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Abstract— This paper present new results and insights on the perfor-

mance of the Affine Projection algorithm, based in the stochastic model
derived in [7]. The new results provide a condition for convergence of the
mean weight vector, a simplified closed form model for the MSE behavior
and a model for the steady-state algorithm performance. Simulation results
illustrate the accuracy of the new results.

I. INTRODUCTION

The least mean squares (LMS) adaptive algorithm and its nor-
malized version (NLMS) are among the most often used al-
gorithms in adaptive signal processing applications. However,
their convergence rates are significantly reduced for non-white
(highly correlated) inputs [1]. Acoustic echo cancellation is one
important application with such input signal characteristics. The
Affine Projection (AP) algorithm was proposed by Ozeki and
Umeda in 1984 [2] as a solution to this problem. The AP al-
gorithm updates the adaptive filter weights in directions that are
orthogonal to the last � input vectors. This update rule whitens
an AR(P) input and increases convergence speed [3]. Thus, AP
is a better algorithm choice than LMS or NLMS for applica-
tions with highly correlated input signals [4]. It has been in-
creasingly employed in applications such as echo cancellation,
channel equalization and noise cancellation.

In spite of the increased interest, quantitative statistical anal-
ysis of the AP is extremely difficult because of the underdeter-
mined least squares solution embedded in the algorithm. Ref-
erence [4] has presented a quantitative analysis of the AP algo-
rithm. The analysis is based upon an independent input signal
model originally proposed in [5] for the analysis of the NLMS
algorithm. However, the independent signal model cannot han-
dle the pre-whitening properties of the AP algorithm. Reference
[6] presented a quantitative analysis for autoregressive (AR)
Gaussian inputs. This analysis follows the work in [3] for ob-
taining the solution of a recursion for the weight error vector
variances. The solution uses previous results for the NLMS al-
gorithm with white inputs. More recently [7] presented a new
statistical analysis for the behavior of the AP algorithm for AR
inputs. Analytical difficulties are avoided for the case of a large
number of adaptive taps compared to the AP algorithm order.
This case allows an assumption similar to the ”independence as-
sumption” [1]. More recently, [8] presented a unified analysis of
the transient behavior of a class of AP algorithms. The analysis
is based on energy conservation arguments. The results obtained
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the input data and are valid for any adaptation step size. The
resulting expressions are in terms of the statistics of the input
data. Such a general model may be used for the derivation of
more specialized models in the future. However, direct use in
system design requires the numerical estimation of the specific
input statistics. The derivation of completely analytical models
for special cases of interest from the results in [8] is still an open
issue.

This paper follows the work in [7]. Starting from the results
derived in [7], new results and insights are obtained on the per-
formance of the AP algorithm for AR inputs. A new stability
condition is determined and a simplified analytical model is de-
rived for the time evolution of the mean-square error (MSE).
The new results lead to a closed form (non-recursive) expres-
sion for the MSE behavior. Finally, an analytical expression is
obtained for the steady-state MSE behavior. Simulation results
are presented which illustrate the accuracy of the derived mod-
els.

The following notation is used in this paper. Scalars are de-
noted by regular lowercase letters; regular uppercase letters are
used for integers such as vector or matrix dimensions; vectors
are all column vectors and are denoted by lowercase boldface
letters. Matrices are denoted by uppercase boldface letters. The
matrix dimensions are either clear from the context or explicitly
given in the text.

II. THE SIGNAL MODELS

The adaptive system attempts to estimate a desired signal�����
	
which is linearly related to the input signal � ���
	 by the

model ����
	��������
�����
	
�������
	
(1)

where
� � ��� � �! � �"$#%#&# � �')( "+* � is the vector of the model

parameters and the random sequence , �����
	.- is independent,
identically distributed (i.i.d.), zero-mean with variance /102 , and
statistically independent of the random input sequence ,&� ���
	.- .�����
	

accounts for measurement noise and modeling errors in (1).
The input sequence ,&� ���
	3- is assumed to be a zero-mean

wide sense stationary AR process of order � and can be used
to model input signals for many practical applications. Thus,,&� ���
	3- is described by

� ���
	��546 7 8 "19
7
� ���;:=<>	
�@?���
	 (2)

where the sequence , ?����
	.- is drawn from a wide sense station-
ary white process with variance /A0B .

