
XXI SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES-SBT’04, 06-09 DE SETEMBRO DE 2004, BELÉM, PA

A New Multiple Order Multichannel Fast QRD
Algorithm and its Application to Non-linear

System Identification
António L. L. Ramos and José A. Apolinário Jr.

Abstract— Multichannel versions of the Fast QRD–RLS
algorithms have been mostly addressed in the literature for
channels of equal orders. However, in many applications,
such as in the case of the Volterra filtering problem,
one has to deal with channels of unequal orders. This,
along with the fact that the Fast QRD–RLS algorithms
based on backward prediction errors are well known for
their good numerical behavior and low complexity, has
motivated the development of multichannel Fast QRD–
RLS algorithms that cope with these cases. This paper
presents a new multichannel Fast QRD–RLS algorithm
based on a posteriori backward error updating, comprising
scalar operations only, that attains both cases of equal and
unequal channel orders.

I. INTRODUCTION

Digital processing of multichannel signals using
adaptive filters has recently found a variety of new
applications including color image processing, multi-
spectral remote sensing imagery, biomedicine, chan-
nel equalization, stereophonic echo cancellation, mul-
tidimensional signal processing, Volterra–type non-
linear system identification, and speech enhance-
ment [1]. This increased number of applications has
spawned a renewed interest in efficient multichannel
algorithms. One class of algorithms, known as multi-
channel Fast QRD-RLS adaptive algorithms based on
backward errors updating [2], [3], has become an attrac-
tive option because of their fast convergence and reduced
computational complexity.

Unified formulations of Fast QRD-RLS algorithms
are available in [4], for the single channel case, and
in [5], for the multichannel case. In this paper, a new
multiple order Multichannel Fast QRD-RLS algorithm is
developed from the fixed order multichannel algorithm
recently proposed in [6], using an approach similar to

The authors thank CAPES, FAPERJ, and CNPq for partial funding
of this paper.

A. L. L. Ramos and J. A. Apolinário Jr. are with the Depar-
tamento de Engenharia Elétrica, Instituto Militar de Engenharia,
Praça General Tibúrcio 80, Rio de Janeiro, RJ, 22.290-270 (e-mail:
antonioluis@ime.eb.br and apolin@ieee.org).

the one used in [3] for the a priori version. This new
multichannel Fast QRD algorithm, using the a posteri-
ori backward error updating, can be used in problems
dealing with channels of equal or unequal orders while
comprising scalar operations only.

The QRD-RLS family of Multichannel algorithms
uses the least-squares (LS) objective function defined as

ξLS(k) =

k
∑

i=0

λk−ie2(i) = eT (k)e(k) (1)

where e(k) =
[

e(k) λ1/2e(k − 1) · · · λk/2e(0)
]T

is a weighted error vector and may be represented as
follows.

e(k) =











d(k)

λ1/2d(k − 1)
...

λk/2d(0)











−











xT
N (k)

λ1/2xT
N (k − 1)

...
λk/2xT

N (0)











wN (k)

= d(k) − XN (k)wN (k) (2)

where

xT
N (k) =

[

xT
k xT

k−1 · · · xT
k−N+1

]

(3)

and xT
k = [x1(k) x2(k) · · · xM (k)] is the input

signal vector at instant k. Note that N is initially defined
as the number of filter coefficients per channel (fixed
order), M is the number of input channels, and wN (k)
is the MN × 1 coefficient vector at time instant k.

If UN (k) is the Cholesky factor of the (k + 1) × M

input data matrix XN (k), obtained through the Givens
rotation matrix QN (k), then

eq(k) = QN (k)e(k) =

[

eq1(k)
eq2(k)

]

=

[

dq1(k)
dq2(k)

]

−

[

0

UN (k)

]

wN (k) (4)

and the optimal coefficient vector, wN (k), is obtained
by making eq2(k) a null vector. In order to cope with
the multiple order case, the input signal vector needs to
be redefined.

This paper is organized as follows. In Section II, a
new multiple-order Multichannel Fast QRD based on the

XXI SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES-SBT’04, 06-09 DE SETEMBRO DE 2004, BELÉM, PA

updating of the a posteriori error vector is introduced.
Simulation results and conclusions are Summarized in
Sections III and IV, respectively.

