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On modeling power-line communication noise
Victor Fernandes, Sanja Angelova, Weiler A. Finamore and, Moisés V. Ribeiro

Abstract— This article introduces an algorithm to estimate pa-
rameters of measured power line noise modeled as the Bernoulli-
Gaussian noise. These are important parameters when designing
power line communications systems. Tests with several samples
of noise registered during a measure campaign in the city of
Juiz de Fora, MG, were performed and the parameters of these
measured noise are obtained. Tests with synthetic noise generated
according to the Bernoulli model for power line noise are a good
evidence of the algorithm effectiveness.

Keywords— Power line communication, Power line noise, Noise
parameter estimation.

I. INTRODUCTION

The characteristic of the noise perturbing Power Line Com-

munication (PLC)—hereof called power line noise—has been

the subject studies of many authors [1]–[3] and many models

have been proposed. Power line noise is considered to be an

instance of what is called Impulsive Noise. PLC noise is a

Stochastic Process which for a given percentage of the time

is in a severe state (“strong” noise) and for the remaining

time is on a mild state (“weak” noise). A model which

considers that the noise severity level can be classified in an

infinite number of states is known as the Middleton Class A

model [4]. As shown in [5] the Two-state, Middleton Class A

model can be as accurate as the general Middleton Class A.

The PLC systems to be addressed in this paper are digital

communication systems and, for this reason, the noise model

known as Bernoulli-Gaussian Model will be considered — the

Bernoulli-Gaussian (BG) noise is the discrete-time equivalent

to the continuous-time Two-state, Middleton Class A model.

The simple Bernoulli-Gaussian Model [6] considers that the

noise samples are random variables which are classified as

either “mild” (low variance) or “strong” (i.e., drawn from a

Gaussian distribution high variance). At a given instant of

time, either a small power noise (also commonly known as

the background noise component) due to thermal noise, or

a large power noise (the impulsive noise component) due to

natural phenomenon (atmospheric disturbance, etc) or man-

made is added to the signal. The Bernoulli-Gaussian Model

will be the focus of the present study. The noise affecting the

PLC can be considered,

The paper has been organized as follows: in Section I-A the

Bernoulli-Gauss model is presented and its relation to the the

Two-state Middleton Class A is briefly discussed. In Section

II a model similar to the Bernoulli Model (or, for that matter,

to the Two-state, Middleton Class A) is discussed. PLC noise
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modeled as an additive impulsive Gaussian noise (AIGN) has

been synthetically generated by using this model, with the

purpose of validating the proposed algorithm. The algorithm to

find the BG parameters of measured PLC noise is introduced in

Section III. Results of the algorithm are presented in Section

IV, and conclusions are then presented in the final section,

Section V.

A. Bernoulli-Gaussian Noise

As discussed in [6] the PLC digital noise (or, synonymously,

PLC discrete-time noise) can be modeled as a Stochastic

Process ν(ti) which, at a given time instant ti, is either a

“weak” Gaussian random variable (r.v.) — with variance

σ2
ν = σ2 — or, “strong,” i.e., a Gaussian r.v. with variance

σ2
ν = α2σ2, (α > 1). At any two distinct time instants ti and

tj the r.v.’s ν(ti) and ν(tj) are independent. Further, given

that N is the number of PLC noise samples being collected

and stored, we have then that the number of weak noise

samples is equal to ⌈pN⌉ (1/2 < p < 1) and, of course, the

remaining ⌊(1− p)N⌋ are strong noise samples. A noise with

the behavior above described, known as a Bernoulli-Gaussian

noise, can be defined as follows.

Definition 1: Let {Ui} be a sequence of

Bernoulli r.v. with Pr[Ui = 1] = p (and, of course,

Pr[Ui = 0] = 1 − p) and {Wi} be a sequence

of independent identically distributed Gaussian r.v.

with zero mean and variance σ2. The sequence of

r.v. {νi} with every component r.v., νi, given by

νi = UiWi + α(1− Ui)Wi, (1)

in which α > 1, is a Bernoulli-Gaussian noise. �

Every sample νi = αWi, corresponding to a Bernoulli

sample such that Ui = 0, will be designate by strong variance

noise component of the AIGN. Theses samples are, zero mean,

Gaussian r.v. with variance α2σ2. The remaining samples,

νi = Wi, corresponding to a Bernoulli sample such that

Ui = 1, are Gaussian r.v. with zero mean and variance σ2

— these are known as background noise components. The

variance of the impulsive noise, used to model the PLC noise,

is, thus,

σ2
ν = pσ2 + (1 − p)α2σ2 (2)

The Two-state, Middleton Class A gives an statistical

characterization for the continuous-time PLC noise ν(t)
(see [6]) which considers that, for any time window, the noise

behaves like background noise (is “weak”) for a fraction

(1 − A) of the time (0 < A < 1) — meaning that, for any

instant t within this fraction, the observed noise is modeled
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as a zero mean, variance σ2 Gaussian r.v. ν(t) — and, for

the remaining fraction of time A, there will be a strong

noise which is modeled as a Gaussian r.v. ν(t) which is zero

mean and has variance σ2 + σ2/AΓ, 0 < Γ < 1. During two

distinct time instants the two defined random variables are

independent.

