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On Numerical Robustness of Constrained
RLS-Like Algorithms

Antoénio L. L. Ramos, José A. Apolinario Jr., and Marcello L. R. de Campos

Abstract— A number of Constrained RLS-type algo-
rithms have been recently proposed for linearly con-
strained adaptive applications such as adaptive beamform-
ing. Some of these algorithms, alternatives to employing
the Generalized Sidelobe Canceller structure, claim to be
robust whether for using a special correction term or for
employing numerically stable rotations. Nevertheless, most
of these algorithms diverge in long-run simulations or are
too sensitive to changes in the forgetting factor. This paper
deals with a performance comparison of many Constrained
RLS-like algorithms—including two other fast converg-
ing non-RLS algorithms—and their GSC counterparts
in terms of numerical stability, speed of convergence,
and computational complexity. An efficient and recently
proposed Householder structure is also taken into account
such that the algorithms presenting the most promising
results are summarized and appropriate options for fast-
converging adaptive beamforming applications accrue.

I. INTRODUCTION

Adaptation algorithms satisfying
constraints find application in several areas of
signal processing and communications, including
beamforming, spectral estimation, and multiuser
detection for communication systems. A robust
and simple algorithm incorporating the constraints
into the solution was first introduced by Frost [1].
This algorithm, like its unconstrained counterpart,
suffers from slow convergence when the input signal
is highly correlated. As an attempt to overcome this
drawback, a number of Constrained Recursive Least
Squares (CRLS)-like algorithms have been recently
proposed. Because of the well known weak numerical
performance of the conventional RLS-based algorithms,
some of these new CRLS-based algorithms, alternatives
to the use of the Generalized Sidelobe Canceller
(GSC) structure [2], use special correction terms [3]
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or numerically stable rotations [4] to claim robustness.
Nevertheless, when running simulations with a
considerably large number of samples in the same
scenario described in [4], most of these algorithms
diverge. It was also observed that the performance of
these algorithms is strongly affected by slight variations
on the forgetting factor.

This paper deals with the performance of Constrained
RLS-like algorithms—we include two other non-RLS
but fast-converging algorithms, videlicet, the Constrained
Conjugate Gradient (CCG) algorithm [5] and the Con-
strained Quasi-Newton (CQN) algorithm [6]—and their
GSC counterparts in terms of speed of convergence,
numerical stability, and computational complexity. A
Householder structure, recently proposed in [7] as an al-
ternative implementation for Linearly Constrained Min-
imum Variance (LCMV) filters, is also taken into con-
sideration and the best results are summarized. These
results point out the most appropriated options for fast-
converging adaptive beamforming applications.

The paper is organized as follows. Section Il presents
the results of extensive computer simulations showing
the convergence and divergence of the severals Con-
strained RLS-like algorithms. A comparison in terms
of speed of convergence and computational complexity,
only for those algorithms with good numerical perfor-
mance, is presented in Section Ill. In Section IV, some
implementation issues of the algorithm attaining the
best performance are detailed. Finally, conclusions are
summarized in Section V.

Il. PERFORMANCE EVALUATION OF THE
ALGORITHMS

This section performs an evaluation, in an adaptive
beamforming scenario, of the following algorithms: the
Constrained Recursive Least Squares (CRLS) [3], the
Constrained QRD-RLS (CQRD-RLS) [8], and the Con-
strained Inverse QRD-RLS (CIQRD-RLS) [4] algo-
rithms, from the RLS family, and two other fast-
converging algorithms, the Constrained Conjugate Gra-
dient (CCG) [5] and the Constrained Quasi—-Newton
(CQON) [6] algorithms. Each of the above algorithms has
both a GSC and a Householder counterpart which will
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Fig. 1. Convergence of different Constrained, GSC, Householder
RLS-like algorithms.

be referred to by adding the appropriate prefix (GSC
or HC). As an example, for the CRLS algorithm, we
have GSC-RLS and HCRLS. We should emphasize that,
whether in the GSC or in the Householder structure, one
uses an unconstrained version of each algorithm which,
in our case, are the conventional RLS algorithm [9],
the Conjugate Gradient (CG) algorithm [10], the Quasi—
Newton (QN) algorithm [11], the conventional QRD-
RLS algorithm [9], and the Inverse QRD-RLS (IQRD-
RLS) algorithm [12].

