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Abstract— Game theory is a set of mathematical tools suitable
to the modeling and optimization of problems involving agents
with conflicting interests competing for limited resources. It
applies well for a number of problems in wireless communication,
including power control. In this work, some basic concepts on
game theory are presented and the power control problem in
wireless data systems is approached as a noncooperative game.
Finally, a new distributed power control algorithm based on
the game theory is developed and compared to the classical
distributed power control.

Keywords— Power control, noncooperative game theory,
energy efficiency.

I. INTRODUCTION

GAME theory is a tool for analyzing the interaction
of decision makers with conflicting objectives and

limited resources. Economists have long used it as a tool for
examining the actions of economic agents such as firms in the
market. In recent years, it has been applied to problems in
wireless communication, mainly to the power control problem
[1], [2], [3].

The basic unit of game theory is the game, which has three
basic elements: a set of players, a set of possible actions for
each player, and a set of cost functions mapping action profiles
into real numbers. The set of possible actions for each player
is called strategy space and the concept of cost function refers
to the pay back of the player as a result of its actions. Utility
functions take the place of cost functions when one refers to
satisfaction measures of players instead of their pay back.

In power-controlled wireless communication systems,
each transmitter usually tries to provide a determined
signal-to-interference-plus-noise ratio (SINR) to its
correspondent receiver. Determining the target SINR is
usually a task of an outer loop power control, which is slower
than the inner loop one. A fast outer loop power control
might improve the energy efficiency of the system, hence the
power could be appropriately allocated.

Most previous works relative to the power control problem
formulated as a game consider a unique SINR level to be
targeted by each transmitter/receiver pair. Furthermore, with
respect to the utility functions, they fall in two classes: those
dependent only on intrinsic properties of the channel (SINR,
transmit power) [3] and those dependent also on lower layer
decisions such as modulation and coding [1], [2].

In this work we also study the application of game theory
to the decentralized power control problem in a wireless data
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system. We formulate the problem as a noncooperative game
with the following basic elements: the transmitters constitute
the set of players; the action of each player is to adjust its
transmit power; and the cost function is the squared error
between the target and the actual SINR values. In this game,
each player adjusts its transmit power aiming to minimize its
cost function. Therefore, the cost function is not dependent on
system parameters.

After a brief introduction to noncooperative games, we
show, in Section II, that the solution to the power control game
whose cost function is the squared error between a fixed target
SINR and the actual SINR corresponds to the well-known
Distributed Power Control algorithm (DPC) [4]. In Section
III we propose a new decentralized power control algorithm,
which simultaneously performs the choice of the best target
SINR value and minimizes the squared error between the target
and the actual SINR. Convergence properties of the proposed
algorithm are demonstrated. Simulation results are discussed
in Section IV and the conclusions of this work are given in
Section V.

II. DISTRIBUTED POWER CONTROL ALGORITHM

Noncooperative games are characterized by players that act
based only on their own strategy space, without information
about the strategy of the other players. However, in games
with two or more stages, where players act more than once,
their actions are also based on the current state of the game,
which is provided by the previous actions of all players. Then,
since time plays a role, these games are considered dynamic
games.

A game where the gains of a player represent losses to the
other players is called a zero-sum game. In zero-sum games, as
the name suggests, the sum of the cost functions of all players
is identically zero. Even if this sum is equal to a nonzero
constant, the game can be treated within the framework of
zero-sum games without any loss of generality. However, in
other cases, the gains of a player do not correspond to losses
to the other players, i.e., the sum of the cost functions of all
players is not a constant. Such games are called nonzero-sum
games. A detailed discussion about noncooperative games can
be found in [5].