The Two-state, Middleton Class A model depends on the pa-

rameters (σ2, Γ, A), similarly, the Bernoulli-Gaussian discrete-

time model depends on the parameters (σ2, α, p). Since σ2

represents the same variance in both models, we can easily

find

p = 1−A (3)

α =
√
1 + 1/AΓ (4)

Let us now consider that a PLC system which delivers

to the receiver a BPSK modulated signal, with energy per

bit equal to Eb, has been transmitted trough a PLC channel

(transmission over an AIGN channel). The performance of

power line digital communication system which transmits bits

over a binary channel with inputs xi ∈ {+1,−1} and a digital

noise with components modeled as a Gaussian zero mean r.v.

νi which, with probability p has variance σ2 (with a flat power

spectrum characterized by N0 = 2σ) and, with probability

1 − p, has variance α2σ2 is given by the curve of Pe (the

probability of error in such a system) versus Eb

N0

, can be plotted

by using the well known expression [6]

Pe = pQ

(√
Eb

σ2

)
+ (1− p)Q

(√
Eb

α2σ2

)
. (5)

in which Q(x) , 1√
2π

∫∞
x

e−t2/2dt.

This curve is plotted in Fig. 1 for (α, p) = (30, 0.99). Also
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Fig. 1. Plots of Pe vs Eb/N0 performance of two communication systems:
(1) system which transmit a BPSK signal through an AWGN channel — lower
curve (blue) and, (2) system which transmit a BPSK signal through an AIGN
channel (PLC corrupted by BG noise with parameters (α, p) = (30, 0.99)) —
upper curve (red). Also shown, is the BER vs Eb/N0 obtained by computer
simulation — black curve (overlapped with the red curve).

plotted in this figure is the curve of Pe versus Eb

N0

for a system

(let us call this the reference system) where the transmission

takes place over a BI-AWGN channel. As remarked in [6],

when the value of Eb

N0

is low, both the reference system and

the PLC system exhibit a performance which are equivalent.

When the values of Eb

N0

are large, however, the required

value of Eb for the communication over the PLC system to

achieve the same probability of error might be quite large

(over 25 dB when compared to the reference system —

for the case pictured in Fig. 1). It should be noticed that

BER versus Eb

N0

curve where BER is the estimated value

of Pe, obtained by simulating the transmission over a PLC

channel using MATLAB to generate the AIGN is also shown

in the figure. If we consider that the real life PLC noise

is well modeled by the probabilistic model (the Bernoulli-

Gaussian noise) and that the simulation results is a computer

model that closely reflects the actual transmission over PLC

(transmission over an AIGN channel) we can come up to the

conclusion that the theory and practice are in good agreement.

This is, as a matter of fact, our main objective, i.e., to

evaluate how well can the model (Bernoulli-Gaussian in

this case) predict the behavior of practical systems (real

life systems). A first step in this direction is the algorithm

presented in the following section.

An issue of concern, when using a noise model is how to

find the noise model parameters of the measured noise. Many

papers have discussed noise models but no method to raise

the values of the parameters of PLC measured noise has been

found in the literature. In this direction a method to come up

with the parameters of real life PLC noise is presented in the

following section.

II. DETERMINATION OF THE BERNOULLI-GAUSSIAN

PARAMETERS OF MEASURED PLC NOISE

BER vs Eb/N0 performance like those in Fig. 1 can be

easily plotted once the parameters σ2, α and p, are known.

In practice when a given sequence of N noise samples,

say (y1, . . . , yi . . . , yN), is obtained from measurements, the

values of these parameters are not known. The task is then to

observe these values and classify each measured noise sample

yi (considered to be zero mean) as either weak (a realization

of r.v. UW ) or strong (a realization of r.v. α(1 − U)W )

and, by doing so, partitioning this sequence and finding the

estimates σ̂2, α̂, and p̂.