A set of C consecutive samples of ,&� ���
	3- can be collected in
a vector equation. Let

�����
	
be a vector of C samples of the AR
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process described in (2). Thus,

�����
	�� 46 7 8 " 9
7 ����� :=<>	A� � ��
	 ��� ���
	�� � � ��
	 (3)

where the matrix
� ���
	 � � ����� :�� 	 #%#&# � ��): � 	 * is a collection

of � past input vectors
� �� :	� 	 � � � ��� :	� 	 #%#&# � �� :
� :C ��� 	 * � and � ���
	 � � ?����
	 #&#%# ?��� : C ��� 	 * � .

The least squares estimate of the parameter vector
�

is given
by: ��
��
	�� � � � ��
	� ���
	 * ( " � � ��
	>�����
	 (4)

where
� � ���
	��=��
	

is assumed of rank � .

III. THE AFFINE PROJECTION ALGORITHM

The weight update equation of the AP algorithm with unity
step size (maximum convergence speed) can be written as [3]1:

� �� ��� 	�� � ���
	1� � ���
	� � ��
	 � ���
	�� ���
	 (5)

where the error signal � ���
	 (a scalar only for unity step size) is
given by� ���
	�� ����
	 : � � ���
	>�����
	 ��� ��� � ��
	A� �����
	 :=� � ��
	>�����
	

(6)
where

� ���
	 � � � ! ���
	�� " ��
	 #&#%# � ' ( " ���
	 * � is the adaptive
weight vector. The vector � ��
	 defines the direction of update,
and is given by: � ��
	 �������
	 :�� ���
	 ��1���
	 # (7)

The order P of the AP algorithm is given by the number of
past input vectors used to estimate ��
���
	 in (4). It is assumed
that the order of the adaptive algorithm is sufficient to model the
input AR process. Thus, the same matrix

� ���
	
is used in (3),

(4) and (7).

IV. STATISTICAL ASSUMPTIONS AND PROPERTIES

The statistical analysis of the AP algorithm behavior requires
the use of statistical assumptions to overcome mathematical dif-
ficulties. The analysis presented in [7] uses the following as-
sumptions:

Assumption A1: The statistical dependence between � ��
	
and

� ���
	
can be neglected;

Assumption A2: � ���
	 and the weight vector
� ���
	

are sta-
tistically independent;

Assumption A3: � ���
	 is a zero mean Gaussian random vec-
tor.

These three assumptions are justified in [7]. Another impor-
tant property derived in [7] is the form of the correlation matrix
of the direction vector � ���
	 . It was shown in [7] that����� ��� , � ��
	 � � ��
	.- � / 0��� ��� C : �C � / 0B � (8) 

Note that (5) corresponds to the update equation of the NLMS algorithm with
unity step size and input !#"%$#& .

V. NEW STABILITY PROPERTY

Defining the weight error vector, ' ��
	 � � ���
	):�� �
and

using (6), (5) can be written as

' ��� �(� 	�� ' ��
	 : � ��
	>� � ��
	� � ���
	 � ���
	 ' ���
	.� � ��
	� � ��
	 � ���
	 ����
	 # (9)

or, equivalently, as [3]

' �� �)� 	 � ' ��
	 : � ��
	 � � ��
	� � ���
	 � ��
	 ' ��
	1� � ���
	� � ���
	 � ��
	 �+* ���
	
(10)

where , �+* ���
	.- is the filtered noise sequence

�,* ��
	 ������
	 : 46 7 8 "
�
9
7 ��
	 ����� : <>	 # (11)

Taking the expected value of (10), it was shown in [7] that
the mean weight error vector behavior can be modeled by the
recursive equation� ,,' ��� ��� 	.- �-� � : �

/ 0� �/. :
0 	 � ��� � � ,1' ���
	.- (12)

where
. � C : � . Now, using (8), (12) becomes� ,1' �� ��� 	.- � � � : �. :�0 � � ,,' ���
	3- (13)