We denote GK = [N, {Pj}, {cj}] the dynamic
noncooperative nonzero-sum power control game with
K stages, where each stage k corresponds to an actuation
of the power control algorithm, which is discrete and has
k as its discrete time index. The transmitters constitute the
set of players, with N = {1, 2, ..., n} as their index set; the
continuous set of power values Pj = [pmin, pmax] is the
strategy set of player j; and cj is the cost function of player
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j, j ∈ N . We emphasize that the jth player has control only
over its own power pj , which is selected such that pj ∈ Pj .
The power vector p(k) = [p1(k), ..., pn(k)] ∈ P is the
outcome of the stage k of the game in terms of the selected
power levels of all the players, where P = P1 × · · · × Pn.
The vector consisting of the elements of p(k) other than the
jth element is denoted by p

−j(k).
This game has a feedback information structure, since at

each actuation of the power control, the players know exactly
the current state of the game and this information is fed back
into their strategies. Thus, we can define the game as follows:

min
pj(k+1)∈Pj

cj

(

pj(k + 1), p
−j(k + 1)

)

=

|γt − γj(k + 1)|2
(1)

where γt is a fixed target SINR and γj(k + 1) is the SINR of
player j at the time instant k + 1, expressed as:

γj(k + 1) =
pj(k + 1)gj(k + 1)

Ij(k + 1)
(2)

where gj(k + 1) is the channel gain and Ij(k + 1) is the
interference-plus-noise perceived by the receiver j, that is:

Ij(k + 1) =
n

∑

i=1

(pi(k + 1)gi(k + 1)) + σ2, i 6= j (3)

where σ2 is the average AWGN power.
Then, at the time instant k, each player has as objective

to determine its own power level at the next time instant,
in such a manner that the squared error between the target
and the actual SINRs is minimized. Note that the channel
gain and the interference-plus-noise power have positive
and continuous values. Furthermore, the transmit power that
optimizes individual cost function depends on the transmit
powers of all other transmitters. Therefore, it is necessary to
determine a set of powers where each player is satisfied with
the cost that it has to pay, given the power selections of other
players. Such an operating point is called an equilibrium.

A suitable solution to this problem is the Nash Equilibrium
Point. The Nash Equilibrium concept offers a predictable,
stable outcome of a game where multiple agents with
conflicting interests compete through self-optimization and
reach a point where no player wishes to deviate from.
Formally, a power vector p∗(k) = [p∗1(k), ..., p∗n(k)] is a Nash
Equilibrium Point of GK if, for each j ∈ N , it holds:

cj

(

p∗j (k + 1), p∗

−j(k + 1)
)

≤ cj

(

pj(k + 1), p∗

−j(k + 1)
)

(4)

Existence and Uniqueness of GK Equilibrium
Necessary and sufficient conditions for the existence of a

Nash Equilibrium Solution are given by Theorem 1.
Theorem 1: For each j ∈ N let Pj be a closed, bounded

and convex subset of a finite-dimensional Euclidian space, and
the cost functional cj : P1 × · · · × Pn −→ R be jointly
continuous in all its arguments and strictly convex in pj for

every pi ∈ Pi, i 6= j. Then, the associated nonzero-sum game
admits a Nash Equilibrium.

A proof of the theorem can be found in [5]. The strategy
set Pj = [pmin, pmax] is a closed, bounded and convex subset
of the Euclidian space R, for all j. Thus, in order to prove
the existence of a Nash Equilibrium Solution to the presented
nonzero-sum game, it is necessary to verify the continuity of
the cost function cj with respect to all its arguments and if it
is strictly convex in pj for all pi ∈ Pi, i ∈ N , i 6= j. Then,
from (1) and (2), we have:

cj = γt2−2γt

[

gj(k + 1)

Ij(k + 1)

]

pj(k+1)+

[

gj(k + 1)

Ij(k + 1)

]2

p2
j (k+1)

(5)
We conclude from (3) and (5) that the cost function cj is

continuous with respect to all its arguments. The cost function
strict convexity is considered in the following.