II. THE NEW MULTIPLE ORDER MULTICHANNEL

FAST QRD-RLS ALGORITHM

To derive this new algorithm, which is based on the
updating of the a posteriori backward error vector (more
about the Multichannel Fast QRD-RLS algorithm based
on the backward prediction update and its a posteriori
direct and lattice versions can be found in [6]), a new
approach is adopted to construct the input vector xN (k).

As we shall see later in this work, this new algorithm,
beside the advantage of dealing with channels of
unequal orders, has another major one, viz, a lower
computational complexity when compared to previously
proposed multichannel algorithms. The following
notation is adopted:

M is the number of input channels;
N1, N2, · · · , NM are the number of taps in the tapped

delay–lines of each input channel;
N =

∑M
r=1 Nr Overall number of taps.

Without loss of generality, it is assumed here that
N1 ≥ N2 ≥ · · · ≥ NM .

As previously mentioned, the starting point for the
derivation of this new algorithm is the construction of
the input vector such that the general case of equal or un-
equal order is attained. It is also taken into consideration
the fact that M steps are executed for each time iteration
of the algorithm. That means that the M channels are
processed separately but they are interdependent: the
quantities collected after the i-th channel is processed
are used as initial values for the processing of the (i+1)-
th channel and so on. Finally, the quantities collected
during the processing of the last channel, in a given
instant k, are used as initial values for the processing
of the first channel in k + 1. This will become clear
during the derivation of the algorithm.

A. Redefining the input vector

From the fact that the M channels are processed
separately, the updating of the input vector is performed
likewise: in a given time instant k, we have vector
xN (k)1 from which we successively obtain xN+1(k+1)
by appending the most recent sample of channel one at
time instant k + 1, xN+2(k + 1) by appending the most
recent sample of channel two, and so on. At the and of
this process, we have the updated vector xN+M (k + 1).

1The subscript N denotes the N -th order vector.

Z
−1

x x

x

x

x

x

x

x

x

x

(k)

(k)

(k)

(k)

(k−1)

(k)

(k−2)

(k−1)

(k)

(k−3)

(k−2)

(k−1)

x

x

1

2

3

1

1

1

1

3

2

3

2

2

1

3 4

2

(k)Nx

 N − N samples from

N − N triplets of
samples from the
first, second, and

2

third channels.

Z
−1

Z
−1

Z

Z
−1

Z
−1

−1

N 3 pairs of samples
 from the first and
 second channels.

 − N

 the first channel.

Fig. 1. Obtaining the input vector.

Actually, this is not that simple because the position
to be occupied by the newer samples from each channel
in the updated vector xN+M (k + 1) must be carefully
determined. The vector xN (k), used as the starting point
to obtain xN+M (k + 1) is construct as follows: we first
choose N1−N2 samples from the first channel to be the
leading elements of xN (k), followed by N2 −N3 pairs
of samples from the first and second channels, followed
by N3−N4 triples of samples of the first three channels
and so far till the NM − NM+1 M -ples of samples of
all channels. It is assumed that NM+1 = 0.

Fig. 1 shows an example where vector xN (k) is
obtained for a configuration with M = 3, N1 = 4, N2 =
3, N3 = 2, and N4 = 0; thus, N = 4 + 3 + 2 + 0 = 9.
By carefully observing the diagram of this figure, one
can realize which position will be occupied by each
new sample of each channel to form xN+M (k + 1).
This position pi of the most recent sample of the i-
th channel can be expressed compactly as [3] pi =
∑i−1

r=1 r(Nr −Nr+1)+ i, for i = 1, 2, · · · , M . Moreover,
the M successive input vectors for a given instant k,
obtained from xN (k), can be defined as follows.

xT
N+1(k + 1)=

[

x1(k + 1) xT
N (k)

]

(5)

xT
N+i(k + 1)=

[

xi(k + 1) xT
N+1−i(k + 1)

]

P i (6)

where P i is a permutation matrix which takes the
most recent sample xi(k + 1) of the i-th channel
to the position pi, after left shifting the first pi −

1 elements of xT
N−i+1(k + 1). After concluding this

process for the M channels, it can be observed that
xT

N+M (k + 1) = [xT
N (k + 1) x1(k − N1 + 1)

· · · xM (k−NM +1)] which clearly means that the first
N elements of xT

N+M (k + 1) provide the input vector
of the next iteration. We can now define the input data

XXI SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES-SBT’04, 06-09 DE SETEMBRO DE 2004, BELÉM, PA

matrices as follows.

