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Robust probabilistic constrained power control for
3G networks
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Abstract— This paper deals with the power control problem
for wireless cellular networks. The problem is modelled by a
stochastic optimization problem with probabilistic constraints
considering the link gains as random vectors whose probability
distribution satisfies uncertain mean and covariance constraints.
Specifically, we consider that the mean vector and covariance
matrix are not perfectly known, however they belong to convex
hull of a fixed set. The solution is established in terms of an
optimization problem over linear matrix inequalities (LMIs)
and it is robust in the sense that from the set of probability
distributions matching the given bounds on the mean vector and
covariance matrix, we take the one that produces the lowest tail
probability.

Keywords— Quality of service, radio resource management,
power control, generalized Chebychev inequalities, linear matrix
inequalities.

I. I NTRODUCTION

For cellular wireless networks, the control of transmitted
power such that the link quality, expressed by signal-to-
interference ratio (SIR), is maintained above a specified thresh-
old, can be established mathematically as follows (cf. [1]–[4])





min
∑

i

pi

s.t. : γi(p, gi) =
giipi∑

j 6=i gijpj + νi
≥ αi,

0 < pi ≤ pi,max, i = 1, . . . , n,

(1)

wherep = [p1, . . . , pn]′ ∈ Rn is the transmitted power vector
and pmax = [p1,max, . . . , pn,max]′ ∈ Rn is the maximum
allowable transmitted power vector.gi = [gi1, . . . , gin]′ ∈ Rn

for i = 1, . . . , n are the channel gain vectors wheregij is the
power gain from the transmitter ofj-th link to the receiver
of the i-th one andνi is the background noise power at the
receiver ofi-th link. Finally, γi andαi are the received SIR1

and the required SIR threshold for thei-th link, respectively.
In this framework, the solution of optimization problem (1)

is determinate under the assumption that the channel gainsgi

for i = 1, . . . , n are exactly known. In applications however,
they are difficult to estimate precisely. This is due, for exam-
ple, to noise corruptions. As consequence, the aforementioned
power control model falls short of handling the uncertain case.
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1It is important to point out that theγi model, defined in (1), is general
enough to describe DS-CDMA systems with matched-filter receivers as well
as one-channel TDMA/FDMA systems giving specific interpretations to their
parameters (see [5]). As consequence, for theoretical studies, there is no need
to distinguish between multiple access schemes.

In this paper, the power control problem is reformulated by
considering the channel gainsgi for i = 1, . . . , n as random
vectors. We assume that only partial information regarding the
probability distributions ofgi for i = 1, . . . , n are available. In
particular, this paper studies the case where they satisfies given
bounds on the mean and covariance constraints. In this setting,
a robust stochastic optimization problem with probabilistic
constraints is used to model the power control problem. This
formulation allows us achieve the specified level of link quality
satisfaction (SIR reliability requirements).

We approach the problem via generalized Chebychev in-
equalities, i.e., optimal bounds on the probability that a certain
vector random variable belongs to a given set, under moment
constraints (see [6], [7]). The solution is presented in terms
of a convex optimization problem with linear objective and
positive definite constraints involving symmetric matrices that
are affine in the decision variables, namely a LMI problem [8].
Using interior-point methods for convex optimization, the LMI
problem can be solved very efficiently.

The paper is organized as follows. In Section II some
notations and basic definitions are presented. Additionally,
the stochastic power control problem is precisely stated. In
Section III, we present the solution of proposed problem. A
numerical example and some conclusions are finally presented
in Sections IV and V, respectively.

II. N OTATION AND PROBLEM FORMULATION

Throughout this paper, the following notation is adopted.
Rn denotes then-dimensional real space andMr×m (Mr)
the normed linear space of allr×m (r×r) real matrices. The
superscript′ stands for the matrix transpose and the notation
U ≥ 0 (U > 0) for U ∈ Mr, means thatU is semi-definite
(definite) positive. Then, the closed (opened) convex cone of
all positive semi-definite (definite) matrices inMr is denoted
by Mr0 = {U ∈ Mr : U = U ′ ≥ 0} (Mr+). The convex
hull of the fixed set{U1, . . . , U l} is represented by

Co{U1, . . . , U l} =
{

U =
l∑

k=1

δkUk :

δk ≥ 0, k = 1, . . . , l,

l∑

k=1

δk = 1
}

where Uk ∈ Rr×m for k = 1, . . . , l. Finally, for a matrix
U ∈ Mr, the trace operator is denoted bytr{U} and for a
vector u ∈ Rr, the diagonal matrix whereu is the vector of
its diagonal entries is represented bydiag{u}.

