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Abstract— General and compact expressions for level crossing
rate and average fade duration of selection combining are
derived. The expressions can be directly applied to any multi-
branch, correlated, non-identical, and unbalanced fading envi-
ronment for which the joint statistics of the envelopes and each of
their time derivatives are known. The general solutions specialize
to simpler calculations for some particular cases. In the derivation
process, novel, generalized, joint crossing rate concepts, consistent
with the statistical theory, are introduced. Simple bounds for the
quantities investigated are also attained, and they are written in
terms of the individual branch measures.

Keywords— Arbitrary fading channels, average fade duration,
level crossing rate, selection combining.

I. I NTRODUCTION

D IVERSITY-COMBINING techniques are widely known
to improve the performance of wireless communication

systems. Among these techniques, selection combining (SC)
is particularly attractive for its implementation simplicity. The
performance of combining algorithms can be evaluated by sev-
eral means including the level crossing rate (LCR) and average
fade duration (AFD) statistics [1], [2], [3], [4]. In [1], exact
closed-form expressions for the LCR and AFD of SC over
an arbitrary number of independent, identically distributed
(iid) Nakagami-m branches were derived. These results have
been extended to independent, but non-identical Nakagami-m
channels in [2], [3]. The Rice fading condition was also
investigated in [3]. However, LCR and AFD expressions for
SC in a correlated fading environment are known only for
dual-branch diversity over Rayleigh channels having the same
mean power [4]. A recent work [5] announced a general
approach for evaluating the impact of fading correlation onthe
LCR and AFD of SC, but the assumptions in it, in fact, lead to
a special case of the general result obtained here (see section
IV-A). In this letter, general and compact expressions for LCR
and AFD of SC are derived. The expressions can be directly
applied to any multi-branch, correlated, non-identical, and
unbalanced fading environment for which the joint statistics
of the envelopes and each of their time derivatives are known.
Novel, generalized, joint crossing rate concepts, consistent
with the statistical theory, are also introduced. Simple bounds
for the output LCR and AFD are attained, and they are written
in terms of the individual branch LCRs and AFDs.

II. SYSTEM MODEL AND PRELIMINARIES

Let Ri(t) be the signal envelope at theith branch,i =
1, 2, . . . ,M . At any instantt the SC scheme picks the branch

The authors are with the Department of Communications, State
University of Campinas, 13083-970 Campinas, SP, Brazil (e-mail:
[michel,candido,gf]@decom.fee.unicamp.br).

with the best signal, so that the combiner output envelopeR(t)
can be written as1

R(t) = max
i∈{1,...,M}

Ri(t) (1)

(For the sake of clarity, from this point on the time variable
shall be omitted.)

The LCR of a random signal is defined as the average
number of upward (or downward) crossings per second at a
given level. The LCRnR(r) of the combiner output envelope
R at levelr is given by

nR(r) =

∫ ∞

0

ṙpR,Ṙ(r, ṙ)dṙ (2)

where pR,Ṙ(·, ·) is the joint probability density function
(JPDF) ofR and its time derivativeṘ. The AFD is defined as
the mean time a random signal remains below a given level
after crossing it in the downward direction. In this case, the
AFD TR(r) of R at levelr is given by

TR(r) =
PR(r)

nR(r)
(3)

wherePR(·) is the cumulative distribution function (CDF) of
R.

III. T HE GENERAL SOLUTION

From (1), the JPDF ofR andṘ can be expressed as follows

pR,Ṙ(r, ṙ) =

M
∑

i=1

pRi,Ṙi
(r, ṙ)Pr

[

Ri − chosen|Ri = r, Ṙi = ṙ
]

=
M
∑

i=1

pRi,Ṙi
(r, ṙ)Pr

[

Rj ≤ r, j 6= i|Ri = r, Ṙi = ṙ
]

=

M
∑

i=1

pRi,Ṙi
(r, ṙ)P

Ri|Ri,Ṙi
(r|r, ṙ) (4)

=

M
∑

i=1

∫ r

0

· · ·

∫ r

0

pRi,Ṙi,Ri
(r, ṙ, ri)dri (5)

where Ri, r, ri, dri, pRi,Ṙi
(·, ·), P

Ri|Ri,Ṙi
(· · · |·, ·), and

pRi,Ṙi,Ri
(·, ·, · · · ) denote, respectively, the sets{Rj}

M
j=1,j 6=i,

{r}M−1

j=1
, {rj}

M
j=1,j 6=i, and{drj}

M
j=1,j 6=i, the JPDF ofRi and

its time derivativeṘi, the conditional joint CDF (CJCDF) of
Ri givenRi andṘi, and the JPDF ofRi, Ṙi, andRi. In order
to obtain (5) from (4), the CJCDF in (4) has been expressed as
the integral of the corresponding conditional JPDF (CJPDF)
from which the Bayes’ rule has been applied.

