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Robust probabilistic constrained power control for
3G networks
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Abstract—This paper deals with the power control problem In this paper, the power control problem is reformulated by
for wireless cellular networks. The problem is modelled by a considering the channel gains for i = 1,...,n as random

stochastic optimization problem with probabilistic constraints —yectors. We assume that only partial information regarding the
considering the link gains as random vectors whose probability bability distributi Cfori — 1 lable. |
distribution satisfies uncertain mean and covariance constraints. ProRabllity distributions ofj; fori =1,...,n are available. In

Specifically, we consider that the mean vector and covariance Particular, this paper studies the case where they satisfies given
matrix are not perfectly known, however they belong to convex bounds on the mean and covariance constraints. In this setting,

hull of a fixed set. The solution is established in terms of an g robust stochastic optimization problem with probabilistic
optimization problem over linear matrix inequalities (LMIS)  cqnsiraints is used to model the power control problem. This

and it is robust in the sense that from the set of probability f lati I hi th ified level of link lit
distributions matching the given bounds on the mean vector and ormuiation allows us achieve the specinied level ot fink quality

covariance matrix, we take the one that produces the lowest tail Satisfaction (SIR reliability requirements).
probability. We approach the problem via generalized Chebychev in-

Keywords—Quality of service, radio resource management, equalities, i.e., opti_mal bounds on the probability that a certain
power control, generalized Chebychev inequalities, linear matrix Vector random variable belongs to a given set, under moment
inequalities. constraints (see [6], [7]). The solution is presented in terms
of a convex optimization problem with linear objective and
positive definite constraints involving symmetric matrices that
are affine in the decision variables, namely a LMI problem [8].

For cellular wireless networks, the control of transmittel/Sing interior-point methods for convex optimization, the LMI
power such that the link quality, expressed by signal-teroblem can be solved very efficiently. _
interference ratio (SIR), is maintained above a specified threshThe paper is organized as follows. In Section Il some

old, can be established mathematically as follows (cf. [1]-[4])otations and basic definitions are presented. Additionally,
the stochastic power control problem is precisely stated. In

I. INTRODUCTION

min Zpi Section Ill, we present the solution of proposed problem. A
i numerical example and some conclusions are finally presented
sttt 7i(p,gi) = + giiPi >q;, (1) in Sections IV and V, respectively.
> i 9igPj Vi
0 <pi <Pimass 1=1,...,m, II. NOTATION AND PROBLEM FORMULATION

wherep = [p1, ..., pa]’ € R is the transmitted power vector nThroughout this_paper_, the following notati(arlrils adepted.
and Poas = [Plamass-- - Pumes)’ € R is the maximum R”™ denotes _thm—dlmensmnal real space antt _ (M")
allowable transmitted power vectay; = [gi1, .. ., gin]’ € R” the norm.ed linear space of allx m (r x r) real matrices. The_
for i =1,...,n are the channel gain vectors whegg is the superscript stands for the matrix transpose and the notation

power gain from the transmitter gfth link to the receiver U = 0 (U >0) for U € M", means thaU is semi-definite
of the i-th one andy; is the background noise power at thédeﬂmte) positive. Then, the closed (opened) convex cone of

receiver ofi-th link. Finally, 7, anda; are the received SIR all posigive semi-definite (definite) matrices.vmt” is denoted
and the required SIR threshold for theh link, respectively. by M™ = ,{U €M 1 U= Ul/ 2 0} (M™). The convex
In this framework, the solution of optimization problem (1j1ull Of the fixed se{U", ..., U"} is represented by
is determinate under the assumption that the channel gains !
for i = 1,...,n are exactly known. In applications however, Co{U",...,U'} = {U = Z5kUk :
they are difficult to estimate precisely. This is due, for exam- k=1
ple, to noise corruptions. As consequence, the aforementioned !
power control model falls short of handling the uncertain case. o 20, k=1,...,1, Z5k = 1}
k=1

