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Resumo—Este trabalho apresenta um novo enfoque para 

wavelets com base no princípio clássico de ‘De Broglie’.  O 

princípio de dualidade onda-partícula é adaptado para wavelets. 

Cada wavelet-mãe contínua é associada com uma densidade de 

probabilidade apropriada, permitindo definir a entropia de 

Shannon de wavelets. Outras definições são também incluídas, 

tais como entropias de Jumarie e Renyi para wavelets. Prova-se 

que todas as wavelets de uma mesma família { }
0≠ab,a )t(ψ  tem a 

mesma entropia de Shannon da wavelet-mãe. Finalmente, a 

entropia de Shannon para algumas famílias convencionais de 

wavelets é determinada. 

 
Palavras-Chave—Wavelets contínuas, dualidade de ‘De 

Broglie’, entropia de Shannon de wavelets. 

 
Abstract—This paper reports a new reading for wavelets, 

which is based on the classical ‘De Broglie’ principle. The wave-

particle duality principle is adapted to wavelets. Every continuous 

basic wavelet is associated with a proper probability density, 

allowing defining the Shannon entropy of a wavelet. Further 

entropy definitions are considered, such as Jumarie or Renyi 

entropy of wavelets. We proved that any wavelet of the same 

family { }
0≠ab,a )t(ψ has the same Shannon entropy of its mother 

wavelet. Finally, the Shannon entropy for a few standard wavelet 

families is determined.  

 
Index Terms—Continuous wavelet, De Broglie duality, 

Shannon entropy of wavelets. 

I. PRELIMINARIES 

ittle has been made for analogue signals in the information 
theory scope as compared to the amazing coverage 

nowadays available for digital signals [1]. This paper is 
precisely focused on this rather unexplored field, taking 
advantage of a fresh and powerful tool: the wavelet analysis 
[2], [3] — that evolved into a specialised branch of the 
modern-day signal processing. 90's witnessed the emergence 
of wavelets, which rapidly reached in practice, thanks to their 
natural feature of concentrating energy in a few transform 
coefficients. This paper intends to introduce a new insight into 
wavelets, which is based on the conventional De Broglie 
duality principle and the statistical interpretation of the wave-
function formulated by Max Born [4]. Two concepts of 
information (logon and Shannon information) are considered 
[5], [6], as well as their relation with entropy. 
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Entropy (Greek: en+trope=in+turning) is one of the most 
fundamental concepts of Science. Since the notion of entropy 
appeared, it has always been surrounded by a halo of 
inscrutability. The well-known German chemistry W. Ostwald 
put it in this way: “Energy is the queen of the world, and 
entropy is her shadow”! It was also told that when Von 
Neumman suggested that Shannon use the word entropy, he 
added, "it will give you a great edge in debates because 
nobody really knows what entropy is anyway" [7]. Quite often 
people hear about entropy the first time when the most 
tantalising problems —such as the origin of the life or the 
future of the universe— are discussed. Schrödinger has 
mentioned [8] that living organisms feed on negative entropy, 
i.e., they drive in the direction of increasing organisation. To 
begin with, a first question is raised: “Is it possible to associate 
an entropy measure with a wavelet"? 
  Jumarie [9] introduced entropy associated with a given 
continuous differentiable function f:Ω⊆ R→ R as (R denotes 
the real set) 

( )

∫
∫

Ω

Ω=Ω
dx|)x('f|

dx|)x('f|log.|)x('f|
:)(.);f(H .           (1) 

As a first attempt, the entropy of a continuous differentiable 
wavelet ψ:R → R  can be defined by 

H(ψ;R ):=
( )

∫

∫
∞+

∞−

+∞

∞−

dt|)t('|

dt|)t('|log.|)t('|

ψ

ψψ
.             (2) 

