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Resumo—Este trabalho apresenta um novo método de classi-

ficação de texturas usando equalização de histograma e o algo-
ritmo Lempel-Ziv-Welch (LZW). Após equalização, cada amos-
tra de textura é codificada pelo LZW usando dicionários pré-
construídos e atribuída à classe cujos dicionários minimizam a 
taxa de codificação. Na avaliação experimental, o método atingiu 
precisão de 100%.  
 

Palavras-Chave—classificação de textura; algoritmo Lempel-
Ziv-Welch; reconhecimento de padrões. 
 

Abstract— This paper presents a new texture classification 
method using histogram equalization and the Lempel-Ziv-Welch 
(LZW) compression algorithm. After equalization, each texture 
sample is encoded by LZW using pre-constructed dictionaries 
and assigned to the class whose dictionaries minimize the coding 
rate. In the empirical evaluation, the classifier achieved 100% 
accuracy. 
 

Index Terms— texture classification; Lempel-Ziv-Welch algo-
rithm; pattern recognition. 
 

I. INTRODUCTION 
Texture is one of the most fundamental attributes used by the 
human visual system and computer vision systems for seg-
mentation, classification and interpretation of scenes [1]. 
There has been a great interest in the development of texture-
based pattern recognition methods in many different areas, 
such as remote sensing [2, 3], image-based medical diagnosis 
[4], industrial automation [5] and biometric recognition [6, 7].  

 Texture classification consists in assigning an unknown 
texture sample x to one of N texture classes Ci, i = 1, 2,…, N. 
Discriminating features, or structural or stochastic models, 
are used to characterize the classes, and classification is per-
formed according to some measure of similarity between x 
and each class. 

In supervised classification, texture samples known to be-
long to class Ci, i = 1, 2, … N, are available. These pre-
classified samples are used to construct models or to define 

discriminating features for each class, in a process known as 
training or learning. In order to develop efficient texture clas-
sifiers, it is crucial to discover discriminating attributes or 
precise models for the texture classes.  

Although intuitively recognized by the human visual sys-
tem, texture is not easy to characterize formally. The problem 
resides in the intrinsic difficulty to define what is most rele-
vant to characterize texture, as the answer depends on subjec-
tive perceptual considerations and on particular applications. 
Therefore, texture feature extraction and modeling tends to be 
a difficult and application-driven task. A popular yet rather 
vague definition states that textures are spatial patterns 
formed by more or less accurate repetitions of some basic 
subpatterns. [8]. 

Selecting inadequate features can degrade classification 
performance, and selecting too many features, even appropri-
ate ones, has negative consequences, such as increase in 
processing time and memory requirements, and a potential 
accuracy degradation due to the statistical phenomenon 
known as “curse of dimensionality” [9].  

Early feature extraction techniques focused on spatial sta-
tistics, such as energy features and gray level co-occurrence 
matrices (GLCM) [10]. More recently, model-based tech-
niques, such as Markov random fields (MRF) [9, 11], and 
signal processing techniques, such as Gabor and wavelet 
transforms [12] have been investigated. Extensive compari-
sons between various feature extraction methods concluded 
that no method is consistently superior to the others [12, 13]. 

After defining the features or models that characterize the 
texture classes, a classification method must be chosen. A 
large number of classifiers have been proposed in the last 
decades [9]. A multiple support vector machine (SVM) clas-
sifier, denominated fused SVM, with features generated by 
discrete wavelet frame transform, compared favorably with 
single SVM classifiers, Bayes classifiers using Bayes distance 
and Mahalanobi distance, and a learning vector quantization 
(LVQ) classifier [14].  

The development of powerful texture classification meth-
ods with low computational complexity is a very useful direc-
tion of research  [12]. In applications such as industrial web 
inspection the throughput is enormous and require fast meth-
ods and special hardware support [5]. 

Modern lossless data compression algorithms have been 
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applied to classification problems, due to their ability to con-
struct accurate statistical models, in some cases with low 
computational requirements [15]. A solid theoretical founda-
tion for using LZ78 [16] and other dictionary-based compres-
sion algorithms [15] for classification is well established [17, 
18]. However, despite its sound theoretical basis, the applica-
tion of compression schemes to classification problems seems 
controversial. 

A potential problem associated with lossless dictionary-
based compression algorithms for texture classification is the 
fact that these methods search exact matches in the dictionary 
for strings in the message to be compressed. A precise dic-
tionary constructed for a given texture class may present a 
poor performance when compressing a new sample from the 
same class, if this new sample presents gray-level deviations 
caused by digitization noise or illumination changes.  

Degraded performance, even when gray-level deviations 
are subtle, indicates that the constructed model may not be 
able to adequately describe the new texture sample, and con-
sequently classification accuracy may also degrade.  

