
XXI BRAZILIAN SYMPOSIUM ON TELECOMMUNICATIONS - SBT’04, SEPTEMBER 06-09, 2004, BELÉM, PA
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Abstract— The H∞ filters are interesting alternatives to the
famed Kalman filter in most estimation problems. They give
hard upper bounds on the estimation errors, independently
of the disturbances distributions, while the optimality of the
Kalman filter relies on the knowledge of statistical properties
of the disturbances. H2 and H∞ equalizers were implemented
in order to deal with time-variant channels and their behavior
was investigated.
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I. INTRODUCTION

IN a typical wireless environment, a transmitted signal
often reaches a receiver via multiple propagation paths.

In high-bit-rate transmission, the propagation delay spread of
the time-dispersive (or frequency-selective) multipath fading
channel results in intersymbol interference (ISI), which
dramatically increases the transmission Bit Error Rate (BER).

Digital communication systems designed to perform the
data transmission in short time blocks may prevent another
aspect which degrades the communication performance: the
time-variance of the channel, common aspect of mobile radio
environments. Data blocks with time duration smaller than the
coherence time of the channel, time interval where the impulse
response of the channel can be considered constant, are free
from the Doppler spread effect. However, if the time required
to transmit a data block overcomes the coherence time of the
multipath channel, the receiver must deal with ISI and Doppler
(or time-varying channel) effects.

Channel equalization is an efficient technique to compensate
ISI. A generic adaptive equalizer is a time-varying filter which
must be constantly returned. Adaptive algorithms perform
the task of equalizing a channel in a step-by-step fashion.
A standard approach to this problem is to minimize some
quadratic criterion involving estimation errors.

Wiener filter theory provides the optimum solution to the
problem whose optimization criterion is the minimization of
the variance of the equalizer error. For time-invariant channels,
the error-performance surface is fixed and the essential
requirement is to seek its minimum point (Wiener solution),
and thereby assure optimum or near-optimum performance
[1]. However, time-varying channels imply time-varying
error-performance surfaces. In this case, the equalizer is also
required to continuously track the channel variations.
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of Ceará, Fortaleza, Brazil, E-mails: fabiano@gtel.ufc.br, mota@deti.ufc.br,
tarcisio@deti.ufc.br.

Fabiano de S. Chaves is scholarship supported by CNPq.

The general operating modes of an adaptive equalizer
include training and tracking. In the training mode, a known,
fixed-length training sequence is sent by the transmitter
so that the receiver’s equalizer may average to a proper
setting through a recursive algorithm. Immediately following
the training sequence, the data sequence is sent and the
equalizer switches to direct-decision operating mode, where
it also utilizes a recursive algorithm to evaluate the channel
and estimate its coefficients to compensate for the channel.
However, in the direct-decision mode, the equalizer utilizes
the decided sequence in the place of a training one.

The formulation of the channel equalization problem in a
state space model provides a close connection with the field
of control and estimation theory, which have been intensively
studied over the last decades. Thus, some of the most
celebrated recursive algorithms used in channel equalization
may be represented in a concise manner, clarifying their own
characteristics and interrelations, and making possible new
approaches.

The exponentially weighted Recursive Least Squares (RLS)
algorithm is one of the most used algorithms in channel
equalization and is based on the minimization of the variance
of the equalizer error, i.e., the H2 estimation. The well known
Kalman filter is the optimum recursive estimator in the least
squares (H2) sense. The connection between the standard
RLS and Kalman filtering theory was shown in [2]. Using
Kalman filtering algorithm, it is assumed that the receiver
knows the statistical properties of the additive white Gaussian
noise (AWGN) and of the uncertainties of the model. Then,
it is possible that the Kalman filter is not robust against any
uncertainty of channel models, that means, small modeling
errors may result in large equalization errors.

Recently, another approach to the estimation problem has
been considered, the H∞ filtering. The aim in H∞ filtering
is to minimize the maximal energy gain from the modeling
errors and noise to the estimation errors. The H∞ criterion
can thus be understood as a worst-case criterion: the estimator
will be robust against the worst possible disturbances. This
is a completely different approach to the estimation problem
compared to the least squares, or H2, approaches that are the
standard tools today [3].