XN+i(k) =











xT
N+i(k)

λ1/2xT
N+i(k − 1)

...
λk/2xT

N+i(0)











i = 1, 2, · · · , M (7)

With UN+i(k) being the Cholesky
factor of XN+i(k), we can define
the a posteriori backward error vector,
fN+i(k + 1), as

fN+i(k + 1) = U−T
N+i(k + 1)xN+i(k + 1)

for i = 1, 2, · · · , M. (8)

From (8) and the definition of the input vector, we can
write

fN+M (k + 1) =

[

fN (k + 1)

f (N)(k + 1)

]

(9)

where f (N)(k+1) are the last M elements of fN+M (k+
1).

The updating of fN+i(k + 1) is carried out in M

forward steps at each instant k:
fN (k) → fN+1(k + 1) → fN+2(k + 1) → · · ·

· · · → fN+M (k + 1)

B. Triangularization of the information matrix

Equation (7) suggests that the updating of the infor-
mation matrix is performed in M forward steps for each
iteration.

1) First step (i = 1): XN+1(k) can be defined as

XN+1(k) =











x1(k)

λ1/2x1(k − 1) XN (k − 1)
...

λk/2x1(0) 0
T











=

[

d
(1)
f (k)

XN (k − 1)
0

T

]

(10)

where d
(1)
f1 (k) = [x1(k) λ1/2x1(k − 1) · · · λk/2x1(0)].

If UN (k− 1) and Q
(1)
N (k) stand, respectively, for the

Cholesky factor of XN (k−1) and the orthogonal matrix
associated to this process, we can write, from (10), that
[

Q
(1)
N (k) 0

0 I1×1

] [

d
(1)
f (k)

XN (k − 1)
0

T

]

=







e
(1)
fq1(k) 0

d
(1)
fq2(k) UN (k − 1)

λk/2x1(0) 0
T






(11)

To complete the triangularization process of XN+1(k)
leading to UN+1(k), we premultiply (11) by two other
Given rotation matrices as follows.
[

0

UN+1(k)

]

= Q′

f
(1)

(k)Qf
(1)(k)

·







e
(1)
fq1(k) 0

d
(1)
fq2(k) UN (k − 1)

λk/2x1(0) 0
T







= Q′

f
(1)

(k)







0 0

d
(1)
fq2(k) UN (k − 1)

e
(1)
fN (k) 0

T







(12)

where Qf
(1)(k) is the orthogonal matrix responsible for

zeroing the first k − N rows and Q′

f
(1)

(k) completes

the triangularization process by zeroing d
(1)
fq2(k) in a

top down procedure against e
(1)
fN (k). After removing the

resulting null section in the upper part of (12), the result
is:

UN+1(k) = Q′

θf
(1)

(k)

[

d
(1)
fq2(k) UN (k − 1)

e
(1)
fN (k) 0

T

]

(13)

From (13), we obtain the following relation that will
be useful to obtain an expression for the updating of
fN (k).

[UN+1(k + 1)]−1 =




0
T 1

e
(1)
fN (k+1)

U−1
N (k) −

1
e
(1)
fN (k+1)

U−1
N (k)d

(1)
fq2(k + 1)





·

[

Q′

θf
(1)

(k + 1)
]T

(14)

From (12), we know that Q′

f
(1)

(k) is the Givens

rotation matrix responsible for zeroing d
(1)
fq2(k) against

e
(1)
fN (k). Thus, it is straightforward to write

[

0

e
(1)
f0 (k + 1)

]

= Q′

θf
(1)

(k+1)

[

d
(1)
fq2(k + 1)

e
(1)
fN (k + 1)

]

(15)

Now, recalling (8), we can use (14) and the definition
of the input vector to obtain the recursive expression for
fN+1(k + 1).

fN+1(k + 1) = λ−1/2Q′

θf
(1)

(k + 1)