The seminal Max Born footnote for interpreting the solution 
of Schrödinger equation in quantum mechanics is applied here 
in the wavelet framework. As a consequence, it is suggested 
that wavelets can behave as some kind of little particle 
(corpuscle of a true random nature). Bearing in mind that the 
square of the wave-function is a probability density, we 
propose — in a parallel way — to associate a probability 

density function (PDF) )t()(pt
2 : ψψ =  with every basic 

continuous wavelet )t(ψ . Given that Fourier transform is an 

isometric transform, we can go further anchored in the 
Parseval identity and propose to associate ψ with an additional 

density function expressed by 
2

2

1
 : )w()(p f Ψ=
π

ψ , where 

Ψ(w) is the Fourier transform of ψ(t). The fundamental 
challenge is to determine the behaviour of a corpuscle when its 
freedom of motion is limited by the action of external forces: 
each wavelet describes a specific situation.  
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It can be therefore stated that: "wavelets are to corpuscle as 
wave-functions are to particles." After unveiling such 
probabilistic properties associated with wavelets, it is intuitive 
to set up another concept: the Shannon entropy associated to a 
wavelet as a measure of the disorder of a signal. The entropy 
of a random variable can be defined in the discrete case as well 
as in the continuous case [10], [11]. In the later case, the so-
called Shannon differential entropy of a random variable X 
with probability density p(x) is defined by 

dx)x(plog)x(p:)X(H ∫
+∞

∞−
−= .        (3) 

The information unit depends on the base of the logarithm. 
For the sake of convenience, shannon (binary unit) is adopted 
through this paper for the information unity1. According to the 
above vindication, the entropy of a wavelet can be measured 
by: 
Definition 1:  (Shannon entropy of a wavelet). The time 
entropy, Ht(ψ), of a continuous wavelet ψ(.) is defined by 

  ( )dt)t(log)t(:)(Ht ∫
+∞

∞−
−= 2

2
2 ψψψ ;               (4)  

In an parallel way, the frequency entropy, Hf(ψ), of a 
continuous wavelet ψ(.) is defined by 

 dw)w(log)w(:)(H f ∫
+∞

∞−
ΨΨ−=

2
2

2

2

1

2

1

ππ
ψ .     (5)   

The entropy gives information on the spreading of the 
wavelet, i.e., it furnishes a "localising measure" of the 
corpuscle in a particular domain (time or frequency). The 
probability distribution function associated with the density 

)(pt ψ  is given by ∫ ∞−
=

t
'dt)'t()t(P

2ψ . The time Shannon 

entropy of a wavelet is, therefore, exactly the Jumarie entropy 

of the PDF related to the density )t(2ψ , i.e., 

)(H t ψ =H(P(.),R). For completeness, other "non-shannonian" 

measures such as the Renyi entropy of order s>0 could 
promptly be defined for wavelets [11]: 









−
= ∫

+∞

∞−
'dt)'t(ln

s
:)s/(H s

t
2

1

1
ψψ ,          (6) 

which hold  
)(H)s/(H

s

lim tt ψψ =

→ 1
.         (7) 

Conducting a careful literature search, attempts to connect 
wavelets and entropy were found. In 1999, Quian Quiroga, 
Rosso and Basar have successfully applied a disorder measure 
in neuroscience [12]. Here, the total energy Etot of the signal in 
each time window is calculated as the sum of energies of all 
resolution levels. The relative wavelet energy Pj is computed 
as the ratio between the energy of each level, Ej, and total 
energy of the signal, Etot, in the respective time window. The 
wavelet entropy, SWT, was then defined by  

 
1 Although the attempt to replace the term bit by the term shannon unit, 

used by the International Standard Organization (ISO) in 1975, 
retrospectively had not been very successful. 

( )∑−=
j

jjWT PlnP:S .                 (8) 

The main focus of this tool had specifically been on the 
electroencephalogram analysis [13]–[16]. Thereafter, this 
concept was applied to astronomy with the aim of investigating 
the solar activity [17]. Despite the fact that SWT had been 
referred to as the wavelet entropy up to now, it should not be 
named so. Actually, SWT depends on the analysed signal and it 
is not a solely feature of the wavelet itself. The term "wavelet 
entropy" is thereby somewhat inappropriate, and it should be 
better called as "the entropy of a wavelet decomposition of a 
signal." 