In this work we investigate the behavior of H2 and H∞

equalizers for time-variant channels. Section II gives a brief
discussion on H2 estimation. In Section III we deduce a state
space formulation of the equalization problem and present the
standard (Kalman-based) RLS algorithm. Section IV presents
a brief introduction on H∞ estimation and an H∞ equalizer
model. Simulation results are discussed in Section V and the
conclusions of this work are given in Section VI.
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II. H2 OPTIMAL ESTIMATION

The Kalman filter is known to be the best linear estimator
in the least squares (H2) sense and has been the subject of
extensive research and application for the last decades. It
addresses the general problem of trying to estimate the state of
a discrete-time process that is governed by the linear stochastic
difference equation:

xk+1 = Akxk + Bkpk (1)

using the measure given by the following equation:

yk = Ckxk + vk (2)

where k is a discrete-time index, and xk ∈ R
n, yk ∈ R

m,
pk ∈ R

n, vk ∈ R
m are, respectively, the state vector, the

measurement, the process disturbance and the measurement
noise. The initial state x0 is a random variable with mean x̄0

and covariance
∏

, and Ak, Bk and Ck are known matrices of
appropriate sizes.

The random variables pk and vk are assumed to be
independent, white, and with zero-mean normal probability
distributions:

p(p) ∼ N(0, Q) (3)

p(v) ∼ N(0, R) (4)

It follows a brief discussion about the Kalman filtering
theory that can be found in [1], [2], [3] and [4] with more
details. The Kalman filter estimates a process by using a
feedback control: the filter estimates the process state at
some time and then obtains feedback in the form of (noisy)
measurements. Thus, the equations of Kalman filter fall in
two groups: time update equations and measurement update
equations. The time update equations are responsible for
obtaining the a priori estimates for the next time step. The
measurement update equations provide the feedback, i.e., the
incorporation of new measurements into the a priori estimates
to obtain improved a posteriori estimates.

Consider the process to be estimated represented by (1-4).
In practice, the process disturbance covariance Q and the
measurement noise covariance R matrices might change with
each time step, however here we assume they are constant.
Other definitions are made in Table I.

In deriving the equations for the Kalman filter, we begin
with the goal of finding an equation which computes an a
posteriori state estimate x̂k as a linear combination of an a
priori estimate x̂a

k and the weighted measurement innovation:

x̂k = x̂a
k + Kk

[

yk − Ckx̂a
k

]

x̂a
k = Ak−1x̂k−1

(5)

where the innovation or residual reflects the discrepancy
between the predicted measurement and the actual
measurement.

The matrix Kk ∈ R
nxm is chosen to be the gain factor

(Kalman gain) that minimizes the a posteriori error covariance

TABLE I
DEFINITION OF PARAMETERS

xk state to be estimated
x̂a

k a priori
state estimate

x̂k a posteriori
state estimate

ea

k = xk − x̂a

k a priori
estimate error

ek = xk − x̂k a posteriori
estimate error

P a

k
= E{ea

keaT

k
} a priori estimate

error covariance
Pk = E{ekeT

k
} a posteriori estimate

error covariance

Pk. Then, using (5) and the definitions of Table I, after some
work we may write Pk as a function of Kk:

Pk = P a
k − P a

k CT
k KT

k − KkCkP a
k

+KkCkP a
k CT

k KT
k + KkRKT

k

(6)

where R is the m x m measurement noise covariance matrix.
Taking the derivative of the trace of (6) with respect to Kk,

setting that result equal to zero and solving for Kk, we have
the expression of the Kalman gain:

Kk = P a
k CT

k

[

CkPkCT
k + R

]

−1
(7)

Then, substituting (7) into (6), we obtain also a recursive
expression for the a posteriori estimate error covariance:

Pk = [I − KkCk]P a
k (8)

which obeys a Discrete Riccati Equation (DRE).
The a priori estimate error covariance P a

k can be determined
starting from its definition (Table I):

P a
k = Ak−1Pk−1A

T
k−1 + Bk−1QBT

k−1 (9)

which is a recursive expression and Q is the n x n process
disturbance covariance matrix.

A summary of the Kalman filter equations is given in Table
II.

TABLE II
SUMMARY OF THE DISCRETE KALMAN FILTER ALGORITHM

Time Update Equations
x̂a

k = Ak−1x̂k−1

P a

k
= Ak−1Pk−1AT

k−1
+ Bk−1QBT

k−1

Measurement Update Equations
Kk = P a

k
CT

k

[

CkPkCT

k
+ R

]

−1

x̂k = x̂a

k + Kk

[

yk − Ckx̂a

k

]

Pk = [I − KkCk]P a

k

The Kalman filter provides an efficient computational
recursive solution of the least-square methods, since this
procedure corresponds to the minimization the following
cost-function:



XXI BRAZILIAN SYMPOSIUM ON TELECOMMUNICATIONS - SBT’04, SEPTEMBER 06-09, 2004, BELÉM, PA

J = ||x0 − x̄0||
2
∏

−1 +

N−1
∑

i=0

(

||pi||
2 + ||vi||

2
)

(10)

where ||x0 − x̄0||
2
∏

−1 = (x0 − x̄0)
T ∏

−1
(x0 − x̄0).