Two possible solutions to this problem are:  
1. Adoption of a lossy dictionary-based compressor [19], 

less sensitive to small, spurious gray-level deviations;  
2. Reduction of these deviations by means of image proc-

essing techniques, prior to the use of a lossless diction-
ary-based compression algorithm. 

Histogram equalization is a well-known non-linear operation 
that generates an approximately uniform distribution of gray-
levels over the available range [10]. Typically, discrete histo-
gram equalization tends to map to the same value multiple 
gray levels that have similar values, thus reducing the small 
gray level deviations that tends to cause mismatches in the 
searching stage of lossless dictionary-based compressors. 
Histogram equalization also decreases the probability that a 
classifier discriminates texture classes by average gray level 
or variance, instead of by its textural properties [12]. This 
allows a more precise evaluation of the capabilities of the 
method to discriminate texture attributes. 

When applied to a specific text categorization task, the 
prediction by partial matching (PPM) lossless compressor 
[15] correctly categorized the majority of the documents, but 
did not achieve accuracy competitive with state-of-the-art 
machine learning schemes [20]. On the other hand, another 
report concluded that PPM was successfully applied to vari-
ous text classification problems, with performance compara-
ble to state-of-the-art methods [21]. Some of the main draw-
backs of PPM come from the large computational resources 
required [15]. 

Classifiers based on universal data compression models 
have several potential advantages over classical machine 
learning methods: since there is no feature selection, no in-
formation is discarded — the models describe the classes as a 
whole [20]; no assumptions about the probability distribu-
tions of the classes are required; the adaptive model construc-
tion capability of compression algorithms offers an uniform 
way to classify different types of sources [20]; the classifica-

tion rule is very simple [21]. 
This paper proposes a new texture classifier based on his-

togram equalization and Lempel-Ziv-Welch (LZW) lossless 
compression algorithm [22]. The rest of this paper is organ-
ized as follows. Section II presents some fundamental con-
cepts; section III presents the LZW algorithm; section IV 
describes the proposed classifier; section V presents the em-
pirical evaluation of the proposed classifier; and section VI 
presents a discussion of the results and the concluding re-
marks. 

II. ENTROPY AND MARKOV MODELS 
Let S be a stationary discrete information source that gener-
ates messages over a finite alphabet A = {a1, a2,..., aM}. The 
source chooses successive symbols from A according to some 
probability distribution that, in general, depends on preceding 
symbols. A generic message is modeled as a stationary sto-
chastic process x = …x-2 x-1x0x1x2…, with xi ∈ A. Let xn = 
x1x2…xn represent a message of length n. Since A has M dis-
tinct elements, the source can generate Mn different messages 
of length n. Let n

ix , i = 1, 2, ..., Mn denote the ith of these 
messages, according to some sorting order, and assume that 
the source follows a probability distribution P, so that mes-
sage n

ix  is produced with probability )( n
iP x . 
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)(PFn  decreases monotonically with n [23] and the en-
tropy of the source is: 

)(lim)( PFPH nn ∞→
=  bits/symbol. (4)

Eq. 4 involves the estimation of probabilities conditioned 
on an infinite sequence of previous symbols. When finite 
memory is assumed the sources can be modeled by a Markov 



XXI SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES-SBT’04, 06- 09 DE  SETEMBRO DE 2004, BELÉM - PA 

process of order n-1, so that P(aj |…x n-2xn-1) = P(aj | x1…xn-1). 
In this case, H(P) = Fn(P). 

Define the coding rate of a coding scheme as the average 
number of bits per symbol the scheme uses to encode the 
source output. A lossless compressor is a uniquely decodable 
coding scheme whose goal is to achieve a coding rate as 
small as possible. The coding rate of any uniquely decodable 
coding scheme is always greater than or equal to the source 
entropy [23]. Optimum coding schemes have a coding rate 
equal to the theoretical lower bound H(P), thus achieving 
maximum compression.  

For Markov processes of order n-1, optimum encoding is 
reached if and only if symbol xn =  aj occurring after 1−n

ix  is 

coded with )|(log 1
2

−− n
ijaP x bits [15, 23]. However, it may 

be impossible to accurately estimate the conditional distribu-
tion )|(. 1−n

iP x  for large values of n, due to the exponential 
growth of the number of different contexts, which brings 
well-known problems, such as context dilution [15]. 

III. THE LZW ALGORITHM 
Even though the source model P is generally unknown, it is 
possible to construct a coding scheme based upon some (pos-
sibly implicit) probabilistic model Q that approximates P. 
The better Q approximates P, the smaller the coding rate 
achieved by the coding scheme. 