To solve to this problem we will use the well known solution

to the classical decision problem in which, upon receiving

a string of random variables {ν} — drawn from known

distribution for U and W (in other words, with known value

of σ2, α, and p) — find a threshold ℓ, that minimizes the

probability of taking the wrong decision. The decision rule

declares that an observed sample yi is weak if yi ≤ ℓ or,

otherwise, to be a strong noise sample. It can be shown that

the probability of wrong decision is

Pd = 2pQ

(
ℓ

σ

)
− 2(1− p)Q

(
ℓ

ασ

)
+ (1− p). (6)



XXXIII SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES - SBrT2015, 1-4 DE SETEMBRO DE 2015, JUIZ DE FORA, MG

The threshold ℓOPT that minimizes (6), the probability of

taking a wrong decision is

ℓOPT = σλ, (7)

in which

λ = α

√
2 ln(αp/(1− p))

α2 − 1
. (8)

It is easy to show, when the triple (σ2, α, p) is assumed to

be known (the development is presented in the Apendix), that

qℓ = Pr[νi ≥ ℓ] and Mℓ = E[|ν|] are

qℓ = 2(pQ(λ) + (1− p)Q(λ/α)), (9)

Mℓ =
2σ√
2π

(p+ α(1 − p)). (10)

In practice when a given sequence of noise samples are

obtained, the three values are not known and an algorithm to

estimate these parameters, to the authors knowledge, has never

been published. In the next section we present an algorithm to

solve this problem by using basically an exhaustive search (at

this point, there was no attempt to make the algorithm faster

or more efficient, this issue has been left for further research).

III. AN ALGORITHM TO ESTIMATE THE

BERNOULLI-GAUSSIAN PARAMETERS OF MEASURED PLC

NOISE

The algorithm to estimate the Bernoulli-Gaussian

parameters of which models a measured PLC noise is

now presented. The target is to search for a pair of consistent

values (p′, α′) ∈ (1/2, 1)× (1,∞) which make the values of

the error between the values of q′ℓ and M ′
ℓ obtained by taking

the values (p′, α′) into (9) and (10) and the values of q̂ℓ and

M̂ℓ obtained from ν. These values of error are defined as

EM = M̂ℓ −M ′
ℓ, (11)

Eq = q̂ℓ − q′ℓ. (12)

The procedure to solve, numerically, the problem of

finding the best pair (α′, p′) is presented in Algorithm 1 (see

Appendix II). Several pairs of consistent values of (α, p)

and its corresponding values of EM and Eq are examined

by the procedure. A pair (α, p) is considered a consistent

pair if EM (pi, αi) = Eq(pi, αi). For those pairs which are

consistent values, the pair such that EM (pi, αi) is closest to

EM = 0 are the best choice.

IV. RESULTS

Fig. 2 is a plot of Bernoulli-Gaussian impulsive noise

samples of ν(t) generated, according to (1), with α = 10
and p = 0.9.

Fig. 3 displays plots of EM versus α for several values of p
(upper set of curves) and also plots of Eq versus α for several

values of p (lower set of curves) parameterized with the values

of p. The noise samples used by the algorithm are synthetic

generated noise. The intersection of EM and Eq curves near

the abscissas axis are marked with black dots. From these plots
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Fig. 2. Synthetically generated PLC noise with parameters α = 10 and
p = 0.9.
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Fig. 3. Estimation of the parameters of the synthetically generated sequence
of samples ν[k]. The pairs (α, p) = (9.99, 0.99), (10.2, 0.85) and (11.1, 0.95)
with corresponding values EM = 0, 0.02 and −0.02 are indicated by the
black dots. The best choice is (α̂, p̂) = (9.99, 0.99).

and intersections we can tell that (α̂, p̂) = (9.99, 0.99), very

close to the true values. This result gives a clear indication

that the theory developed as well as the numerical algorithm

are a reliable tool Bernoulli-Gaussian modeling measured PLC

noise (noise measured over power lines).

To further illustrate the power of the developed tool, the

parameters of a sequence with 100000 samples of the noise

obtained by measurements over power lines were examined

(this will be represented by n(t)). A segment of such samples

are exhibited in Fig. 4. Details of the measurement campaign

can be found in [7].

The plots of curves EM and Eq versus α for several values

of p are displayed in Fig. 5. These plots (with the intersection

of lines with the same value of p marked with black dots allows

us to tell that (α̂, p̂) ≈ (2.8, 0.73) are the best estimate for

the parameters of the Bernoulli-Gaussian model which better
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Fig. 4. Measured PLC noise samples n[k].

represent the measured (real life) PLC noise.
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Fig. 5. Estimation of the parameters of the measured PLC noise. Using the
described procedure, the best choice, examining this plot, is (α̂, p̂) = (2.8,
0.73).

As we can see, in Fig. 6, the theoretical error probability

(equation (5)) computed with the parameters obtained by the

algorithm (α̂, p̂) ≈ (2.8, 0.73), red curve, is close to the

simulated BER of the same measured PLC noise (green curve).

Also, we can see, in blue, the reference curve.

V. CONCLUSION

We have presented an algorithm to find the parameters of a

Bernoulli-Gaussian noise used to model measured PLC noise.