UNICAMP- Univ. Est. de Campinas, Fac. de Eng.éffica, Depto. ghere Uk ¢ R*™ for kb = 1 l. Finally, for a matrix
: A 1

de Comunica@es, C.P. 6101, 13081-970 Campinas, SP, Brazil. E-mal .
yusef@decom.fee.unicamp.br, michel@decom.fee.unicamp.br € M, the trace operator is denoted by{U} and for a

LIt is important to point out that the; model, defined in (1), is general vectoru € R", the diagonal matrix where is the vector of

enough to describe DS-CDMA systems with matched-filter receivers as wgl diagonal entries is represented dng{u}
as one-channel TDMA/FDMA systems giving specific interpretations to their

parameters (see [5]). As consequence, for theoretical studies, there is no neeltm [6], it W_as established that for_ a given vectgy <
to distinguish between multiple access schemes. R™ and matrix,, € M"°, there exists a random vector
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gi = lgi1,---,9in) € R", defined in the probability space

Using matrix-vector notation, the shorthand formulation of

(Q,5, Pr), whose mean vector and covariance matrix a@ptimization problem (2) is

given byg, andX,, respectively, i.e.,

Elgil =79, and E[(gi—7,)(9:—7,) =%

gi»

where E[-] stands for the mathematical expectation with re-

spect to the basic probability space. ket (g;, X,,) denotes
a random vectog; which has a feasible probability distribution
matching the specified mean and covariance:,.

In this scenario, we formulate the control power problem
as the following robust stochastic program with probabilistiwhere the matrixP =

constraints

>
S.t.: inf  Pr(vi(p,g:) = i) = B,

Qz‘N(?ngi)
0<p; < Dimazx (2)
g: € Co{g},...,q;}, ; € R",
Sg, € Co{S; ..., 50}, BF e M"Y,
i=1,....n, k=1,...,1,

where 5 = [B1,...,06,] € R™, with 8; € (0,1] for i =

1,...,n, is the target reliability vector.

Remark 1:Note that the stochastic optimization prob
lem (2) can be considered as a strategic game, where
power controller chooses a decisiprwhile nature picks the
worst possible probability distribution af; for i = 1,...,n
matching the given bounds on the megnand covariance
)

gi*

1. M AIN RESULT

Before showing our main result, the following lemmas wil
be used as support.

Lemma 1: [7] Consider the vectoF € R™ and the matrix
¥, € M"T. Then,

1

sup Pr(ad'z >b) = i

z~(T,55)
where

62_

inf (r —7)S,(z -7
ot (a—7)'5; @ - )
is the squared distance fromto the set{x € R™ : o’z > b}
under the norm induced by the matiix; !.
Lemma 2: [8] (Schur complemeptConsider the matrices
A and C' symmetric. Then,

|

where, for symmetric matrices, the symbelindicates the
corresponding off diagonal term.

A B

—1
. C A>BC'B,

}>O — (>0,

min ¢r{P}
st.: 0<P< Pz,
inf  Pr(d,Pg; > ;i) > Bi,
9i~(3::%q;) (3)
7, € Co{gl,...,3'}, ¥ e R,
Sy, € Co{% ..., 0L}, Bk e M,
i=1,....n, k=1,....1,
diag{p = |p1,...,pa)'} € M"T,
the matrix Po; = diag{pmaz = [P1,mazs-- -+ Pnymaz) } €
M"™*, and the vectotl; = []I{izl} - Ozﬂl{i?ﬂ}, ey ]I{i:n} —

aill;2ny] € R™ being 1. the Dirac measure.

Considering thaWg € M™* is the unique square root of
matrix ¥ (i.e., A’“’A’“ = X% ) and representing the identity
matrix byI the solut|on of proposed power control problem
is determinate in the following theorem.

Theorem 1:The LMI problem

min ¢r{P}
st.: 0<P< Pz,
diPgr — ouv; (125 )d; PAk,
* (_ -)(d Fk—auq)l >0,

) i=1,...,n, k=1,...,1,
the (4)
provides the solution for the stochastic optimization prob-
lem (3).