II. ON THE SHANNON ENTROPY OF CONTINUOUS WAVELETS  

The effect of scaling or shifting a mother wavelet on the 
time and frequency entropy is initially examined. 
Proposition 1:  Given a continuous mother wavelet ψ(.) with 
time entropy ( )ψtH  and frequency entropy ( )ψfH , the 

entropy of a daughter wavelet 






 −
=

a

bt

|a|
:)t(b,a ψψ

1 , a≠0 

can be computed by ( ) ( ) alogHH tb,at 2+= ψψ , and 

( ) ( ) alogHH fb,af 2−= ψψ .  

Proof. The first part follows from substituting 








 −
=

a

bt

|a|
)t(b,a

22 1
ψψ in definition 1, and evoking that 

both ψ(.) and ψa,b(.) have normalised energy. The second part 

is derived using ( ) 22 |aw||a||)w(| b,a Ψ=Ψ . � 

The highest time entropy among all supportly compacted 
wavelets is achieved by the Haar wavelet. This is in agreement 
with the fact that maximum entropy of a discrete random 
variable is achieved by a uniform distribution as it can be seen 
by the following proposition: 
Proposition 2: The time entropy of any wavelet of compact 
support is bounded by ( )))((log)( 2 ψψ SupplengthH t ≤ , and 

the bound is only met by the Haar wavelet. 
Proof: Let ))(Supp(length:L ψ= denote the length of the 

support of the wavelet and Llog)(H: t 2−=∆ ψ . Clearly 

dt
)t(.L

log)t(
)(Supp∫ 










=∆

ψ ψ
ψ

22
2 1

.            (9)  

Then  

01
1

2

1
2

2 ≤









−≤∆ ∫ dt
)t(.L

).t(
ln )(Supp ψ ψ

ψ .       (10) 

The upper bound is only achieved by a Haar scaled version 

( )tHaar
ba,ψ , where 2))(( /= ψSupplengtha .  � 

Corollary 1: The time Shannon entropy of dBN wavelet is 
bounded by ( )12log)( 2 −≤ NdBNH t .  

This result can equally be translated into the frequency 
domain, deriving, for instance, 
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Corollary 2: The frequency Shannon entropy of the deO 
wavelet [18] is upper bounded by ( )παπ 32 +≤ log)deO(H f .   

A pertinent comment should now be pointed out. According 
to the deterministic approach, in the cases where the wavelet 
waveform is fully known, so is its spectrum. One could argue 
that there is no information in the frequency domain. Now, this 
reasoning is fallacious. If the wavelet spectrum is perfectly 
determined, no information is provided in the time domain! 
Instead of this, it seems to be some amount of information in 
both domains —matching with the Gabor uncertainty 
principle. In the probabilistic interpretation offered in this 
paper, even knowing ψ(.) and Ψ(.), it do exists some nonzero 
uncertainty in both time and frequency domain. The global 
entropy would be partially due to the (inherent) time-
uncertainty and partially due to the (inherent) frequency-
uncertainty. The entropy is only added when dealing with 
independent variables. We assume that the mutual information 
between time and frequency domain is zero, i.e., I(ψ;Ψ)= 
Ht(ψ)+Hf(ψ;)-Ht,f(ψ)=0.  

An interesting argument consists of defining the global 
entropy of a wavelet as the sum of the entropy in both 
domains. Formally,  
Definition 2: (Global entropy of a continuous wavelet). The 
global entropy of a wavelet ψ(.) is defined by 

)(H)(H:H ft ψψψ += .          (11) 

A direct property follows from such a definition: every 
daughter wavelet has the same global entropy of the mother 
wavelet, some sort of conservation principle. It follows then 
Corollary 3:  The global entropy is preserved within the same 
wavelet family { }