Eq. (12) is the recursion for the mean weight error vector.
Note that (12) establishes a convergence condition as a function
of
. � C : � . The mean weight vector will converge to zero

if 2 � :3��4��/. :50 	 276 � , which leads to the condition
.98;:<4=0

.
Since

.
is an integer, convergence of the mean weight vector

requires . � C : �?>3@ # (14)

Figures 1 to 4 verify the stability condition (14) for a system
identification problem with randomly selected coefficients. The
mean weight and the MSE behaviors are shown for N=64 and
P=61 (within the stability region) in Figs. 1 and 2. Figs. 3 and 4
show the mean weight and the MSE for N=64 and P=63, a case
that violates (14). Figs. 1 and 3 show the squared norm of the
mean weight error vector. The four figures correspond to aver-
ages of 100 runs. These plots clearly show that the algorithm
becomes unstable when (14) is not satisfied.

VI. MEAN SQUARE ERROR BEHAVIOR

The expression for the mean square error (MSE) of the AP
algorithm (5) is given by [7]:� , � 0 ���
	3- �-�A� �5� � � � / 0B tr B �DC � � � ��
	� ���
	 * ( "�EGF � / 02�

tr
� �H���JI ��
	 * #

(15)

where
I ���
	 �?� ,1' ���
	 ' � ���
	.- is the correlation matrix of the

weight error vector and tr
�%K * stands for the trace of a matrix. The
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E{v  (n)}.E{v(n)}

iterations

N=64
P=61

T

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
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Fig. 2. MSE for N=64 and P=61, stable.
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N=64
P=63

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

100

200

300

400

500
dB 

Mean−Square Error 

 iterations 

Fig. 4. MSE for N=64 and P=63, unstable.

behavior of
I ��
	I ��� ��� 	�� I ���
	 : �

/ 0� �/. :
0 	 � I ��
	 ����� � �H���<I ���
	 *� � ���
/ 0� �/. 0 �	0 . 	

� B .C tr
� I ���
	 * � � � : .

C�� � ,1' � ��
	.- � ,1' ���
	.- F� �A� � � � � � / 0B tr B � , � � � ��
	� ���
	 * ( " - F �
� / 02 � ��� #/�� �/. :
0 	%�/. :�� 	 #

(16)

Though (16) provides an excellent prediction of the behavior
of
I ���
	

, it is often more complex than necessary for the im-
plementation of the analytical model. Furthermore, it does not
provide any analytical insight on the steady-state algorithm be-
havior. Using again (8), simpler expressions and useful insights
can be derived from (15) and (16).

A. Transient Behavior

Using
�H��� � / 0� � from (8), the last term of (15) reduces to/ 0� tr

� I ���
	 * . Thus, the MSE is a function of tr
I ���
	

. Defining
the scalars

� � 0. :�0 (17)

� � .
C �/. 0 �	0 . 	 (18)

� � �C �/. 0 �	0 . 	 (19)

� � � � �	� � � � / 0B tr B � , � � � ���
	��=��
	 * ( " - F � (20)

� / 02/ 0� � . :�0 	 �/. :���	 (21)

and using
�H��� � / 0� � , (16) can be written asI ������ 	�� I ���
	 : � I ��
	1� �

tr
� I ���
	 * �� � � ,1' � ���
	3-,� ,,' ���
	3- � � � � # (22)



XXI SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES-SBT’ 04, 06-09 DE SETEMBRO DE 2004, BELÉM PA

Taking the trace of (22) and using the closed form solution of
(12) � ,1' ���
	.- � � � : �. :
0 � ' ��� 	���J� : � 0���� ' ����	 (23)

where ' ��� 	 is a deterministic quantity, yields

tr
� I ������ 	 * � �� : � � C � 	 tr � I ��
	 *� C � � � : � 0	� 0 � ' � ��� 	 ' ����	1� C � # (24)

As ' � ��� 	 ' ����	)� tr
� I ��� 	 * , the solution of (24) can be deter-

mined in closed form as

tr
� I ���
	 * ��C���� : � � C � 	 �

� C � �
( "6
 8 ! ��): � � C � 	 
 � � : � 0 � 0�� � (
 ( "�� E

� tr
� I ��� 	 * � C � � ( "6
 8 ! ��� : � � C � 	 
 #

(25)

Using (25) in (15) with
� ��� � / 0� � yields a closed form expres-

sion for the MSE.