·





U−T
N (k)xN (k)

x1(k+1)

e
(1)
fN

(k+1)
−

[

U−1

N (k)d(1)

fq2(k+1)
]T

xN (k)

e
(1)
fN

(k+1)





= Q′

θf
(1)

(k + 1)

[

fN (k)
p(1)(k + 1)

]

(16)

XXI SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES-SBT’04, 06-09 DE SETEMBRO DE 2004, BELÉM, PA

where

p(1)(k + 1) = λ−1/2

·







x1(k + 1)

e
(1)
fN (k + 1)

−

[

U−1
N (k)d

(1)
fq2(k + 1)

]T

xN (k)

e
(1)
fN (k + 1)







=
λ−1/2

e
(1)
fN (k + 1)

·
[

x1(k + 1) − wT
fN

(k + 1)xN (k)
]

=
eN

(1)(k + 1)

λ1/2e
(1)
fN (k + 1)

(17)

with eN
(1)(k + 1) being the a posteriori error of the

forward prediction for the first channel. The updating of
d

(1)
fq2(k) is performed according to

[

ẽ
(1)
fq1(k + 1)

d
(1)
fq2(k + 1)

]

= Q
(0)
θN

(k)

[

x1(k + 1)

λ1/2d
(1)
fq2(k)

]

(18)

and the matrix Q
(1)
θN+1

(k+1), necessary in the next steps,
is obtained from

Q
(1)
θN+1

(k + 1)

[

1
0

]

=

[

γ
(i)
N+1(k + 1)

fN+1(k + 1)

]

(19)

2) Following steps (i > 1): The input information
matrix XN+i(k) is related to XN+i−1(k) according to

XN+i(k) =











xi(k)

λ1/2xi(k − 1)
...

λk/2xi(0)

XN+i−1(k)











P i

(20)

As in the first step, XN+i(k) must be triangularized
generating UN+i(k) that corresponds to its Cholesky
factor. This process is detailed as follows. If QθN+1−i

(k)
stands for orthogonal matrix obtained from the QR
decomposition of XN+i−1(k), with UN+i−1(k) being
its Cholesky factor, we can write from (20)

[

QθN+1−i
(k) 0

0
T 1

] [

XN+1−i(k)
0

T

]

=







e
(i)
fq1N+1−i

(k) 0

d
(i)
fq2(k) UN+i−1(k)

0 0
T






P i

=

[

d
(i)
fq2(k) UN+i−1(k)

e
(i)
fN+i−1

(k) 0
T

]

P i (21)

Equation (21) results from the annihilation of
e

(i)
fq1N+1−i

(k) against the first element of the last

Q (k)
iP
T

 (i)’
 f

Fig. 2. Obtaining the lower triangular factor UN+i−1(k).

row of the matrix, using an appropriate orthogonal
factor, and removing the resulting null section.

The existence of the permutation matrix P i in
(21) prevents a direct annihilating of d

(i)
fq2(k) against

e
(i)
fN+i−1

(k) to complete the triangularization of matrix
XN+1−i(k). Fig. 2 illustrates the application of the
Givens rotations under these circumstances. This process
can be summarized as follows. The permutation factor,
P i, right shifts d

(i)
fq2(k) to the i-th position as shown in

the first part of the figure. Afterwards, a set of N +i−pi

Given rotation matrices, Q′

θf
(i), are used to nullify the

first N + i − pi elements of d
(i)
fq2(k) against e

(i)
fN+i−1

(k)
in a top down procedure. In order to obtain the desired
triangular structure, we need another permutation factor
that moves the last row of the matrix to the N − pi + 1
position, after the downshift of the previous N−pi rows.
This permutation factor coincides with P T

i .
The positive definiteness of the lower triangular matrix

UN+i−1(k), obtained in the latter process, is guaran-
teed if its diagonal elements, along with e

(i)
fN+i−1

(k),

are positive. Recalling that e
(i)
fN+i−1

(k) is, actually, the
absolute value of the forward error, the latter is valid
and, UN+i−1(k) being properly initialized, its positive
definiteness is guaranteed.