In [6], it was established that for a given vectorgi ∈
Rn and matrix Σgi ∈ Mn0, there exists a random vector
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gi = [gi1, . . . , gin]′ ∈ Rn, defined in the probability space
(Ω, F, P r), whose mean vector and covariance matrix are
given bygi andΣgi

respectively, i.e.,

E[gi] = gi and E[(gi − gi)(gi − gi)
′] = Σgi ,

whereE[·] stands for the mathematical expectation with re-
spect to the basic probability space. Letgi ∼ (gi,Σgi) denotes
a random vectorgi which has a feasible probability distribution
matching the specified meangi and covarianceΣgi

.
In this scenario, we formulate the control power problem

as the following robust stochastic program with probabilistic
constraints





min
∑

i

pi

s.t. : inf
gi∼(gi,Σgi

)
Pr(γi(p, gi) ≥ αi) ≥ βi,

0 < pi ≤ pi,max,

gi ∈ Co{g1
i , . . . , g

l
i}, gk

i ∈ Rn,

Σgi ∈ Co{Σ1
gi

, . . . , Σl
gi
}, Σk

gi
∈Mn+,

i = 1, . . . , n, k = 1, . . . , l,

(2)

where β = [β1, . . . , βn]′ ∈ Rn, with βi ∈ (0, 1] for i =
1, . . . , n, is the target reliability vector.

Remark 1:Note that the stochastic optimization prob-
lem (2) can be considered as a strategic game, where the
power controller chooses a decisionp while nature picks the
worst possible probability distribution ofgi for i = 1, . . . , n
matching the given bounds on the meangi and covariance
Σgi .

III. M AIN RESULT

Before showing our main result, the following lemmas will
be used as support.

Lemma 1: [7] Consider the vectorx ∈ Rn and the matrix
Σx ∈Mn+. Then,

sup
x∼(x,Σx)

Pr(a′x ≥ b) =
1

1 + c2
,

where

c2 = inf
a′x≥b

(x− x)′Σ−1
x (x− x)

is the squared distance fromx to the set{x ∈ Rn : a′x ≥ b}
under the norm induced by the matrixΣ−1

x .
Lemma 2: [8] (Schur complement) Consider the matrices

A andC symmetric. Then,

[
A B
? C

]
> 0 ⇐⇒ C > 0, A > BC−1B′,

where, for symmetric matrices, the symbol? indicates the
corresponding off diagonal term.

Using matrix-vector notation, the shorthand formulation of
optimization problem (2) is





min tr{P}
s.t. : 0 < P ≤ Pmax,

inf
gi∼(gi,Σgi

)
Pr(d′iPgi ≥ αiνi) ≥ βi,

gi ∈ Co{g1
i , . . . , g

l
i}, gk

i ∈ Rn,

Σgi ∈ Co{Σ1
gi

, . . . , Σl
gi
}, Σk

gi
∈Mn+,

i = 1, . . . , n, k = 1, . . . , l,

(3)

where the matrixP = diag{p = [p1, . . . , pn]′} ∈ Mn+,
the matrix Pmax = diag{pmax = [p1,max, . . . , pn,max]′} ∈
Mn+, and the vectordi = [11{i=1}−αi11{i 6=1}, . . . , 11{i=n}−
αi11{i 6=n}]′ ∈ Rn being11{·} the Dirac measure.

Considering that∆k
gi
∈ Mn+ is the unique square root of

matrix Σk
gi

(i.e.,∆k′
gi

∆k
gi

= Σk
gi

) and representing the identity
matrix by I, the solution of proposed power control problem
is determinate in the following theorem.

Theorem 1:The LMI problem




min tr{P}
s.t. : 0 < P < Pmax,[

d′iPgk
i − αiνi

(
βi

1−βi

)
d′iP∆k

gi

?
(

βi

1−βi

)
(d′iPgk

i − αiνi)I

]
> 0,

i = 1, . . . , n, k = 1, . . . , l,
(4)

provides the solution for the stochastic optimization prob-
lem (3).

