Haykin; Adaptive Filter Theory. 4th edition; Prentice-Hall; New Jersey; 2002.
- [9] L. S. Resende; "Algoritmos Recursivos de Mínimos Quadrados para Processamento Espacial/Temporal com Restrições Lineares: Aplicação em Antenas Adaptativas". Tese de Doutorado; FEEC/UNICAMP; Campinas-SP; 1996.
- [10] B. Widrow and S. D. Stearns; "Adaptive Signal Processing". Prentice Hall; 1985.

Fig. 7: Estrutura híbrida FIR e IFIR do cancelador de eco Abousaada.