Nash Equilibrium Point of GK

The necessary optimality condition for a differentiable
function is that its first-order derivative be equal to zero. The
partial derivative of the cost function cj with respect to pj is
given below:

∂cj

∂pj(k + 1)
= −2γt

[

gj(k + 1)

Ij(k + 1)

]

+2

[

gj(k + 1)

Ij(k + 1)

]2

pj(k +1)

(6)

∂cj

∂pj(k + 1)
= 0 =⇒ pj(k + 1) = γt Ij(k + 1)

gj(k + 1)
(7)

The sufficient optimality condition for a two-time
differentiable function is that its second-order derivative be
different from zero. The second-order partial derivative of cj

with respect to pj is shown below to be strictly positive. Then,
the strict convexity of cj is formally guaranteed:

∂2cj

∂p2
j (k + 1)

= 2

[

gj(k + 1)

Ij(k + 1)

]2

> 0 (8)

Therefore, the presented game admits a unique Nash
Equilibrium Solution, given by (7). Although, (8) guarantees
that this solution minimizes the cost function cj for all j ∈ N .

However, in practice, values of channel gain and
interference-plus-noise power at time instant k + 1 are not
available at the time instant k. If we consider a high power
control actuation frequency, we may have the following
approximation:

gj(k + 1)

Ij(k + 1)
≈

gj(k)

Ij(k)
(9)

Then, using (7) and (9), in logarithmic scale, we obtain:

pj(k + 1)dBm = pj(k)dBm + γt
dB − γj(k)dB (10)

Therefore, the decentralized power control problem
formulated as a noncooperative game, where each player has
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as objective to minimize the squared error between the target
and the actual SINRs, presents as Nash Equilibrium Solution
the well-known Distributed Power Control algorithm (10).

III. PROPOSED POWER CONTROL ALGORITHM

The classical DPC is originally a target SINR tracking
power control algorithm which deals with all transmitters
equally, i.e., it does not consider individual resources
situation on determining the SINR to be achieved by each
transmitter/receiver pair. It is an inner loop power control
algorithm, where each transmitter tries to provide a unique
SINR to its correspondent receiver. This approach may result
in an inefficient power allocation, since there is not flexibility
that would allow links in bad situation to aim at a lower SINR
and links in favorable situation to reach a higher SINR, except
if there is an outer loop.

We propose a new distributed power control algorithm
which considers each link individually, providing to each one a
suitable SINR to be targeted at each power control actuation. It
is important to emphasize that the proposed algorithm requires
exactly the same feedback information that the classical DPC
does, thus not demanding any extra resource.

The decentralized power control problem is once more
formulated as a dynamic noncooperative nonzero-sum
power control game with K stages, now denoted
HK = [N, {Pj}, {cj}]. However, it differs from the
presented GK on the target SINR, as follows:

min
pj(k+1)∈Pj

cj

(

pj(k + 1), p
−j(k + 1)

)

=

|γt
j(k + 1) − γj(k + 1)|2

(11)

where γt
j(k + 1) is the target SINR and γj(k + 1), defined in

(2), is the actual SINR of player j at the time instant k + 1.
It is necessary a rule for the choice of the SINR to be

targeted by each link. A good policy must consider the power
level required to achieve such a SINR, as in [6]. In order
to keep the power control system stable, we have considered
the following simple and logical rule: the target SINR is
a continuous linear function of the transmit power, both in
logarithmic scale. Thus:

γt
j(k + 1)dB = A − Bpj(k + 1)dBm (12)

where A and B are positive parameters that can be defined
using the extreme points of the straight line:

(

pdBm
min , γt

max
dB

)

and
(

pdBm
max , γt

min
dB

)

. Fig. 1 illustrates the rule for the choice
of the target SINR of each player j.

Thus, parameters A and B are expressed as:

A = γt
min

dB
+





γt
max

dB
− γt

min
dB

1 −
pdBm

min

pdBm
max



 (13)

B =
γt

max
dB

− γt
min

dB

pdBm
max − pdBm

min

(14)

Then, at time instant k, each player has as objective
to determine, simultaneously, its target SINR and its own

PSfrag replacements SI
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R
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B
]

Power [dBm]

γt
max

dB

γt
min

dB

pdBm
max

pdBm
min

Fig. 1. Target SINR as a function of the transmit power.

power level for the next time instant, in such a manner that
the squared error between the target and actual SINRs is
minimized. This approach may provide a safe SINR evolution
to all players, since the extreme possible values of the SINR
to be targeted can be chosen higher than a threshold SINR,
which corresponds to the minimum operating point required.
We have chosen a linear function of transmit power as a rule
for the target SINR for simplicity. Other kind of functions may
be used and this is an interesting point for future works.