Proof: The inner optimization problem in (3) can be
rewritten as

sup
gi∼(gi,Σgi

)

Pr(−d′iPgi ≥ −αiνi) < 1− βi, (5)

for i = 1, . . . , n.
Applying the Lemma 1 on the optimization problem above,

we have

sup
gi∼(gi,Σgi

)

Pr(−d′iPgi ≥ −αiνi) =
1

1 + c2
i

, (6)

where

c2
i = inf

−d′iPgi≥−αiνi

(gi − gi)
′Σ−1

gi
(gi − gi). (7)

Note that the values ofβi are usually different from zero
thus we have to select the matrixP such thatgi /∈ {gi :
−d′iPgi ≥ −αiνi}.

The optimal solution for the optimization problem (7) can
be obtained applying the Karush-Kuhn-Tucker conditions. To
this end, define the Lagrange function

L(gi, λi) = (gi − gi)
′Σ−1

gi
(gi − gi) + λi(−d′iPgi + αiνi),

for λi ≥ 0. The conditions forgi to be a global minima are

∂L(gi, λi)
∂gi

= 2Σ−1
gi

(gi − gi)− λiPdi = 0, (8)
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Fig. 1. Robust feasibility set.

and

∂L(gi, λi)
∂λi

= −d′iPgi + αiνi = 0. (9)

From equations (8) and (9) we have that

λi =
2(d′iPgi − αiνi)

d′iPΣgiPdi
.

Thus,

c2
i =

λ2
i

4
d′iPΣgiPdi =

(d′iPgi − αiνi)2

d′iPΣgiPdi
. (10)

By replacing equations (6) and (10) into inequality (5), we
have

(d′iPgi − αiνi)2 >
( βi

1− βi

)
d′iPΣgi

Pdi, (11)

Finally applying the Schur complement (see Lemma 2)
in (11), the LMI problem (4) is justified.

Remark 2:Note that whenβi = 0 for i = 1, . . . , n and
l = 1, the stochastic optimization problem (4) is reduced to
the usual deterministic optimization problem (1) if the channel
gainsgi are replaced by their mean valuegi.

Remark 3:Notice that if there exist an upper bound for
the transmitted power then high reliability requirements may
become the optimization problem (4) infeasible. This is due
to fast increase of

√
βi/(1− βi) whenβi tends to 1.

IV. N UMERICAL EXAMPLE

To illustrate the previous discussion, consider a wireless
cellular network with 2 active users. The target SIR and the
receiver noise are 5dB and 0.05W, respectively. Two design
cases are considered:

(i) For this case, the mean vector and covariance matrix are
assumed to be exactly know (l = 1), such that

g1 =
[
0.986 0.160

]
, g2 =

[
0.150 0.956

]
,

Σg1 = Σg2 =
[
0.004 0

0 0.004

]
.

Figure 1 shows the feasibility set of optimization prob-
lem (4) for several reliability thresholds values. Clearly,
the system reliability can be increased by allocating
power in such a way that each transmitter has extra
margin of SIR. As result, the system capacity is reduced.
Applying the Theorem 1, the allocation of transmitted
power isp =

[
2.60 2.60

]
for β =

[
0.8 0.8

]
.

(ii) For this case we assume that the mean vector and
covariance matrix are not exactly known, but they are
such that

g1 ∈ Co{[1.00 0.18
]
,
[
0.96 0.14

]},
g2 ∈ Co{[0.17 0.97

]
,
[
0.13 0.93

]},
Σg1 = Σg2 ∈ Co{

[
0.003 0

0 0.003

]
,

[
0.005 0

0 0.005

]
}.

The transmitted power in this case isp =
[
3.28 3.29

]
for β =

[
0.8 0.8

]
.

V. CONCLUSION

We address the problem of allocating power in a wireless
network considering the power gains as random vectors whose
probability distribution is partially known. We assume that,
it satisfies imprecise mean and covariance constraints. In
this framework, the power control problem is modelled by a
stochastic optimization problem with probabilistic constraints
and the robust solution is established in terms of LMI problem.

A further research topic is constrain the underlying distri-
bution to get less conservative controllers.
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