Proof: The inner optimization problem in (3) can be

rewritten as

Pr(—diPg; 2 —av;) <1 -, )

sup
Qm"‘(?ﬂzgi)
fori=1,...,n
Applying the Lemma 1 on the optimization problem above,
we have

1
sup Pr(_dipgz > _ail/i) = , (6)
9i~(9::2g;) 1+ sz
where
2 . a1 B
Cl 7d;P;inZ*Otilli(g gl) 9i (g gz) ( )

Note that the values of; are usually different from zero
thus we have to select the matriR such thatg, ¢ {g; :
—d;Pg; > —ov;}.

The optimal solution for the optimization problem (7) can
be obtained applying the Karush-Kuhn-Tucker conditions. To
this end, define the Lagrange function

L(gi; Ni) = (9 — ;)%
for \; > 0. The conditions fory; to be a global minima are

OL(gi, \s) _
Tgi gi)

(9i ;1(91' —7;) + Ni(=d;Pg; + a;v;),

_ -1 _
=28, (9 — AiPd; =0, (8)
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Fig. 1. Robust feasibility set.
and

(if)

Figure 1 shows the feasibility set of optimization prob-
lem (4) for several reliability thresholds values. Clearly,
the system reliability can be increased by allocating
power in such a way that each transmitter has extra
margin of SIR. As result, the system capacity is reduced.
Applying the Theorem 1, the allocation of transmitted
power isp = [2.60 2.60] for 3= [0.8 0.8].

For this case we assume that the mean vector and
covariance matrix are not exactly known, but they are
such that

g, € Co{[1.00 0.18],[0.96 0.14]},
G, € Co{[0.17 0.97],[0.13 0.93]},

0.003 0 0.005
0.003|"| O

0
The transmitted power in this caseris= [3.28 3.29]
for 5= [0.8 0.8].

0

Y, =%, € Co{{ 0.005} }.

V. CONCLUSION

We address the problem of allocating power in a wireless

network considering the power gains as random vectors whose
probability distribution is partially known. We assume that,
it satisfies imprecise mean and covariance constraints. In

From equations (8) and (9) we have that
_ 2(diPg; — o)

A= . this framework, the power control problem is modelled by a
d;PY.,, Pd; ; N . > .
g i stochastic optimization problem with probabilistic constraints
Thus, and the robust solution is established in terms of LMI problem.
A2 (d,Pg, — ;) A further research topic is constrain the underlying distri-
2 1 g i 7 1V . .
‘= —‘'d,PY, Pdi=—"*—~————" 10) bution to get less conservative controllers.
C’L 4 7 9gi d;PEgl Pdl ( ) g

By replacing equations (6) and (10) into inequality (5), we
have 1]

Bi
1-6 2]

Finally applying the Schur complement (see Lemma 2)
in (11), the LMI problem (4) is justified. m [3

Remark 2:Note that whens; = 0 for i = 1,...,n and
[ = 1, the stochastic optimization problem (4) is reduced
the usual deterministic optimization problem (1) if the channel
gainsg; are replaced by their mean valgg

Remark 3:Notice that if there exist an upper bound for”)
the transmitted power then high reliability requirements may
become the optimization problem (4) infeasible. This is duél

to fast increase of/3;/(1 — ;) whenj; tends to 1. [7]
(8]

(d,Pg; — a;v;)? >( )dgngi Pd;,  (11)

IV. NUMERICAL EXAMPLE

To illustrate the previous discussion, consider a wireless
cellular network with 2 active users. The target SIR and the
receiver noise are 5dB and 0.05W, respectively. Two design
cases are considered:

(i) For this case, the mean vector and covariance matrix are

assumed to be exactly know £ 1), such that

g, = [0.986 0.160] ,

Z91 = 292 = |:

gy = [0.150 0.956] ,

0.004 0
0 0.004| -
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