The same assumptions considered in GK relative to channel
gain and interference-plus-noise power hold in HK . Here, the
Nash Equilibrium Point is also a suitable solution.

Existence and Uniqueness of HK Equilibrium
Invoking Theorem 1, we have the necessary and sufficient

conditions for the existence of a Nash Equilibrium Solution.
As in GK , the strategy set Pj = [pmin, pmax] is a closed,
bounded and convex subset of the Euclidian space R, for all
j. Thus, the existence of a unique Nash Equilibrium Point
depends on the continuity of the cost function cj with respect
to all its arguments and on its strict convexity in pj for all
pi ∈ Pi, i ∈ N , i 6= j.

In order to have the cost function expression of player j,
j ∈ N , explicitly as a function of all power choices, we obtain
from (12) the relation between the target SINR and the power
level of player j in linear scale, and use it in (11):

γt
j(k + 1) =

(

10A/10
)

p−B
j (k + 1) (15)

The cost function of player j becomes:

cj = Xp−2B
j (k + 1) − Y p−B+1

j (k + 1) + Zp2
j (k + 1) (16)

with:

X = 102A/10

Y = 2
(

10A/10
)

[

gj(k + 1)

Ij(k + 1)

]

Z =

[

gj(k + 1)

Ij(k + 1)

]2

(17)
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Note that X is constant and Y and Z are continuous.
Then, analyzing (16) we guarantee that the cost function cj

is continuous with respect to all its arguments if, and only
if pj(k + 1) 6= 0, j ∈ N . Then, by defining pmin > 0 the
continuity of the cost function is assured. Moreover, negative
power values are unfeasible. Conditions for cost function strict
convexity are met in the following.

Nash Equilibrium Point of HK

The necessary optimality condition for a differentiable
function is that its first-order derivative be equal to zero. The
partial derivative of the cost function cj with respect to pj is
given below:

∂cj

∂pj(k + 1)
=

−2BXp−2B−1
j (k + 1) − Y (−B + 1) p−B

j (k + 1)

+2Zpj(k + 1) = 0

(18)

pj(k + 1){[−2BX] p
−2(B+1)
j (k + 1)+

[−Y (−B + 1)] p
−(B+1)
j (k + 1) + 2Z} = 0

(19)

where pj(k+1) = 0 is not a feasible outcome, since continuity
condition implies pmin > 0. Thus:

[−2BX] p
−2(B+1)
j (k + 1)+

[−Y (−B + 1)] p
−(B+1)
j (k + 1) + 2Z = 0

(20)

We rewrite (20) as a quadratic function of the variable F ,
through the following change of variable:

p
−(B+1)
j (k + 1) = F (21)

[−2BX]F 2 + [−Y (−B + 1)] F + 2Z = 0 (22)

Solving (22) in F and returning to variable pj(k + 1) by
using (21), we obtain the Nash Equilibrium Point, since it
holds pj(k + 1) > 0 for all j ∈ N . In logarithmic scale, it is
expressed as follows:

pj(k + 1)dBm =
1

B + 1

[

A + Ij(k + 1)dBm − gj(k + 1)dB

]

(23)
The sufficient optimality condition for a two-time

differentiable function is that its second-order derivative be
different from zero. The second-order partial derivative of cj

with respect to pj is given below:

∂2cj

∂p2
j (k + 1)

=
[

4B2X + 2BX
]

p
−2(B+1)
j (k + 1)+

[Y B(1 − B)] p
−(B+1)
j (k + 1) + 2Z

(24)

where X,Y, Z,B > 0.
Using (21) once more, (24) can be rewritten as a quadratic

function of the variable F :

∂2cj

∂p2
j (k + 1)

=
[

4B2X + 2BX
]

F 2+

[Y B(1 − B)]F + 2Z

(25)

whose minimum value ε is given by:

ε = −
[Y B(1 − B)]