The procedure above can be written compactly as

UN+i(k) = P T
i Q′

θf
(i)

(k)

·

[

d
(i)
fq2(k) UN+i−1(k)

e
(i)
fN+i−1

(k) 0
T

]

P i (22)

From (22), it is possible to obtain the following relation.

[UN+i(k + 1)]−1 = P T
i

·







0
T 1

e
(i)
fN+i−1

(k+1)

U−1
N+i−1(k + 1) −

U
−1

N+i−1(k+1)d
(i)

fq2(k+1)

e
(i)
fN+i−1

(k+1)







·Q′T
θf

(i)
(k + 1)P i

(23)

From (23), (6), and (8), it is possible to obtain the

XXI SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES-SBT’04, 06-09 DE SETEMBRO DE 2004, BELÉM, PA

50 100 150 200 250 300 350 400 450 500 550 600
−70

−60

−50

−40

−30

−20

−10

0

10

20

Sample

M
S

E
 (

dB
)

The NLMS Algorithm

The Proposed MC Fast QRD−RLS
Algorithm

Fig. 3. Learning curves.

following recursive expression to compute fN+i(k +1).

fN+i(k + 1) = P T
i Q′

θf
(i)

(k + 1)

[

fN+i−1(k + 1)

p
(i)
N+i−1(k + 1)

]

(24)

where

p
(i)
N+i−1(k + 1) =

e
(i)
N+i−1(k + 1)

e
(i)
fN+i−1

(k + 1)
(25)

The scalar quantity e
(i)
N+i−1(k+1) is the a posteriori for-

ward prediction error of the i-th channel. Now, looking
carefully at (24) and recalling the definitions of P i and
Q′

θf
(i)

(k+1), we conclude that the last pi−1 elements
of fN+i(k+1) and fN+i−1(k+1) are identical. This is
an important observation that allows a significant reduc-
tion in the computational complexity of the algorithm.

The updating of d
(i)
fq2(k) is performed according to

[

ẽ
(i)
fq1(k + 1)

d
(i)
fq2(k + 1)

]

= Q
(i−1)
θN+i−1

(k+1)

[

xi(k + 1)

λ1/2d
(i)
fq2(k)

]

(26)

and the Givens rotations matrices QθN+i
(k + 1), needed

in the next forward step, are obtained as follows.

Q
(i)
θN+i

(k + 1)

[

1
0

]

=

[

γ
(i)
N+i(k + 1)

fN+i(k + 1)

]

(27)

After the main loop (i = 1 : M), the join process
estimation is performed as in [6]. The computational
complexity of the proposed algorithm is shown in Tab. 1
and the complete algorithm is summarized in Tab. 2. In
this table we have considered the more general case of
a complex implementation.

TABLE I
COMPUTATIONAL COMPLEXITY (COMPLEX ENVIRONMENT.)2

Algorithm Mults. Divs. Sqrts
Alg. of Tab. II 14NM + 13M 3NM + 4M 2NM + 3M

−9
∑M

i=1 pi + 5N −3
∑M

i=1 pi −2
∑M

i=1 pi

Alg. of [3] 15NM + 14M 4NM + 5M 2NM + 3M

−10
∑M

i=1 pi + 5N −4
∑M

i=1 pi −2
∑M

i=1 pi

2 Note that pi =
∑i−1

r=1 r(Nr − Nr+1) + i, i = 1, 2, · · · , M .

III. SIMULATION RESULTS

The performance of the proposed algorithm is evalu-
ated in a nonlinear system identification. The plant is a
truncated second order Volterra system [7] which can be
described as

d(k) =
L−1
∑

n1=0

wn1
(k)x(k − n1)

+
L−1
∑

n1=0

L−1
∑

n2=0

wn1,n2
(k)x(k − n1)x(k − n2) + ρ(k) (28)

Equation (28) can be easily reformulated as a multi-
channel problem with M = L + 1 channels, where the
most recent sample of the i-th channel is

xi(k) =

{

x(k), i = 1
x(k)x(k − i + 2), i = 2, · · · , L + 1

and the i-th channel order is

Ni =

{

L, i = 1, 2
L − i + 2, i = 3, · · · , L + 1.