R∈≠ b,ab,a )t(
0

ψ  so we are able to find a 

unique entropy value associate to a wavelet basis.  
Thermodynamic concepts of entropy are always related to 

the temperature. Particularly, common units for entropy are 
Joule.K-1 and cal.K-1. Having defined the entropy of wavelets, 
another concept of interest could be the "temperature of a 
wavelet". This modus operandi suggests computing the 
temperature as the ratio between energy and entropy of the 

wavelet, i.e., ψψψ HE:T = , where ∫
+∞

∞−
= dttE )(: 2ψψ is the 

energy of the wavelet. For instance, the temperature of the 

complex Morlet wavelet is o
CMor .T 32320≅ , that is hotter than 

the mexican hat wavelet ( o
Mexh .T 27000≅ ), and Haar wavelet 

is even colder, o
Haar .T 20060≅ . Since the two densities 

)t(
2ψ  and 

2

2

1
 )w(Ψ
π

 are related via the transform pair 

)w()t( Ψ↔ψ , the time-frequency relationship is disclosed 

on the "partition" of the total uncertainty. The concept of 
isoresolution —freshly introduced [19]— can now be bringing 
into play. Specifically, "Are there wavelets that achieve the 
same entropy in both domain"? A class of signals that hold 
special and nice-looking properties are the invariant signals 
under the Fourier transform. Wavelets that belong to this 

specific class achieve matching time and frequency entropy, 
upholding the earlier idea of isoresolution. Evoking the 
following proposition can easily prove this [19]: 
Proposition 3: Possible eigenvalues of the Fourier transform 
operator are one of the four roots of the unit (±1,±j) 

times π2 . � 

Proposition 4: Isoresolution wavelets hold  
( )ψtH = ( )ψfH .            (12) 

Proof: Fourier eingenfunction wavelets possess 

)w()w( ψπ2=Ψ  and the proof follows. � 

In order to gain insight into this new thought on wavelets, a 
number of standard wavelets were selected (Table I) and we 
plotted both time and frequency density functions associated 
with such wavelets (Figure 1). 
 

TABLE I. 
ANALYTICAL EXPRESSIONS OF SOME CONTINUOUS WAVELETS: 
MORLET, MEXICAN HAT, GAUSS1, SHANNON, HAAR, AND DE 
OLIVEIRA WAVELETS. 
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de Oliveira 
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Time density probability  
function pt(ψ) 

Frequency density probability 
function pf(ψ) 
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Fig. 1.  Time and frequency probability density functions associated to some 
standard wavelets. Plots for: (a) Complex Morlet wavelet; (b) Real Morlet 
wavelet; (c) Mexican hat wavelet;  (d) gauss1 wavelet, (e) Complex Shannon 
wavelet; (f) Real Shannon wavelet; (g) Haar wavelet;  (h) de Oliveira wavelet 
for different roll-off parameters, α=0.1, 0.2, and 1/3 [18]. 
 

It is valuable remarking that CMor and gauss1 are transform-
invariant wavelets; hence achieve isoresolution [19], yielding a 
balanced time and frequency entropy (see Proposition 4). 
Furthermore, Gabor inequality established a lower bound on 
the product between the variances associated with these two 
densities. There might thus exist some uncertainty principle 
between the time and the frequency entropy, i.e., a lower 
bound on ( )ψtH . ( )ψfH . 

Proposition 5. The uncertainty principle for Shannon entropy 

of a wavelet family is given by ( ) ( ) 42 /≥ ψψψ HH.H ft . 

Proof: The minimum of the product ( ) ( ){ }ψψ ψ tt HHH −.  is 

achieved when ( ) 2/= ψψ HH t  so that ( )ψtH = ( )ψfH , 

establishing thereby the bound. � 
The entropy of the wavelets presented in Table I was 

subsequently determined (Table II), displaying how much the 
Morlet wavelet is endowed with wavelet analysis.  The closed 
expression for the entropy of the (complex) Morlet wavelet is 

 ( )elog)(H)(H CMorfCMort πψψ 2== ,        (13) 

so that ( )elogHCMor π2= . The time entropy of the standard 

Haar wavelet is equal to unity as predicted by Proposition 2. 
Alike, the frequency entropy of the complex Shannon wavelet 
is bounded by log2(π) ≅ 1.651496. The frequency entropy of 
de Oliveira wavelet is bounded by Hf(deO)<log2(π+3πα), i.e., 
2.030008 and 2.329568 for α=0.1 and 0.2, respectively 
(referenced at the URL of the author's Website 
http://www.ee.ufpe.br/codec/WEBLET.html). We speculate 
that the minimum entropy Hψ is achieved by a double 
Gaussian distribution (time and frequency domain), which is 
entirely in agreement with the long-standing concept of logon 
by Gabor [6]. In fact, a couple of wavelets are particularly 
significant: Morlet wavelet and Haar wavelet. Inquiringly, 
these were exactly pioneer wavelets!  
 