The performances of the algorithms are evaluated
here concerning their stability; in the following section,
their computational complexity and interference rejection
capability will be addressed.

In our adaptive beamforming experiment, we have
used, as in [4], a linear array of 7 sensors (isotropic
antennas) with a look-direction set to 0° and three
jammers (interferers) with incident angles corresponding
to —25°, 45°, and 50°. The signal-to-noise ratio (SNR)
was set to 0dB and jammer-to-noise ratios (JNR) of
30dB were used. The forgetting factor (\) was set to
0.98.

I1l. COMPARING THE PERFORMANCE OF THE
ROBUST ALGORITHMS

During the simulations, it has been observed that all
versions of the Constrained RLS algorithms presented in
[3] are very unstable as well as their GSC and House-
holder counterparts. Even the Constrained Inverse QRD-
RLS [4] algorithm, which was claimed to be numerically
more stable than the conventional CRLS algorithm, suf-
fers from numerical instability, in LCMV applications.
After 100 runs of 2 x 10* samples each, it can be
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Fig. 2. Learning curve during transient.

observed from Fig. 1 that only few algorithms do not di-
verge: the Constrained Conjugate Gradient algorithm [5],
its GSC and Householder Constrained counterparts (us-
ing the unconstrained version as described in [10]),
the Constrained QRD-RLS algorithm of [8], the GSC
and Householder Constrained QRD-RLS [7], [9], and
the GSC and Householder Constrained Inverse QRD-
RLS [7], [12] algorithms. It is worth mentioning that
the Constrained QRD-RLS algorithm of [8], although
not diverging, is merely an MVDR (Minimum Variance
Distortionless Response) that makes its use restricted to
this kind of environment, i.e., when there is no reference
signal and the gain vector equals to scalar one.

Even though not appearing in Fig. 1, other 10 inde-
pendent runs of 6 x 105 samples each were carried out
and the well-behaved algorithms did not show any sign
of divergence.

It is interesting to note that, regardless the value of
the forgetting factor ()\), those algorithms presenting
diverging behavior always diverged. In the experiment
replicated here from [4], we have varied the value of this
constant and observed that, sooner or later, all algorithms
presenting instability in Fig. 1 diverged, including the
Constrained Inverse QRD-RLS algorithm (note that [4]
does not mention the value of A\ used).

Another remark is that the algorithm introduced in
[4] (CIQRD), when compared to the GSC-Inverse QRD-
RLS algorithm, does not follow identical learning curves
in the first samples (transient), as somehow expected,
at least for the case of an orthogonal blocking matrix.
Moreover, for those algorithms that converged, their
GSC implementations were identical to the Householder
Constrained versions as long as BB = 1.

Convergence curves of the numerically robust algo-
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TABLE |
COMPUTATIONAL COMPLEXITY OF THE MOST ROBUST ALGORITHMS (COM PLEX OPERATIONS).

ALGORITHM | MULTIP. [ DIVIS] [ SQRTS
CCG MJ(6MJ +2p +8) + 1 1 0

HCCG (MJ —p)(5MJ —5p+9) — p(p —2MJ —2) + 1 1 0
HCQRD-RLS MID) (13MJ —11p +17) + (2MJ — p+ 2)p + 1 2(MJ — p) MJ—p
HCIQRD-RLS | MI=p) 4 (A1] — p)(5MJ —Bp+7) + p@MJ —p+1)+2 | 2(MJ —p)+1 | MJ —p
GSC-CG MJ(TMJ —12p+9) +p(5p — 8) + 1 1 0
GSC-QRD-RLS | (MJ — p)(6MJ —5p+9) + MJ +1 2(MJ — p) MJ—p
GSC-IQRD-RLS | M=l 4 (M[.J — p)(6M.J — 5p+7) + M.J + 2 2(MJ —p)+1 | MJ—p
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Fig. 3. Beam patterns for the case of 20 iterations and one single run.

rithms are depicted in Fig. 2 for the first 80 samples.
This figure clearly shows the fast convergence rate of
the QRD-RLS, the IQRD-RLS, and the Constrained
Conjugate Gradient algorithms, along with their GSC
and Householder counterparts, for this experiment.