III. STATE SPACE FORMULATION OF THE EQUALIZATION
PROBLEM AND KALMAN EQUALIZER

The state space approach to the equalization problem
consists on to estimate the state vector of tap coefficients of
the equalizer.

Fig. 1. Baseband communication scheme.

A block-diagram of the baseband communication scheme
is shown in Fig. 1. In the following, no delay is assumed
for simplicity. The transmitted message d at time step k is
composed by a sequence of symbols that belong to a finite set,
dk = [dk, · · · , dk−M+2, dk−M+1]

T , where M is the number
of tap coefficients of the equalizer. We consider a time-varying
channel whose impulse response is modeled by a tapped-delay
line with c components, hk = [h1

k, h2
k, · · · , hc

k]T . Each tap
corresponds to an independent random process.

The optimum equalizer for time-varying channels is also
time-varying. Its impulse response at time step k is given by
wk = [w1

k, w2
k, · · · , wM

k ]T . We model the optimum equalizer
as a first-order Markov process:

wk+1 = wk + qk (11)

where qk is the process noise vector due to the uncertainty
relative to the time-variance of the channel. The process noise
vector is assumed to be a zero mean, white, Gaussian random
variable, with correlation matrix Q.

The output signal of the equalizer at instant k, d̂k, is the
estimate of the transmitted signal dk. It is a result of the
convolution between the input signals vector of the equalizer
and its tap coefficients:

d̂k = uT
k wk (12)

where the input signals vector of the equalizer is uk =
[uk, · · · , uk−M+2, uk−M+1]

T .
We can rearrange (12) in order to express the transmitted

signal dk as a function of the optimum equalizer tap
coefficients. Indeed, the signal input of the equalizer at instant
i, ui, for i = k − M + 1, · · · , k, is the convolution between
the transmitted message di and the channel impulse response
hi added by a sample of a zero-mean white Gaussian noise,
ni:

ui = dT
i hi + ni (13)

Then, since the optimum equalizer removes ISI completely,
from (12) and (13) we have as output of the optimum equalizer
the transmitted signal dk added by a sum r of M random
variables, which are scaled versions of the AWGN at the
receiver:

rk = nT
k wk (14)

where nk = [nk, · · · , nk−M+2, nk−M+1]
T .

Thus:

dk = uT
k wk − rk (15)

The Kalman equalizer is composed by the process equation
(11) and the measurement equation (15). Kalman filtering
theory assumes zero-mean white Gaussian noises, what is
assured for the process noise in (11) by the adopted model
itself, but not for the measurement noise in (15).

Using (14), the measurement noise can be rewritten as:

rk = nkw1
k + · · · + nk−M+1w

M
k (16)

Invoking the Central-Limit Theorem, the density of a
random variable composed by a sum of n random variables,
independently of any probabilistic considerations, approaches
a normal curve as n increases. If the densities are reasonably
concentrated, then a normal curve is a close approximation to
the density even for moderate values of n [5].

Thus, we conclude that rk can be considered a Gaussian
random variable. Furthermore, since ni is a sample of a
zero-mean white Gaussian noise and is independent from
wk−i+1

k , for i = k−M +1, · · · , k, each term on the right side
of (16) is a zero-mean white random variable. Then, rk is a
zero-mean white Gaussian random variable, even for moderate
number of tap coefficients of the equalizer.

Therefore, we write the process equation (17) and the
measurement equation (18) of the Kalman equalizer:

wk+1 = wk + qk (17)

dk = uT
k wk + rk (18)

The standard RLS algorithm is a special case of Kalman
filter application, as shown in [2], with measurement noise
variance R set 1, and with the following process and
measurement equations:

wk+1 = λ−1/2wk (19)

dk = uT
k wk + rk (20)

where w is the vector coefficients of the equalizer, 0 � λ ≤ 1
is the forgetting factor, d is the transmitted signal and u is the
input signals vector of the equalizer.

Note that the process disturbance covariance matrix Q is
assumed zero. Then, the forgetting factor in the standard RLS
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algorithm is the unique responsible for tracking the variations
of the channel, which are reproduced in the tap coefficients of
the equalizer.

IV. H∞ OPTIMAL ESTIMATION

The H∞ filters are interesting alternatives to the famed
Kalman filter in most estimation problems. As we shall see,
the filter equations are very similar despite that the underlying
ideas are completely different.