2
− 4

[

4B2X + 2BX
]

2Z

4 [4B2X + 2BX]
(26)

Making ε > 0 we guarantee that the second-order derivative
of the cost function cj is strictly positive, and obtain the
following inequality:

B3 < 2B2 + 7B + 4 =⇒ B < 4 (27)

Then, the constraints 0 < B < 4 assure the strict convexity
of the cost function cj defined in the subset [pmin, pmax] ∈ R,
with pmin > 0. Furthermore, they correspond to the following
practical constraints:

0 < γt
max

dB
− γt

min
dB

< 4
[

pdBm
max − pdBm

min

]

(28)

Therefore, the proposed game admits a unique Nash
Equilibrium Solution given by (23). Minimization of the cost
function cj for all j ∈ N is guaranteed if (28) holds.

However, as discussed in Section II, we assume a fast power
control actuation (9). It means that (23) can be rewritten as:

pj(k + 1)dBm =
1

B + 1

[

A + Ij(k)dBm − gj(k)dB

]

(29)

If pj(k)dBm is added and subtracted on the right side of
the last equation, we do not alter the equality and can finally
present the proposed algorithm:

pj(k + 1)dBm =
1

B + 1

[

A + pj(k)dBm − γj(k)dB

]

(30)

with A and B defined in (13) and (14), respectively.
It can be observed that if γt

max
dB and γt

min
dB tend to a

unique value γt
dB , parameters A and B tend, respectively,

to γt
dB and 0. It means that if the flexibility on the SINR

to be targeted decreases, the proposed algorithm tends to the
classical DPC.

IV. RESULTS

In order to evaluate the proposed power control algorithm,
we considered a set of co-channel base stations transmitting
at the downlink.

We implemented a simulator consisting of trisectorized base
stations arranged on a cellular grid according to a 1/3 reuse
pattern. Base stations are located at the corner of the sectors.
The sector antenna radiation pattern employed is ideal, with
main-lobe gain of 0dBi and gain outside the sector of -200dBi.
Mobile stations are uniformly distributed over the cell area.

A simplified path loss model is considered, PL(d) =
PL(d0) + 10nlog10(d/d0), with the loss exponent set to 4
and with a loss of 120 dB at the cell edge (1 kilometer
of distance to the base station). Shadowing is modeled as
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a log-normal random variable with zero mean and 6 dB of
standard deviation. Fast fading is implemented following the
Jakes’ model [7], with a Doppler shift of 18.5 Hz, due to
the operation frequency of 2GHz and the mobile speed of 10
km/h.

In each snapshot, the power control actuation frequency is
1kHz and up to 600 iterations of the power control algorithm
are performed. Other important simulation parameters are the
thermal noise power, the maximum transmit power and the
minimum transmit power, respectively assumed -110 dBm, 35
dBm and -70 dBm.

Fig. 2 shows a sample of the SINR evolution achieved by a
given user in a typical snapshot for both algorithms. For DPC
we set two target SINR values, 10 dB and 25 dB, while for the
proposed algorithm we have two continuous sets of possible
values for the target SINR, [8, 30] dB and [8, 60] dB. In this
case, three mobile stations are placed in the cell grid and the
same system configuration and fading realizations are used for
all approaches.

50 100 150 200
0

5

10

15

20

25

30

DPC 25 dB
Proposed [8, 60] dB
Proposed [8, 30] dB
DPC 10 dBPSfrag replacements

SI
N

R
[d

B
]

Time [ms]

Fig. 2. Sample of SINR evolution for the evaluated power control algorithms.

It is clearly observable that the proposed algorithm achieves
intermediate SINRs relative to those of DPC in both
approaches. Achieving high SINRs requires high power levels,
that means high energy consumption. However, the absolute
power level, individually, is not a suitable performance
parameter to power-controlled systems.

Energy efficiency has been one of the most important
aspects in the power control research field. In order to evaluate
the energy efficiency of the proposed algorithm compared to
DPC, we adopt a simplified radio link quality to data rate
model used in [8] for EGPRS systems. Such model maps the
SINR into the data throughput as follows:

R̄ = 2γ̄ (31)

where R̄ is the average throughput and γ̄ is the average SINR.
Table I shows the energy efficiency values for the user

whose SINR evolution is shown in Fig. 2. The proposed
algorithm presents higher efficiency than DPC for both
approaches.

