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The General Solution for Crossing Rates and Fade
Durations of Selection Combining

Jo Candido S. Santos Filho, Michel D. Yacoub, and Gustavo Fraidemrai

Abstract— General and compact expressions for level crossing with the best signal, so that the combiner output envel@fig
rate and average fade duration of selection combining are can be written as
derived. The expressions can be directly applied to any multi-
branch, correlated, non-identical, and unbalanced fading envi- R(t) = max R;(t) Q)
ronment for which the joint statistics of the envelopes and each of i€{l,....M}

their time derivatives are known. The general solutions specialize (For the sake of clarity, from this point on the time variable
to simpler calculations for some particular cases. In the derivation . ’
shall be omitted.)

process, novel, generalized, joint crossing rate concepts, castent . . i
with the statistical theory, are introduced. Simple bounds for the ~ The LCR of a random signal is defined as the average
quantities investigated are also attained, and they are written in number of upward (or downward) crossings per second at a

terms of the individual branch measures. given level. The LCRup(r) of the combiner output envelope
Keywords— Arbitrary fading channels, average fade duration, R at levelr is given by

level crossing rate, selection combining. o
na(r) = / ()i )
0

I. INTRODUCTION

IVERSITY-COMBINING techniques are widely known WNere pg ;(-,) is the joint probability. density function
D to improve the performance of wireless communicatioffPDF) OfR and its time derivativéz. The AFD is defined as
systems. Among these techniques, selection combining ($@§ mean time a random signal remains below a given level
is particularly attractive for its implementation simptic The after crossing it in the downward direction. In this case th
performance of combining algorithms can be evaluated by sé¥D Tr(r) of It at levelr is given by
eral means including the level crossing rate (LCR) and ayera Pg(r)
fade duration (AFD) statistics [1], [2], [3], [4]. In [1], exct Tr(r) =20 @)
closed-form expressions for the LCR and AFD of SC over ) . o .
an arbitrary number of independent, identically distrétalit where Pg(+) is the cumulative distribution function (CDF) of
(iid) Nakagamim branches were derived. These results have
been extended to independent, but non-identical Nakagami-
channels in [2], [3]. The Rice fading condition was also ll. THE GENERAL SOLUTION
investigated in [3]. However, LCR and AFD expressions for From (1), the JPDF oR andR can be expressed as follows
SC in a correlated fading environment are known only for "
dual-branch diversity over Rayleigh channels having threesap A7) = pp g (r,7)Pr [Ri — chosen|R; = r, R, = 7;}
mean power [4]. A recent work [5] announced a generaf® —

approach for evaluating the impact of fading correlatiortten

M

LCR and AFD of SC, but the assumptions in it, in fact, lead to - ZPR- i (r,7)Pr [Rj <rj#ilRi=r R = T-.}

a special case of the general result obtained here (seersecti -

IV-A). In this letter, general and compact expressions fGRL M

and AFD of SC are derived. The expressions can be directly = ZpRi,Ri (r,r‘)PRilRi,Ri (r|r,7) 4

applied to any multi-branch, correlated, non-identicaid a i=1

unbalanced fading environment for which the joint statssti M e

of the envelopes and each of their time derivatives are known = Z / : -/pRi,Ri’Ri (r,7,r;)dr; (5)

Novel, generalized, joint crossing rate concepts, coesist =170 70

with the statistical theory, are also introduced. Simplerf@s \where R;, r, r;, dr;, Pro e, () Py, ig, i, ]5), and

for the output LCR and AFD are attained, and they are written . (.. ...} denote, respectively, the set®;} , .,

in terms of the individual branch LCRs and AFDs. oo M i
{rhiz {rj}jzl’j#, and{dr;};Z, ;. the JPDF ofR; and

its time derivativeR;, the conditional joint CDF (CJCDF) of
_ _ , R, givenR; and R;, and the JPDF oR;, R;, andR,;. In order

Let Ri(t) be the signal envelope at theh branch,i = 15 gptain (5) from (4), the CICDF in (4) has been expressed as
1,2,..., M. Atany instant the SC scheme picks the branchy, jnegral of the corresponding conditional JPDF (CJPDF)
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Inserting (5) into (2) and rearranging the order of the Tr(r) = ZRl,...,RJM (ry...,r) (14)
operations, we obtain the general, compact expressiomhéor t > i1 Prir, (xIr)ng, ()
LCR of SC as

where pg,|r, (---|-) and Pgr,|g,(---|-) are the CIPDF and
the CJCDF ofR; given R;, respectively. Although for some

r) ZZNRI-,Ri (r,r) (6) cases such as Rayleigh, Rician, and Nakagami; and
' R; are independent random variables, dependence between
where R; and R;, j # ¢ may occur in a correlated environment
T T as demonstrated in [4, Eqn. (21)] for the bivariate Rayleigh
Ng; R; (1,7 / : / nR; R, (7,1:) dr; (7)  fading. Therefore, the case explored in [5], although ctaim

to be the general case, is, in fact, the special SOI case.
can be understood as a LCR joint cumulative function