The optimality of the Kalman filter relies on the knowledge
of the covariance matrices Q and R. In most real-world
applications this kind of a priori information is not available
and one has to use ad hoc choices of Q and R. Then, this filter
is not guaranteed to achieve a certain level of performance.
The H∞ filters, on the other hand, gives hard upper bounds
on the estimation errors, independently of the disturbances
distributions. It follows an introductory discussion about H∞

estimation that can be found in [3], [6] and [7] with more
details. We define || g ||S =

(

gT Sg
)

1

2 for a vector g and a
symmetric matrix S.

Consider the linear discrete-time system described by:

xk+1 = Akxk + Bkpk (21)

yk = Ckxk + Dkvk (22)

zk = Lkxk (23)

where xk ∈ R
n, yk ∈ R

m, zk ∈ R
n, pk ∈ R

n and vk ∈ R
m

are, respectively, the state vector, the measurement, the vector
to be estimated, the process disturbance and the measurement
noise. The initial state x0 is an unknown quantity, and Ak,
Bk, Ck, Dk and Lk are known matrices of appropriate sizes.
Moreover, we assume that Rk := DkDT

k > 0 holds for any k

and that Ak is nonsingular.
Note that pk and vk are unknown and arbitrary L2[0, N ]

signals. Further, an a priori estimate of the initial state x0 is
given by x̄0.

Optimal H∞ Problem

Find the estimator ẑi that minimize the H∞ norm of the
transfer operator from disturbances to prediction error, and
obtain:

γ2
o = inf

ẑi

sup
x0,p,v

∑N
i=0

||zi − ẑi||
2

||x0 − x̄0||2∏−1 +
∑N−1

i=0
(||pi||2 + ||vi||2)

(24)
where

∏

is a positive definite weighting matrix which
represents the uncertainty of the initial state.

Closed form solutions to the optimal H∞ problem are
available only in some special cases and it is common to settle
for a sub-optimal solution.

Sub-optimal H∞ Problem

Given γ > 0, find estimation strategies that achieve

sup
x0,p,v

∑N
i=0

||zi − ẑi||
2

||x0 − x̄0||2∏−1 +
∑N−1

i=0
(||pi||2 + ||vi||2)

< γ2 (25)

The H∞ filtering problem has been solved from different
viewpoints. The minimaximization problem can be solved by
using a game theory approach, as shown in [6] and [8].

The solution to the sub-optimal H∞ problem is stated in
the following theorem, whose proof is given in [6]:

Theorem 1: There exist x̂k and ẑk satisfying (25) if, and
only if,

(i) There exists a matrix Pk > 0 satisfying

Pk+1 = AkPkΣ−1

k AT
k + BkBT

k (26)

Σk = In +
(

CT
k R−1

k Ck − γ−2LT
k Lk

)

Pk (27)

where P0 =
∏

.

(ii)Vk := γ2In−LkPk

(

In + CT
k R−1

k CkPk

)

−1
LT

k > 0 (28)

If this is the case, an H∞ filter achieving (25) is given by

ẑk = Lkx̂k (29)

x̂k+1 = Akx̂k + Kk [yk − Ckx̂k] (30)

where

Kk = PkCT
k

[

Rk + CkPkCT
k

]

−1
(31)

This filter is the central level-γ H∞ a priori filter. Statistical
properties of noise and uncertainties of the model are not
known here. Although the performance of an H∞ equalizer
may be worse than that of Kalman filtering-based ones for
some scenarios, its robustness is an interesting characteristic
for hostile environments.

The factor γ determines the upper bound of the transfer
function from noise and uncertainties to the estimate error,
as stated by (25). Note that if γ tends to infinite, (25) tends
to the cost-function (10), that is, the H∞ filter becomes a
Kalman filter. On the other hand, low values of γ correspond
to hard restrictions on the gain of the estimate error due to
noise and uncertainties. Therefore, the tradeoff between error
performances, as the Mean Squared Error (MSE) and BER,
and robustness in the H∞ filtering is represented by the factor
γ.
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V. SIMULATION RESULTS

Using a linear equalizer, the standard RLS algorithm is
implemented as described in Section III, with process and
measurement equations (19) and (20), respectively, while the
design of the H∞ equalizer follows Section IV statements.
MSE and BER performances are evaluated.

We consider the frequency-selective (two paths) Rayleigh
(worst-case) fading channel in a mobile wireless network,
encountered when there is not a strongly dominant path and
the communication link is heavily shadowed. Typical values
of rms delay spread for urban outdoor environments and of
symbol time are chosen, 4 µs and 10 µs. These settings imply
in a channel coherence bandwidth of approximately 47 kHz.
Signal bandwidth, W (kHz) equals bit rate Rb = 100 kbps,
surpasses the channel coherence bandwidth. This indicates the
need for combating ISI.