In order to achieve low coding rates, modern lossless com-
pressors rely on the construction of sophisticated models that 
closely follows the true source model. Statistical compressors 
encode messages according to an estimated statistical model 
for the source. Dictionary-based compressors replace strings 
of symbols from the message to be encoded with indexes into 
a dictionary of strings, which is generally adaptively con-
structed during the encoding process. When greedy parsing is 
used, at each step the encoder searches the current dictionary 
for the longest string that matches the next sequence of sym-
bols in the message, and replaces this sequence with the index 
of the longest matching string in the dictionary. 

Dictionary-based compressors with greedy parsing, such as 
LZW, are highly popular because they combine computa-
tional efficiency with low coding rates. It has been proved 
that each dictionary-based compressor with greedy parsing 
has an equivalent statistical coder that achieves the same 
compression [15]. In dictionary-based coding, the dictionary 
embeds an implicit statistical model for the source. 

The initial LZW dictionary contains all possible strings of 
length one. The LZW algorithm finds the longest string, start-
ing from the first symbol of the message, that is already pre-
sent in the dictionary. This string is coded with the index for 
the matching string in the dictionary, and the string is ex-
tended with the next symbol in the message, xi. The extended 
string is added to the dictionary and the process repeats, start-
ing from xi [15].  

LZW achieves optimum asymptotic performance for 
Markov sources, in the sense that its coding rate tends to the 

entropy of the source as the length of the message to be coded 
tends to infinity [24]. It means that LZW algorithm learns a 
progressively better model for the source during encoding, 
and a perfect model for the source is learned when an infinite 
message has been coded. In practice, since the messages to be 
compressed are finite, LZW only learns an approximate 
model for the source. 

IV. THE PROPOSED METHOD 
Due to their capability to build accurate models, modern loss-
less compressors can be used as model-based classifiers. Any 
efficient lossless compressor could be used, but LZW algo-
rithm was chosen, due to its good compromise between cod-
ing efficiency and computational requirements [15].   

A.  The Learning Stage 
In the learning stage, the number N of classes is defined, 

and a training set Ti of texture samples known to belong to 
class Ci, is selected, i = 1, 2, …N.  The samples are n x n im-
ages extracted from histogram-equalized images. The LZW 
algorithm sequentially compresses all samples in Ti, follow-
ing the horizontal scanning order shown in Figure 1.a, and 
the resulting dictionary Hi is kept as a model for the horizon-
tal structure of textures in Ci, i = 1, 2, …N. 

The LZW algorithm then compresses all samples in Ti fol-
lowing the vertical scanning order shown in Figure. 1.b, and 
the resulting dictionary Vi is kept as a model for the vertical 
structure of textures in Ci,  i = 1, 2, …N. 
 

 

Fig. 1. Scanning order. (a) Horizontal; and (b) Vertical 

B.  The Classification Stage 
In the classification stage, LZW operates in static mode. In 

this mode, one of the dictionaries generated in the learning 
stage is used, and no new strings are added to the dictionary 
during the encoding process.  

An n x n texture sample x from an unknown class is coded 
by the LZW algorithm with static dictionary Hi, following the 
horizontal scanning order shown in Figure 1.a., and the corre-
sponding coding rate hi is registered, i = 1, 2, … N. Then the 
LZW algorithm with static dictionary Vi encodes x, following 
the vertical scanning order shown in Figure 1.b., and the cor-
responding coding rate vi is registered, i = 1, 2, … N. As in 
the learning stage, all samples are extracted from histogram-
equalized images. 

Let  
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Sample x is assigned to Ci if ri < rj, j = 1, 2, …, N, j ≠ i. 
The rationale is that if x is a sample from class Ci, the dic-
tionaries Hi and Vi probably embeds the model that best de-
scribes its horizontal and vertical structure, thus yielding the 
smallest coding rates.  

V. EXPERIMENTAL RESULTS 
Thirty natural textures from the Brodatz album [25], obtained 
from a public archive, were selected to evaluate the perform-
ance of the proposed method. In the experiments, each Bro-
datz texture constitutes a separate class. All textures have 640 
x 640 pixels, with 8 bits/pixel. This corpus is the same used 
in [14], thus allowing direct comparison with several state-of-
the-art texture classifiers from the literature. The Brodatz 
textures used are shown in Figure 2. 
 

 
Fig. 2. Brodatz textures used in the experiments. From left to right 
and from top to bottom: D1, D3, D6, D11, D16, D17, D20, D21, 
D24, D28, D29, D32, D34, D35, D46, D47, D49, D51, D52, D53, 
D55, D56, D57, D65, D78, DD82, D84, D85, D101, D104. 