The computational complexity of the converging algo-
rithms is summarized in Table 1, where M and J stand
for the number of channels and the number of taps of
the filter coefficients, respectively, and p is the humber
of constraints. In order to exemplify the computational
burden for the particular case of the simulations actually
carried out for this paper, Table 2 presents the results for
M=7J=1and p=1.

From these tables, it can be seen that, at least for
this application, the HCCG algorithm presents a good
performance. This algorithm not just attains to minimum
complexity but also, as can be observed in Fig. 3, along
with the CCG, the GSC-CG, the QRD-RLS, and the
IQRD-RLS based algorithms, its beam pattern matches
the optimal quite fast, meaning a good sample support

capability.

TABLE Il
COMPUTATIONAL COMPLEXITY (NUMERICAL EXAMPLE).

ALGORITHM | MULTIP. | DIVIS. | SQRTS
CCG 365 1 0
HCCG 249 1 0
HCQRD-RLS 250 12 6
HCIQRD-RLS 346 13 6
GSC-CG 284 1 0
GSC-QRD-RLS 284 12 6
GSC-IQRD-RLS 381 13 6

IV. IMPLEMENTATION ISSUES OF THE HCCG
ALGORITHM

In this section, we provide some details of the algo-
rithm with the lowest computational complexity as found
in the former section. This algorithm, although never
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TABLE Il1
THEHCCG ALGORITHM.

Available at time instant k:
x(k), C f, and Q
Initialize:
A, pwith (A—0.5) <np <A
6 small number
w(0) = QF = QC(CHC)~If

R=1Iy;—
g(0) = ¢(0) = zeros(MJ — p,1)
for each k
{
x(k) = Qx(k);
Xy (k) = p first elements of X(k);
X1 (k) = MJ — p last elements of X(k);
_ w (O)
R(k) = AR(k — 1) + X (k)X (k)
e(k) =wi (0 0)xy (k) — wi (k=)= (k);
a(k) = " (k)g(k—1)
CH (k)R(k)c(k)+6
g(k) = Ag(k — 1) — a(k)R(k)c(k) — xL (k)" (k);
wi(k)=wp(k— 1)H— ac(k)
B(k) = g(k)k ggvg(i)] 1;3J£§),
} c(k +1) = g(k) + B(k)c(k);

been presented before as a formal algorithm, is actually
a combination of the techniques used in [5] and [7].

The HCCG algorithm is detailed in Table 3. Here,
Cuyxp is the constraint matrix and f,.; is the gain
vector. Q is an orthogonal rotation matrix, constructed
with successive Householder transformations, and it is
used to generate the transformed coefficient vector w(k)
such that w(k) = Qw(k). For more details on how
to compute properly matrix Q and how to multiply
efficiently this matrix by the input vector, the reader is
encouraged to read [7].

V. CONCLUSIONS

In this paper, the performance in a typical LCMV
application of several published versions of the Con-
strained RLS-based algorithms were evaluated. We in-
cluded those that use numerically stable rotations and
two other fast converging constrained algorithms. After
tests with a large number of samples, we have concluded
that only the CCG and the QRD-RLS (both conventional
and inverse versions) when used under special structures
(GSC and HC), have acceptable performance with re-
spect to robustness. This leads to the conclusion that
the use of structures like the GSC and the Householder

are the only viable option so far for Constrained RLS
adaptive filtering.

Among the assessed algorithms, the one that had a
stable performance and a fast convergence in a direct
constrained version was the CCG algorithm.

The Householder Constrained Conjugate Gradient al-
gorithm, for its low computational complexity, was
considered the most suitable option for the partic-
ular adaptive beamforming application implemented.
When used with GSC or Householder structures, the
CG, the QRD-RLS, and the IQRD-RLS algorithms
showed improved robustness and were considered work-
able alternative implementations.
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