1The branches are assumed to have identical noise power.
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Inserting (5) into (2) and rearranging the order of the
operations, we obtain the general, compact expression for the
LCR of SC as

nR(r) =

M
∑

i=1

NRi,Ri
(r, r) (6)

where

NRi,Ri
(r, r) ,

∫ r

0

· · ·

∫ r

0

nRi,Ri
(r, ri)dri (7)

can be understood as a LCR joint cumulative function
(LCRJCF) ofRi andRi; and

nRi,Ri
(r, ri) ,

∫ ∞

0

ṙpRi,Ṙi,Ri
(r, ṙ, ri) dṙ (8)

as the corresponding LCR joint density function (LCRJDF),
so that the marginal LCRnRi

(·) (LCRM) of Ri, i.e. each
individual branch LCR, can be calculated by

nRi
(r) =

∫ ∞

0

· · ·

∫ ∞

0

nRi,Ri
(r, ri)dri

= NRi,Ri
(r,∞) (9)

where ∞ denotes the set{∞}M−1

j=1
. The LCRJDF and the

LCRJCF constitute a generalization of the usual definition for
LCR as given in (2). The new concepts introduced, namely
LCRJDF, LCRJCF, and LCRM are consistent with the well-
established statistical theory.

The CDF of SC is known to be given by

PR(r) = PR1,...,RM
(r, . . . , r) (10)

whereR1, . . . , RM andPR1,...,RM
(·, . . . , ·) denote the branch

envelopes and their joint CDF (JCDF), respectively. From (3),
(6), and (10) the general, compact expression for the AFD of
SC can be written as

TR(r) =
PR1,...,RM

(r, . . . , r)
∑M

i=1
NRi,Ri

(r, r)
(11)

Note, from (6) and (11), that the general expressions for the
LCR and AFD presented here depend on the joint statistics of
R1, . . . , RM andṘi, i = 1, 2, . . . ,M . TheseM joint statistics
are the only input information required for evaluating the LCR
and AFD of SC over generalized fading channels.

IV. SPECIAL CASES

In this section, (6) and (11) are specialized to some partic-
ular cases for which simplifications are accomplished.

A. Second-Order Independence (SOI)

The SOI assumption concerns the case in which each
envelope time derivativeṘi, i = 1, 2, . . . ,M is independent
of all of the remaining fading envelopesRj , j 6= i. In this
case, (8), (6), and (11) specialize to

nRi,Ri
(r, ri) = pRi|Ri

(ri|r)nRi
(r) (12)

nR(r) =

M
∑

i=1

PRi|Ri
(r|r)nRi

(r) (13)

TR(r) =
PR1,...,RM

(r, . . . , r)
∑M

i=1
PRi|Ri

(r|r)nRi
(r)

(14)

where pRi|Ri
(· · · |·) and PRi|Ri

(· · · |·) are the CJPDF and
the CJCDF ofRi given Ri, respectively. Although for some
cases such as Rayleigh, Rician, and Nakagami-m Ri and
Ṙi are independent random variables, dependence between
Ṙi and Rj , j 6= i may occur in a correlated environment
as demonstrated in [4, Eqn. (21)] for the bivariate Rayleigh
fading. Therefore, the case explored in [5], although claimed
to be the general case, is, in fact, the special SOI case.

B. First-Order Independence (FOI)

The FOI assumption concerns the case in which the en-
velopes are independent random variables. This is a subset of
the previous case. In this scenario, further simplifications can
be attained such that

nRi,Ri
(r, ri) = nRi

(r)

M
∏

j=1

j 6=i

pRj
(rj) (15)

nR(r) =

M
∑

i=1

nRi
(r)

M
∏

j=1

j 6=i

PRj
(r) (16)

T−1

R (r) =

M
∑

i=1

T−1

Ri
(r) (17)

where PRi
(·) and TRi

(·) correspond to the CDF and the
AFD of Ri, respectively. Results (16) and (17) are particularly
interesting for they express the LCR and AFD of the combiner
output as functions of the LCRs and AFDs of the individual
input branches. The result in (16) coincides with [6, eq.
(2)], and if applied to Nakagami-m or Rice fading branches
— whose individual PDFs, LCRs, and AFDs are known —
directly leads to the LCR expressions presented in [2], [3].
On the other hand, although [2], [3] have also obtained AFD
expressions of SC in the aforementioned fading conditions,
their results are for particular fading environments. The result
of (17) is, in fact, the general solution, and to the best of the
authors’ knowledge, this result is new.