In our experiment, we used L = 4, λ = 0.98, and an
SNR of 60dB. Fig. 3 shows the learning curves for the
proposed algorithm in comparison with the Normalized
LMS (NLMS) [8] algorithm. The learning curve of this
new multiple order multichannel algorithm is identical
to its a priori counterpart proposed in [3] but the former
presents a considerable saving in the computational
burden; in the particular case simulated here, the overall
saving is of 8, 7% in terms of complex floating point
operations (multiplications and divisions). On a real
environment implementation, it is possible to simplify
the way of computing the rotation parameters (sines and
cosines) of the rotation angles. In such a case, the overall
saving is of 5,0%. Since the number of operations per
output sample increases non-linearly with a positive rate
as M and N increase, it is expected that the efficiency
of the proposed algorithm will improve in comparison
with the algorithm of [3] for larger M and N .

Although not appearing in the figure, an average of
100 independent runs of 2 × 104 samples each was
carried out. The RLS [8] and the Inverse QRD-RLS [9]
algorithms were also used in this same experiment and,

XXI SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES-SBT’04, 06-09 DE SETEMBRO DE 2004, BELÉM, PA

as expected, their speed of convergence is comparable
to that of the new algorithm. But the RLS algorithm
diverges after 1300 samples, approximately. Conversely,
the proposed algorithm has shown no sign of divergence.
It is worth mentioning that the computational complexity
of the Fast QRD-RLS algorithms is lower by one order,
O(N), than that of the conventional QRD-RLS and the
Inverse QRD-RLS algorithms, O(N 2).

IV. CONCLUSIONS

The proposed algorithm, besides presenting numerical
robustness, has lower computational complexity when
compared to other multichannel fast QRD-RLS algo-
rithms available in the literature. This new algorithm can
be used in a large number of multichannel applications,
whether equal or unequal channel orders are required.
Finally, for channels of equal orders, i.e., N1 = N2 =
· · · = NM = K and N = KM , it can be realized from
Tab.1 that this algorithm is of O(M 2) computational
complexity, lower by one order of magnitude when
compared to the O(M3) block multichannel algorithms
of [3], [5] and [6].

REFERENCES

[1] N. Kalouptsidis and S. Theodoridis, Adaptive Systems Identifi-
cation and Signal Processing Algorithms, Englewood Cliffs, NJ:
Prentice Hall, 1993.

[2] Maurice G. Bellanger, “The FLS-QR algorithm for adaptive
filtering: The case of multichannel signals,” Signal Processing,
vol. 22, pp. 115–126, 1991.

[3] A. A. Rontogiannis and S. Theodoridis, “Multichannel fast QRD-
LS adaptive filtering: New technique and algorithms,” IEEE
Transactions on Signal Processing, vol. 46, pp. 2862–2876,
November 1998.

[4] J. A. Apolinário, M. G. Siqueira, and P. S. R. Diniz, “Fast QR
Algorithms Based on Backward Prediction Errors: A New Im-
plementation and Its Finite Precision Performance,” Birkhäuser,
Systems, and Signal Processing, vol. 22, no. 4, pp. 335–349,
July/August 2003.

[5] C. A. Medina S., J. A. Apolinário Jr., and M. G. Siqueira, “A
unified framework for multichannel fast QRD-LS adaptive filters
based on backward prediction errors,” MWSCAS’O2 Tulsa–USA,
vol. 3, August 2002.

[6] A. L. L. Ramos and J. A. Apolinário Jr, “A lattice version of the
multichannel FQRD algorithm based on a posteriori backward
erros,” ICT’2004, Fortaleza, Brazil.

[7] V. John Mathews and Giovanni L. Sicuranza, Polynomial Signal
Processing, Wiley–Intercience: John Wiley and Sons, 2000.

[8] P. S. R. Diniz, Adaptive Filtering: Algorithms and Practical
Implementations, 2nd Edition, Kluwer Academic Publishers,
Boston, 2002.

[9] S. T. Alexander and A. L. Ghirnikar, “A method for recursive
least squares filtering based upon an inverse QR decomposition,”
IEEE Transactions on Signal Processing, vol. 41, pp. 20–30,
January 1993.

TABLE II

THE NEW MULTIPLE ORDER MULTICHANNEL

FAST QRD-RLS ALGORITHM (COMPLEX VERSION).