TABLE II. 
ENTROPY OF SOME WAVELETS: TIME ENTROPY, FREQUENCY 
ENTROPY, AND AREA OF A WAVELET CELL IN THE JOINT t-f PLANE 
AND GLOBAL ENTROPY. WAVELETS: MORLET, SOMBRERO, 
SHANNON, GAUSS1, DE OLIVEIRA AND HAAR.  
 

 
Wavelet 

 

ψ  

 
Time  

entropy 
Ht(ψ ) 

 
Frequency 

entropy 
Hf(ψ ) 

 
Product 

 

Ht(ψ ). Hf(ψ ) 

 
Wavelet 
entropy 
Hψ   

 

CMor 1.547096 1.547096 2.393506 3.094191 

Mor 1.104425 2.547095 2.813075 3.651520 

mexh 1.715098 1.988567 3.410587 3.703665 

Sinc 2.221052 1.651383 3.667807 3.872435 

gauss1 1.937147 1.937147 3.752538 3.874293 

Sha 1.768634 2.651665 4.689824 4.420299 

CdeO α= 

0.1 

0.2 

 

3.045824 

2.915276 

 

1.818698 

1.985887  

 

5.539434 

5.789408 

 

4.864522 

4.901163 

Haar 1.000000 3.985653 3.985653 4.985653 
(All information content measured in shannon units.) 
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A good number of orthogonal wavelets cannot be described 
by analytical expressions, but fairly via filter coefficients [20] 
— Daubechies, Symmlets, Coiflets, or even Mathieu wavelets 
[21]. The Shannon entropy of such wavelets can be found by 
using the so-called two-scale relationship of a multiresolution 
analysis [22], [23]: 

Two-scale relation of the scaling function: 

 ∑
+∞

−∞=

−=
l

l )lt(h)t( 22 φφ .          (14) 

Two-scale relation of the wavelet: 

 ∑
+∞

−∞=

−=
l

l )lt(g)t( 22 φψ .           (15) 

Let Z denote the set of integers. The low-pass H(.) filter of 

the MRA: ∑
∈

−=
Zl

lj
leh:)(H ωω  with 20 =)(H , 0=)(H π . 

The high-pass G(.) filter of the MRA:  ∑
∈

−=
Zl

lj
leg:)(G ωω  

with 00 =)(G , 2=)(G π . For the sake of simplicity, filter 

coefficients will encompass the term 2 , i.e., kk hh
2

1
←  

and kk gg
2

1
← . In these cases,  

122 ===∫ ∑
+∞

∞−
∈

φφ Ehdt)t(
Zk

k ,            (16) 

122 ===∫ ∑
+∞

∞−
∈

ψψ Egdt)t(
Zk

k .            (17) 

The (discrete) probability density of ψ is described by the 

probabilities { }
Zkkg ∈

2 . The MRA wavelet entropy can be 

computed by 

 ( ) ( )∑∑
+∞

−∞=

+∞

−∞=

==
k

kk
k

kkMRA hhggH 2
2

22
2

2 log.log.:)(ψ .    (18) 

 
TABLE III. 

TIME ENTROPY OF SOME ORTHOGONAL WAVELETS DEFINED BY 
MRA FILTERS. WAVELETS OF COMPACT SUPPORT: DAUBECHIES, 
SYMMLET WAVELETS WITH N=1,..,4 VANISHING MOMENTS; 
OTHER WAVELETS: COIFLETS N=1, 2 AND ELLIPTIC-CYLINDRICAL 
MATHIEU WAVELET WITH PARAMETERS ν AND q . 