TABLE I
ENERGY EFFICIENCY OF THE APPROACHES SHOWN IN FIG. 2.

Algorithm Energy Efficiency
DPC γ

t = 25 dB 2317 kbits/Joule
DPC γ

t = 10 dB 2317 kbits/Joule
Proposed γ

t
∈ [8, 30] dB 2661 kbits/Joule

Proposed γ
t
∈ [8, 60] dB 3048 kbits/Joule

In order to evaluate the system-level advantage of the
proposed algorithm over the DPC, we simulated 10000
snapshots for all system loads. The target SINR for the
DPC algorithm was set in such a manner that it provides
approximately the same average throughput achieved by the
proposed algorithm for each system load. The following two
approaches were considered, as can be seen in Fig. 3.

Approach 1: γt ∈ [8, 30] dB
Approach 2: γt ∈ [8, 60] dB.
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Fig. 3. Data throughput for all system loads.

The performance of the algorithms relative to energy
efficiency is illustrated in Fig. 4. For both approaches, the
proposed algorithm presents higher efficiency than DPC.
As expected, lower flexibility on the SINR to be targeted
implies in an approximation between the proposed and DPC
algorithms. This can be clearly verified in the referred figure
where the curves of both algorithms are nearer from each other
in the Approach 1 than in the Approach 2.

It is important to observe the gain in the average data
throughput provided by the proposed algorithm over the DPC.
Fig. 5 shows that for high loads (4 or more transmitters), the
DPC on Approach 1 and the proposed algorithm on Approach
2 operate with comparable average transmit power levels.
However the proposed algorithm provides a considerably
higher average throughput on Approach 2 than the DPC on
Approach 1, as illustrated in Fig. 3.

Another interesting result we have obtained, which
emphasizes the higher performance of the proposed algorithm
relative to DPC refers to the ability of attaining an SINR equal
or superior to the minimum radio link quality required. This
ability is illustrated in Fig. 6.

In practical systems, there exists a threshold SINR,
which corresponds to the minimum operating point required.
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Fig. 4. Energy efficiency for both approaches.
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Fig. 5. Transmit power for both approaches.
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Fig. 6. Averaged fraction of time in which the SINR is 1 dB below the
threshold SINR for both approaches.

Difficulties on keeping the SINR above the threshold value

are common, specially for high system loads. Therefore, we
assume a SINR margin below the threshold SINR at which the
signal quality is still assumed acceptable. Then, we calculate
the average fraction of time in which the SINR is 1 dB below
the threshold, considered 8 dB. In other words, this 1 dB
difference between the threshold and the minimum acceptable
quality can be thought as a protection margin. In Fig. 6,
the robustness of the proposed algorithm with respect to the
guarantee of the minimum operational requirements for high
system loads and increased average data throughputs can be
observed.

Therefore, the proposed algorithm has been shown more
efficient in terms of energy than the conventional DPC for all
system loads and more robust against providing insufficient
radio link quality, specially for high system loads and
increased average data throughput requirements. Furthermore,
it does not require, a priori, an outer loop algorithm to set up
the target SINR values.

V. CONCLUSIONS

The formulation of the fixed target SINR power control
problem as a dynamic noncooperative game was presented in
this work. It was found as its Nash Equilibrium Solution the
conventional Distributed Power Control algorithm.

A new energy efficient distributed power control algorithm
was derived from the formulation of the power control problem
as a dynamic noncooperative game with the target SINR
defined as a linear function of the transmit power. Through
the Nash Equilibrium Point, the proposed algorithm performs
the choice of the best SINR to be targeted for each link and
promotes its tracking simultaneously.

The new distributed power control algorithm was compared
to the conventional DPC with respect to energy efficiency
and guarantee of a minimum SINR through computational
simulations and it has outperformed the DPC in both aspects.
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