(LCRJCF) of f; and R; ar::j B. First-Order Independence (FOI)
ng, R, (1,1;) é/ g o r, (77, 1) d7 (8) The FOI assumption concerns the case in which the en-
0 e velopes are independent random variables. This is a subset o
as the corresponding LCR joint density function (LCRJDF}he previous case. In this scenario, further simplificatioan
so that the marginal LCRug,(-) (LCRM) of R;, i.e. each be attained such that
individual branch LCR, can be calculated by

ng, R, (1,r;) =ng,( HpR ;) (15)
ng,(r) = / / ng, R, (r,r;)dr; =l
= Ng,r,(r, )
= , Pr. 16
where co denotes the se{oo}jM:}l. The LCRJIDF and the na(r) ;nR" (r) J[II 7, () (16)
LCRJCF constitute a generalization of the usual definitmm f g
LCR as given in (2). The new concepts introduced, namely
LCRJDF, LCRJCF, and LCRM are consistent with the well- T (r) = ZTQ(?‘) (17)
established statistical theory. i
The CDF of SC is known to be given by where Pg,(-) and T, (-) correspond to the CDF and the
AFD of R;, respectively. Results (16) and (17) are particularl
Palt) = Pryvoottn (737 (10) hectively (16) and (17) are p 4

interesting for they express the LCR and AFD of the combiner
whereR;, ..., Ry andPg, . g, (-,-..,-) denote the branch output as functions of the LCRs and AFDs of the individual
envelopes and their joint CDF (JCDF), respectively. Frojn (3nput branches. The result in (16) coincides with [6, eq.
(6), and (10) the general, compact expression for the AFD ()], and if applied to Nakagamm or Rice fading branches

SC can be written as — whose individual PDFs, LCRs, and AFDs are known —
Pry iy (1) directly leads to the LCR expressions presented in [2], [3].

Tr(r) = —3r=2" (11) On the other hand, although [2], [3] have also obtained AFD

=1 Nr m, (1) expressions of SC in the aforementioned fading conditions,

Note, from (6) and (11), that the general expressions for ttieeir results are for particular fading environments. Tésuit
LCR and AFD presented here depend on the joint statisticsaff(17) is, in fact, the general solution, and to the best ef th

Ri,....RyandR;,i=1,2,..., M. TheseM joint statistics authors’ knowledge, this result is new.
are the only input information required for evaluating theR.
and AFD of SC over generalized fading channels. C. Commutative Joint Satistics (CJ9
The CJS assumption concerns the case in which any joint
IV. SPECIAL CASES statistical function involving a subset ofR;, R;} and a

In this section, (6) and (11) are specialized to some partigdbset of{R;, R;}, j # 4, does not alter if the subscripts

ular cases for which simplifications are accomplished. are interchanged. This is the case of identically distatut
identically correlated fading processes. Note that theired

A. Second-Order Independence (SOI) interchangeability comprises not only the fading envetope

themselves but also their time derivatives, since therlaste
The SOl assumption concems the case in which eag jniegral part of the general formulae (6) and (11). In this

envelope time derivative?;, i = 1,2,..., M is independent case, these formulae specialize to
of all of the remaining fading envelopeﬁj,j # 4. In this '
case, (8), (6), and (11) specialize to ng(r) = MNg, R, (r,1) (18)
_ P (ry...,7)
nR; R; (7", 1‘7;) = PR,|R; (Iﬂ?") nR; (T) (12) T = —Ri B A\ . 19
Ri|R r(T) MNg, &, (r,1) (19)
M
r) = ZPRAR,: (cr)ng, (r) (13) foranyie {1,2,...,M}. In [4, eq. (8)], the LCR of SC for

the identical dual-branch Rayleigh fading scenario is joied
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as the sum of two double integrals. Our result (18) statets tha this case, the branch with the highest root mean squaue val
only one of these integrals must be actually evaluated,useca— thus with the smallest AFD — is always selected as the
they are identical. combiner output, i.e.
_ o Tél(r) > max Tg_l (r) 27)
D. Independent, Identically Distributed (11D) i€{1,2,...M}
The IID assumption comprises the intersection of the caseembining (26) with (27), the absolute bounds of the output
in sections IV-B and IV-C, leading to the well-known simpleAFD for SC are obtained as

solution al
nr(r) = Mng, (T)Pzg/f_l(f) (20) ie{lrgax M} Tlgil(r) < Tgl(r) < E :TR_il(r) (28)
3Ly i=1
Tg,(r)
T — i 21
r(r) M (21) V1. CONCLUSIONS

foranyi € {1,2,...,M}. Note clearly that the output AFD  All the results presented in this letter arises from the form
is reduced by a factor aof/ if compared to the AFDs of the |ation of the output JPDF of and R as a weighted sum of

input branches. the input JPDFs oR; andR;, i = 1,2, ..., M. This paradigm
leads to a general unified treatment for calculating the LCR
V. PERFORMANCEBOUNDS and AFD of multi-branch SC over arbitrarily correlated, non
Since the even{R; = r, R; = 7} is a subset of the eventidentical fading channels. For some particular cases, ¢ne g
{R; < r}, it follows that eral solutions are specialized to simpler expressionsplgim
and straightforward bounds of the output LCR and AFD are
Pr,|r, (r|r) < FR,g, (r|r) (22) derived in terms of the individual branch LCRs and AFDs.

A well-accepted result which can be directly verified from
the formulations is that the best performance is achieveld wi
independent diversity branches, deteriorating as theslation
among them increases.

wherelg, g, (---|r;) is the CICDF oR; given thatR; < r;.
Therefore, from (4) and (22)
M

Pria(®) <> pp g () Fryr, (tlr)  (23)

=1
Substituting the right-hand side of (23) into (2), we obtain
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< > TR (26)
=1

The equality in (26) corresponds to (17), i.e., it is attdine
in case the branches are independent from each other. Fur-
thermore, note that the lower bound of the AFD for SC is a
function of the individual branch AFDs only.

An upper bound can also be found for the output AFD.
This is obtained for the case in which the branch envelopes ar
weighted versions of a same signal (fully correlated brasgh