Initializations:
d

(i)
fq2 = zeros(N, 1); f (M)(0) = 0; dq2 = 0;

γ
(0)
N (0) = 1; e

(i)
fN

(0) = µ; i = 1, 2, · · · , M.

All cosines = 1; all sines = 0;
for k = 1, 2, · · ·

{ γ
(1)
0 = 1; e

(0)
q1 (k + 1) = d(k + 1);

for i = 1 : M,

{ e
(i)
fq10

(k + 1) = xi(k + 1);

for j = 1 : N, % Obtaining e
(i)
fq1(k + 1) and d

(i)
fq2(k + 1):

{e
(i)
fq1j

(k + 1) = cos
[

θ
(i−1)
j (k)

]

e
(i)
fq1j−1

(k + 1)

+λ1/2 sin
[

θ
(i−1)
j (k)

]

d
(i)
fq2N−j+1

(k);

d
(i)
fq2N−j+1

(k + 1) = λ1/2 cos
[

θ
(i−1)
j (k)

]

d
(i)
fq2N−j+1

(k)

− sin∗

[

θ
(i−1)
j (k)

]

e
(i)
fq1j−1

(k + 1);

}

‖e
(i)
fN

(k + 1)‖ =

√

(

λ1/2‖e
(i)
fN

(k)‖
)2

+ ‖e
(i)
fq1N

(k + 1)‖2;

for j = N : −1 : pi, % Obtaining Q′

θf
(i)

(k + 1):
{e

(i)
fj−1

(k + 1) =
√

‖e
(i)
fj

(k + 1)‖2 + ‖d
(i)
fq2N−j+1

(k + 1)‖2;

cos θ′

f
(i)

j
(k + 1) = ‖e

(i)
fj

(k + 1)/e
(i)
fj−1

(k + 1)‖;

sin θ′

f
(i)

j
(k + 1) =

[

cos θ′

f
(i)

j
(k + 1)

· d
(i)
fq2N−j+1

(k + 1)/e
(i)
fj

(k + 1)
]

∗

;

}

p
(i)
N (k + 1) = γ

(i−1)
N (k)

[

e
(i)
fq1N

(k + 1)
]

∗

/‖e
(i)
fN

(k + 1)‖;

for j = N : −1 : pi, % Obtaining f (i)(k + 1):
{f

(i)
N−j+1(k + 1) = cos θ′

f
(i)

j
(k + 1)f

(i−1)
N−j+2(k + 1)

−
[

sin θ′

f
(i)

j
(k + 1)

]

∗

p
(i)
j (k + 1);

p
(i)
j−1(k + 1) = sin θ′

f
(i)

j
(k + 1)f

(i−1)
N−j+2(k + 1)

+cos θ′

f
(i)

j
(k + 1)p

(i)
j (k + 1);

}

f
(i)
N+1−pi+1(k + 1) = p

(i)
pi−1(k + 1);

for j = pi : N, % Obtaining Q
(i)
θ (k):

{sin θ
(i)
j (k) = −

[

f
(i)
N−j+2(k + 1)

]

∗

/γ
(i)
j−1;

cos θ
(i)
j (k) =

√

1 − ‖ sin θ
(i)
j (k)‖2;

γ
(i)
j (k) = cos θ

(i)
j (k)γ

(i)
j−1(k + 1);

}
} for i
for j = 1 : N, % Join process estimation:
{e

(j)
q1 (k + 1) = cos θ

(0)
j (k + 1)e

(j−1)
q1 (k + 1)

+λ1/2 sin θ
(0)
j (k + 1)d

(N−j+1)
q2 (k);

d
(N−j+1)
q2 (k + 1) = λ1/2 cos θ

(0)
j (k + 1)d

(N−j+1)
q2 (k)

−
[

sin θ
(0)
j (k + 1)

]

∗

e
(j−1)
q1 (k + 1);

}

e(k + 1) =
[

e
(N)
q1 (k + 1)

]

∗

/γ
(0)
N (k + 1);

} for k

Obs.: θ
(M)
j (k) = θ

(0)
j (k + 1) and f

(M)
N−j+2(k) = f

(0)
N−j+2(k + 1).

The asterisk (∗) denotes complex conjugation.