Each Brodatz texture was histogram equalized and parti-
tioned in n x n non-overlapping subimages, which were taken 
as texture samples. The samples were separated in two dis-
joint sets, one for training and the other for testing the classi-
fication accuracy. It is important to notice that only with dis-
joint sets for training and testing it is possible to reach accu-
rate results. Nevertheless, as pointed out in [12] and in [14], 
the use of overlapping sets is quite common in the texture 
classification literature. In these cases, reported results are 
normally overoptimistic and not attainable in a realistic situa-
tion. 

Classification accuracy is assessed by the correct classifi-
cation rate (CCR): 

% 100 x 
t
cCCR =  

(6)

where c is the number of texture samples correctly classified, 
and t is the number of classified samples. For comparison, 
tests were made with and without applying histogram equali-
zation in the learning and in the classification stage. In this 
section and in the next one, the proposed classifier with and 
without histogram equalization will be identified as 
CLZWHE and CLZW, respectively. 

In the first experiment, the training set comprised the first 
three quadrants of each texture, and the test set comprised the 
last quadrant of each texture. The effect of the sample size in 
CCR was then evaluated for n = 4, 8, 16, 32. Results are 
shown in Table 1.  

 
TABLE 1  

CCR ACHIEVED BY CLZW AND CLZWHE FOR VARIOUS SAMPLE SIZES. 
CCR (%) Sample size 

(n x n) CLZW CLZWHE 
4 x 4 80.6 99.9 
8 x 8 97.9 100 

16 x 16 99.7 100 
32 x 32 100.0 100 

 
In the second experiment, the sample size was fixed in 32 x 

32. Consequently, there are 400 non-overlapping texture sam-
ples in each class. The effect of the training set size in the 
classifier accuracy was then assessed. The proportion of 
training samples in each class was set to 1.25% (5 samples), 
2.5% (10 samples), 3.75% (15 samples), 5% (20 samples), 
6.25% (25 samples), 7.5% (30 samples), 8.75% (35 samples) 
and 10% (40 samples). In each case, all samples that were not 
used for training were used for testing. Table 2 summarizes 
the results of CLZWHE and CLZW, along with the results 
[14] for single and fused SVM, Bayes classifier using Bayes 
distance, and the LVQ classifier.  

 
TABLE 2 

CCR WITH CLZWHE, CLZW, BAYES CLASSIFER WITH BAYES DISTANCE 
(BAYES-BAYES), LVQ, SINGLE SVM AND FUSED SVM, FOR VARIOUS 

LEARNING SET SIZES. 
CCR (%) Number 

of learn-
ing sam-
ples per 

class 

Bayes-
Bayes 

LV
Q 

Single 
SVM 

Fuse
d 

SVM 

CLZ
W 

CLZWH
E 

5 69.7 78.2 78.4 93.8 99.3 
10 80.0 87.5 87.9 96.2 99.6 
15 83.9 89.6 90.2 98.4 99.9 
20 87.0 91.8 92.5 99.2 100 
25 88.2 91.4 92.9 99.3 100 
30 89.6 94.6 95.1 99.3 100 
35 90.2 94.9 95.9 99.7 100 
40 

79.5 
86.5 
87.9 
90.3 
91.2 
91.8 
92.1 
92.7 90.4 95.8 96.3 99.7 100 

 
Figure 3 presents a graphical comparison of the CCR 
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achieved by CLZWHE, CLZW and fused SVM versus train-
ing set size. 

Fig. 3. CCR achieved by CLZWHE, CLZW and fused SVM versus 
training set size. 

VI. DISCUSSION AND CONCLUSION 
    This paper proposed a new, simple and highly accurate 
texture classification scheme based on the LZW algorithm.  

In the evaluation of the effect of sample size over classifi-
cation accuracy, Table 1 shows that histogram equalization 
has a positive impact in the classifier performance. CLZWHE 
achieved CCR = 100% with samples as small as 8 x 8 pixels, 
while CLZW achieved CCR = 100% only with 32 x 32 or 
greater samples. The improvement derived from histogram 
equalization for 4 x 4 samples was impressive. 

The second experiment, summarized in Table 2 and Fig-
ure 3, shows the superiority of the proposed method over 
single and fused SVM, Bayes classifier using Bayes distance 
and the LVQ classifier. This superiority is still more remark-
able for very small training sets. With only 5 training samples 
for each class, CLZWHE achieved CCR = 99.3% and CLZW 
achieved CCR = 93.8%, while the third best method in this 
case, Bayes classifier with Bayes distance, achieve CCR = 
79.5%. This shows the capability of the proposed method to 
learn and generalize from very small training sets. This is 
ratified by noticing that the proposed method achieved CCR = 
100% with only 20 training samples. 

Future directions of research include making the classifier 
invariant to rotation, scale and illumination changes; investi-
gating the use of lossy dictionary-based compressors; adapt-
ing the method for other image classification and segmenta-
tion problems and for texture synthesis. 
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