 

 

N 

Daubechies 

HMRA(dBN) 

Symmlet 

HMRA(symN) 

 

N 

Coiflet 

HMRA(coifN) 

 

v ; q  

Mathieua 

HMRA(mthvq) 

1 1.000000 1.000000 1 1.183011 v = 1  
q = 5 

 
2.097353 

2 1.165857 1.165857 2 1.376543 v = 5  

q = 5 

 
1.739816 

3 1.397665 1.397665    

4 1.447745 1.345513 

 

   

(All information content measured in shannon units.) 
a estimate derived by considering finite impulse response filter approximation. 

 
Let H2(p):=-p.log2p-(1-p).log2(1-p) be the Shannon binary 

entropy [6]. The Shannon entropy of the dB1 wavelet (Haar), 

which is described by 








2

1
 

2

1
, is 

( ) ( ) 12121 =/== HH)(H HaardBMRA ψψ  as expected. For dB2, 

whose filter coefficients are given by 

 










 −−++
 

24

31
 

24

33
 

24

33
 

24

31
,            (19) 

the entropy is =)(H dBMRA 2ψ 1.16585703. Values of the 

Shannon entropy for a few orthogonal wavelets defined by 
MRA filters are presented in the table III. The bound derived 
for supportly compact wavelets (Proposition 2) can be checked 
without effort. We hypothesize from (17) and table III that 
HMRA(ψ) is probably the same as Ht(ψ).   

III. CONCLUDING REMARKS  

  Wavelet is a body of knowledge of enormous fascination 
and far-reaching utility in signal processing, which is 
advancing at an astonishing pace. Mimicking the quantum 
mechanics approach, each of (continuous) wavelets is 
associated with two probability density functions — one on the 
time domain, and another on the frequency domain. 
Consequently, the Shannon entropy and Renyi entropy of a 
wavelet were defined. We derived some sort of entropy 
conservation principle, which stated that wavelet versions 
resulting from the same mother wavelet retain the same 
Shannon entropy. The logical consistency of the mélange of 
claims throughout this paper provides certain evidence on the 
worthiness of our approach. The emphasis of this paper was on 
conveying the chief ideas as opposed to presenting a formal 
mathematical development or applications. Indeed, much was 
left to be investigated. Despite the fact that a mere trough draft 
of this technique had been outlined, it instigates certain 
expectation on both theoretical and practical information 
theory outcome related to wavelet analysis (e.g. wavelet 
compression can be carried out on wavelet-based information-
theory-oriented algorithms not on the energy.) We foresee that 
our attempt to present the underlying philosophy of behind the 
‘wavelet information theory” may help users navigate the 
ocean of wavelets. 

ACKNOWLEDGMENT 

The author is obliged to Professor Valdemar C. da Rocha Jr 
(head of the IEEE-IT Chapter–Brazil Council), who was 
permanently fine at creating an exceptional atmosphere of 
enthusiastic, inspiring interest in IT. 

REFERENCES 

[1] T. M. Cover, J. A. Thomas, Elements of Information Theory, John 
Wiley, 1991. 

[2] M. Vetterli, J. Kovačević, Wavelets and Subband Coding, Englewood 
Cliffs: Prentice-Hall, NJ, 1995. 

[3] H. M. de Oliveira, Análise de Sinais para Engenheiros: Wavelets, (in 
Portuguese). São Paulo: Editora Manole, ISBN 85-204-1624-1, 2004 (in 
press).  

[4] A. Beiser, Concepts of Modern Physics, New York: McGraw-Hill Series 
in Fundamental Physics, 1994.  



XXI SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES-SBT’04, 06- 09 DE SETEMBRO DE 2004, BELÉM - PA 

 

[5] D. Gabor, “Theory of Communications”, J. IEE (Londres), vol. 93, pp. 
429-457, 1946. 

[6] C. E. Shannon, A Mathematical Theory of Communication, Bell System 
Tech. J., vol. 27, pp. 379-457 and pp. 623-656, 1948.  

[7] J. Bricmont, Science of Chaos or Chaos in Science? In: The Flight from 
Science and Reason, Annals of the New York Academy of Sciences, 
vol. 775, Eds. P.R. Gross, N. Levitt, and M.W. Lewis, 4th printing, pp. 
131-175, 1998. 