These parameters σ2, α and p are introduced in Definition 1.

To assess the quality of the algorithm, computer generated

synthetic noise with known values of σ2, α and p has been

produced according to the Bernoulli-Gaussian model. This

synthetic noise when used as the input data to the algorithm

had its parameters estimated with quite good accuracy (the

true parameters were σ2, α, p = (1, 10, 0.9) and the estimated
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Fig. 6. Plots of Pe vs Eb/N0 performance of two communication systems:
(1) system which transmit a BPSK signal through an AWGN channel —
lower curve (blue) and, (2) system which transmit a BPSK signal through an
AIGN channel (PLC corrupted by BG noise with parameters (α̂, p̂) ≈ (2.8,
0.73)) — red curve. Also shown, is the BER vs Eb/N0 obtained by computer
simulation — green curve (almost overlapped with the red curve).

parameters were σ̂2, α̂, p̂ = (0.98, 9.99, 0.9)). As it has been

discussed, in Section IV, good results have been reached at

estimating quite accurately values of these parameters (at

this point in time we can not envision a better procedure

to estimate the parameters). With such a good tool the

estimation of the Bernoulli-Gauss parameters of measured

PLC noise can be obtained with good accuracy in the

sense that Probability of Error performance of the system

perturbed by the measured noise and by the synthetic noise

are very close. Some interesting results, describing models,

are presented in [6]—but no attempt to find the noise model

parameters that best mimic the measured data has been done.

With this goal in mind—how to estimate the BG parameters

that characterizes the measured PLC noise—an algorithm has

been proposed in the current paper.

APPENDIX I: COMMENTS ON EQUATIONS (6) to (10).

Our development for equations (6) to (10) follows the rationale

described next.

The probability of a wrong decision, which can be obtained

by calculating the probability of the event Û 6= U , in which

{Û} is the sequence of decisions, is expressed by

Pd = P [{|ν| > ℓ;U = 0} ∪ {|ν| ≤ ℓ;U = 1}]
= P [{|ν| > ℓ | U = 0}]P [U = 0] +

P [{|ν| ≤ ℓ | U = 1}]P [U = 1] (13)

Let us now use

fWw = N (w, µ, σ2) =
1

σ
√
2π

exp

(
− (w − µ)2

2σ2

)

as the notation to represent the probability density functions

(p.d.f.) of a Gaussian r.v. with zero expected value and variance

σ2. We have then for {|ν| | U = 0} and {|ν| | U = 1} which
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are Gaussian with σ2
0 = α2σ2 and σ2

1 = σ2, respectively, the

conditional probability density functions (p.d.f.)

fν|U=u(w) = N (w, 0, σ2).

Gathering these considerations to calculate the probability in

(13) one get Pd in (6).

The value given in equation (9) is obtained by equating to

zero the derivative of Pd in (6), with respect to λ = ℓ
σ .

The probability qℓ = Pr[ν > ℓ] in (9), in which ν, the sum

in (1), is a r.v., with p.d.f. simply given by the weighted sum

of two Gaussian p.d.f.’s,

fν(w) = pN (w, 0, σ2) + (1− p)N (w, 0, α2σ2). (14)

The expected in (10) follows trivially from the expression of

the p.d.f. in (14).

APPENDIX II: FULL SEARCH ALGORITHM.

The Algorithm 1 describe the calculation needed to find

the BG model of any stochastic process. As described the

algorithm considers the samples of synthetically generated BG

noise. Of course when N samples of a measured noise n[k] are

given the parameter of the model for this process is obtained.
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Algorithm 1: Algorithm to find the BG parameters of

measured PLC noise

initialization: Given the input signal ν[k] (with N
samples):

σ2
ν = 1

N

∑N
i=1 ν[i]

2;

M̂ℓ = 0;

Nq = 0;

set:

pmin;

pmax;

αmin;

αmax;

begin

for pmin ≤ p ≤ pmax do

for αmin ≤ α ≤ αmin do

σ2 = σ2
ν/(p+ α2(1 − p));

λ = α
√

2 ln(αp/1−p)
α2−1 ;

ℓOPT = λ σ;

Mℓ =
2σ√
2π

(p+ α(1− p));

qℓ = 2(pQ(λ) + (1− p)Q(λ/α));
for i = 1 to N do

M̂ℓ = M̂ℓ + |ν[k]|;
if |ν[k]| ≥ ℓ then

Nq = Nq + 1;

end

end

M̂ℓ = M̂ℓ/N ;

q̂ℓ = Nq/N ;

EM = M̂ℓ −Mℓ;

Eq = q̂ℓ − qℓ;
end

end

end

For all the values (p, α) examined, the pair with

EM (p, α) and Eq(p, α) closest to zero is selected.

.