C. Commutative Joint Statistics (CJS)

The CJS assumption concerns the case in which any joint
statistical function involving a subset of{Ri, Ṙi} and a
subset of{Rj , Ṙj}, j 6= i, does not alter if the subscripts
are interchanged. This is the case of identically distributed,
identically correlated fading processes. Note that the required
interchangeability comprises not only the fading envelopes
themselves but also their time derivatives, since the latter is
an integral part of the general formulae (6) and (11). In this
case, these formulae specialize to

nR(r) = MNRi,Ri
(r, r) (18)

TR(r) =
PR1,...,RM

(r, . . . , r)

MNRi,Ri
(r, r)

(19)

for any i ∈ {1, 2, . . . ,M}. In [4, eq. (8)], the LCR of SC for
the identical dual-branch Rayleigh fading scenario is provided



XXI SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇ̃OES-SBT’04, 06–09 DE SETEMBRO DE 2004, BELÉM, PA

as the sum of two double integrals. Our result (18) states that
only one of these integrals must be actually evaluated, because
they are identical.

D. Independent, Identically Distributed (IID)

The IID assumption comprises the intersection of the cases
in sections IV-B and IV-C, leading to the well-known simple
solution

nR(r) = MnRi
(r)PM−1

Ri
(r) (20)

TR(r) =
TRi

(r)

M
(21)

for any i ∈ {1, 2, . . . ,M}. Note clearly that the output AFD
is reduced by a factor ofM if compared to the AFDs of the
input branches.

V. PERFORMANCEBOUNDS

Since the event{Ri = r, Ṙi = ṙ} is a subset of the event
{Ri ≤ r}, it follows that

PRi|Ri
(r|r) ≤ FRi|Ri

(r|r) (22)

whereFRi|Ri
(· · · |ri) is the CJCDF ofRi given thatRi ≤ ri.

Therefore, from (4) and (22)

pR,Ṙ(r, ṙ) ≤

M
∑

i=1

pRi,Ṙi
(r, ṙ)FRi|Ri

(r|r) (23)

Substituting the right-hand side of (23) into (2), we obtain

nR(r) ≤
M
∑

i=1

FRi|Ri
(r|r)nRi

(r) (24)

as the upper bound for the LCR ofR. Noting thatFRi|Ri
≤ 1,

a less tight bound can be written as

nR(r) ≤

M
∑

i=1

nRi
(r) (25)

Combining (24) with (3) and (10), the lower bound for the
AFD of R is found as

T−1

R (r) ≤

∑M

i=1
FRi|Ri

(r|r)nRi
(r)

PR1,...,RM
(r, . . . , r)

≤

M
∑

i=1

PR1,...,RM
(r, . . . , r) nRi

(r)

PRi
(r)PR1,...,RM

(r, . . . , r)

≤

M
∑

i=1

nRi
(r)

PRi
(r)

≤
M
∑

i=1

T−1

Ri
(r) (26)

The equality in (26) corresponds to (17), i.e., it is attained
in case the branches are independent from each other. Fur-
thermore, note that the lower bound of the AFD for SC is a
function of the individual branch AFDs only.

An upper bound can also be found for the output AFD.
This is obtained for the case in which the branch envelopes are
weighted versions of a same signal (fully correlated branches).

In this case, the branch with the highest root mean square value
— thus with the smallest AFD — is always selected as the
combiner output, i.e.

T−1

R (r) ≥ max
i∈{1,2,...,M}

T−1

Ri
(r) (27)

Combining (26) with (27), the absolute bounds of the output
AFD for SC are obtained as

max
i∈{1,2,...,M}

T−1

Ri
(r) ≤ T−1

R (r) ≤

M
∑

i=1

T−1

Ri
(r) (28)

VI. CONCLUSIONS

All the results presented in this letter arises from the formu-
lation of the output JPDF ofR and Ṙ as a weighted sum of
the input JPDFs ofRi andṘi, i = 1, 2, . . . ,M . This paradigm
leads to a general unified treatment for calculating the LCR
and AFD of multi-branch SC over arbitrarily correlated, non-
identical fading channels. For some particular cases, the gen-
eral solutions are specialized to simpler expressions. Simple
and straightforward bounds of the output LCR and AFD are
derived in terms of the individual branch LCRs and AFDs.
A well-accepted result which can be directly verified from
the formulations is that the best performance is achieved with
independent diversity branches, deteriorating as the correlation
among them increases.
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