[8] E. Schrödinger, What is life? [Reprinted in: What is Life and Other 
Scientific Assays, New York: Double-day Anchor Books, 1956.] 

[9] G. Jumarie, Further Results on the Information Theory of Deterministic 
Functions and its Application to Pattern Recognition, Annales des 
Télécommunic., vol.45, n.1-2, pp. 66-68, Feb., 1990. 

[10] A. N. Kolmogorov, On the Shannon Entropy of Information Theory in 
the Case of Continuous Signals, IEEE Trans. on  Info. Theory, pp. 102-
108, Sept., 1956. 

[11] G. Battail, Théorie de l'Information: Application aux techniques de 
communication, Paris: Masson, 1997. 

[12] R. Quian Quiroga, O. A. Rosso, and E. Basar, Wavelet Entropy: A 
Measure of Order in Evoked Potentials, EEG Suppl., pp. 298–302, 
1999. 

[13] R. Quian Quiroga, O. A. Rosso, E. Basar, and M. Schürmann, Wavelet 
Entropy in Event-related Potentials: A New Method Shows Ordering of 
EEG Oscillations. Biol. Cybern. vol. 84, pp.291-299, 2001. 

[14] O. A. Rosso, S. Blanco, J. Yordanova, V. Kolev, A. Figliola, M. 
Schürmann, and  E. Basar, Wavelet Entropy: A New Tool for Analysis 
of Short Time Brain Electrical Signals. J. Neurosci. Meth. vol. 105, pp. 
65-75, 2001. 

[15] J. Yordanova, V. Kolev, O. A. Rosso, M. Schürmann, O. W. Sakowitz, 
M. Özgören, and E. Basar, Wavelet Entropy Analysis of Event-related 
Potentials Indicates Modality-independent Theta Dominance, J. 
Neurosci. Meth. vol. 117, pp.  99-109, 2002. 

[16] R. Hornero, D.E. Abásolo, and P. Espino, The Use of Wavelet Entropy to 
Compare the EEG Background Activity of Epileptic Patients and 
Control Subjects, in Proc. Seventh Int. Symp. on Signal Processing and 
Its Applications, vol. 2, July 1-4, pp. 5-8, 2003. 

[17] S. Sello, Wavelet Entropy and the Multi-peaked Structure of Solar Cycle 
Maximum, New Astronomy, vol. 8, pp. 105–117, 2003. 

[18] H. M. de Oliveira, L. R. Soares, and T. H. Falk, A Family of Wavelets 
and a New Orthogonal Multiresolution Analysis Based on the Nyquist 
Criterion, J. of the Brazilian Telecomm. Soc., Special issue, vol. 18, 
N.1, pp. 69-76, Jun., 2003.  
Available: http://www.ee.ufpe.br/codec/publicacoes.html 

[19] L. R. Soares, H. M. de Oliveira, R. J. S. Cintra, and R. M. Campello de 
Souza, Fourier Eigenfunctions, Uncertainty Gabor Principle and 
Isoresolution Wavelets, in Anais do XX Simpósio Bras. de 
Telecomunicações, Rio de Janeiro, Oct., 2003. 
Available: http://www.ee.ufpe.br/codec/publicacoes.html 

[20] A. Bultheel, Learning to Swim in a Sea of Wavelets, Bull. Belg. Math. 
Soc., vol.  2, pp. 1-46, 1995. 

[21] M. M. S. Lira, H. M. de Oliveira, and R. J. S. Cintra, Elliptic-Cylinder 
Wavelets: The Mathieu Wavelets, IEEE Signal Process. Letters, vol. 
11, n.1, Jan., pp. 52 - 55, 2004. 

[22] S. Mallat, A Theory for Multiresolution Signal Decomposition: The 
Wavelet Representation, IEEE Trans. Pattern Analysis and Machine 
Intelligence, vol. 11, n.7, pp. 674-693, July, 1989. 

[23] B. Jawerth, and W. Sweldens, An Overview of Wavelet Based 
Multiresolution Analyses, SIAM Rev., vol. 36, no.3, pp. 377-412, 1994. 

 
 
 