In order to simulate the channel, an independent Rayleigh
fading gain for each of both channel taps is generated.
BPSK is the assumed modulation and we used a 2 GHz
carrier frequency. A vehicular speed of 30 m/s is considered,
with the corresponding Doppler shift fd = 200 Hz. Thus,
approximately 250 bits are received in the coherence time
interval. Furthermore, fast-fading is simulated following the
Jakes’ model [9].

A signal-to-noise ratio (SNR) of 40 dB at the receiver input
is considered. The high SNR level is chosen in order to make
the thermal noise effect on the estimation errors worthless,
giving place to effects of the uncertainties of the model on the
estimation errors. We perform the transmission/reception of
3000 bits corresponding to 12 coherence times. The equalizers
initialize in training mode with their 11 tap coefficients set to
zero and switch to the direct decision mode after the first
250 bits, tracking the channel. The training mode period is
sufficient to convergence of the algorithms and the replica of
the desired response is generated locally in the receiver.

Considering the same state space model for both
approaches, it holds the following settings in (21-23) for the
H∞ one:

Ak = λ−1/2IM

Bk = 0

Dk = 1

Lk = IM

(32)

where IM is the M x M identity matrix, with M as the number
of tap coefficients of the equalizer.

Setting pk equal to zero and λ equal to 1 in (19) and
(21), respectively, is a good assumption, since it can be
considered that the tap coefficients of the equalizers do not
change between two consecutive time instants for slow fading
channels.

Fig. 2 shows the BER performance of the standard RLS
algorithm and of the H∞ algorithm for some different values
of the parameter γ. It is clearly observable that the higher
the parameter γ is, the nearer is its performance from that of
the RLS algorithm. Thus, the RLS algorithm outperforms the
different H∞ equalizers in terms of BER.

5 10 15 20
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H infinite 
RLS

PSfrag replacements

γ

B
E

R

Fig. 2. Average BER for RLS and (noise sensitive) H∞ filtering algorithms.

It is also important to emphasize the hard conflict between
robustness and error performance for the experimented H∞

equalizer. Its robustness, i.e., low γ values, implies in
a poor BER performance. Moreover, another undesirable
characteristic of this H∞ equalizer is its very poor
performance in terms of MSE.
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Fig. 3. Average BER for RLS and (noise insensitive) H∞ filtering
algorithms.

In order to improve the error performances of the H∞

equalizers, we assume a different value for Dk in the state
space model presented in (32). We set Dk equal to 0.01. This
new approach for the H∞ equalizers is less sensitive with
respect to the measurement noise. Fig. 3 illustrates the new
BER curves.

In addition, the MSE behavior for the new H∞ equalizer
is comparable to that of the H2 approach, as shown in Fig.
4. Therefore, in this case, the H∞ equalizer provides good
performance in terms of estimation errors and guarantees high
level robustness, due to low γ values.
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Fig. 4. Average MSE for RLS and (noise insensitive) H∞ filtering
algorithms.

Some aspects in the presented computational simulations
deserve comments, since so high values of error performances
(MSE and BER) for an SNR of 40 dB must have been not
expected and could suggest the algorithms are not appropriate.
First, a hard scenario was considered, with high Doppler
shift due to high receiver speed, where a long sequence
of bits is transmitted and only at the beginning a training
sequence is used. Furthermore, the simplified communication
scheme has not considered channel coding and we have
used linear equalizers, which are simple, but not the best
ones in terms of performance on mitigating ISI. For both
approaches, non-linear equalizers, as the Decision-Feedback
Equalizers (DFEs), could be used in order to obtain better
error performances.

VI. CONCLUSIONS

The classical Kalman filtering theory (H2 estimation) and
the H∞ estimation theory were briefly discussed and their

main results were presented. A state space formulation to
the equalization problem was deduced and the structure
of the standard (Kalman-based) RLS algorithm and of the
H∞ algorithm were presented in order to equalize outdoor
dispersive fading channels.

The H∞ filtering algorithm minimizes the effect of the
worst disturbance (both measurement noise and modeling
error) on the estimation error. It has been shown through
simulations that as γ approaches infinite, the H∞ filtering
algorithm converges to the RLS algorithm. The state space
model of the H∞ filter was modified in order to make its error
performances comparable with those of the RLS algorithm,
while providing a high level of robustness with low values of
the parameter γ.
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