B. Steady-State Behavior

Assuming convergence, the algorithm steady-state behavior
can be determined as the limit as

��� �
of the analytical

model. As
�����

, it can be written that
I ��� �)� 	 � I ���
	 �I��

. Also, ����� ���
� � ,1' ���
	.- ��� from (12). Thus, taking the����� ���

�
of (22) yieldsI�� � �

�
� �

tr
� I�� * � � � � # (26)

Eq. (26) clearly shows that
I��

is a multiple of the iden-
tity matrix, and thus diagonal. Taking the trace of (26) yields
tr
� I � * � C � 4�� � : C � 	 . Using this expression again in (26)

leads, after some algebraic manipulation, toI � ��� � �	� � � � / 0B tr B � , � � � ���
	��=��
	 * ( " - F �
�

�/. � 0 	 / 02� . :���	%�/. �! 	 / 0� � # (27)

Using (27) and
�H��� � / 0� � in (15) gives the expression for the

steady-state MSE" � ��������
� � , � 0 ��
	.- �� � �5� � � � / 0B tr B � , � � � ��
	� ���
	 * ( " - F �

� � � � C �/.�� 0 	�/. :�� 	 � .��! 	 � / 02 #
(28)

Eq. (28) provides an expression for the steady-state MSE of the
AP algorithm. Note that the multiplier # � � ' ��$&%A0 ���$ ( � � ��$&%(' ��) is

Samples (n)

W o

0 20 40 60 80 100 120 140

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Fig. 5. Acoustic impulse response used in exemples.

reduced as
. � C : � increases. Thus, increasing C : �

reduces the steady-state MSE. This is another good reason
(besides computational complexity) to use C+* � in prac-
tical designs. If C * � and C *  

, the steady-state
MSE reduces to

0 # � ��� � ��� / 0B tr , � , � � � ��
	� ���
	 * ( " -.- ) / 02 .
The factor of 2 represents a significant increase in steady-
state MSE in comparison with simpler algorithms such as
NLMS. Using the same arguments provided below (16), the
term /A0B tr , � , � � � ���
	� ���
	 * ( " -/- can be neglected in (28) when
compared to 1, leading to

"10 0 ����� � � � 	 / 02 . This latter result
agrees with the conclusion in [3] that the AP algorithm leads to
an increase in the noise floor /A02 by an extra term

� � � / 02 . It
has not been shown previously that at least 3dB is added to this
increased noise floor, due to the rightmost multiplier in (28).

VII. SIMULATIONS

This section presents simulations to verify the accuracy of the
analytical models given by equations (15), (25) and (28). Sev-
eral simulations have been realized using the derived models.
The examples presented here are representative of the results
obtained. In all cases, the term /A0B tr , � , � � � ���
	��=��
	 * ( " - - has
been neglected in (15), (20) and (28). In the examples, AR( � )
means an autoregressive process of order � , and AP( � �9�

)
means the AP algorithm of order � �;� (using � input vectors
in
� ���
	

). The signal-to-noise ratio of the adaptive system is
defined as 2 C�3 � �4� ��5�6 � / 0� 4 / 02 	 dB, with / 0� obtained from
(8). 2 C�3 �7 �� dB has been used in all examples. The ideal re-
sponse

� �
in each example corresponds to the first C samples

of the measured acoustic response of a room shown in Fig. 5.
This vector is normalized so that

� ����� � � �
.

Figs. 6, 7 and 8 show the MSE behavior obtained from Monte
Carlo simulations of the algorithm (200 runs) and the behavior
predicted by the models (15), (25) and (28). The ragged curves
correspond to the actual algorithm behavior. The smooth curves
show the MSE behavior predicted by (15) and (25). The hori-
zontal lines (indicated as curves (a) in the plots) correspond to
the steady-state MSE predicted by (28). Note that the analyti-
cal model predicts very accurately the algorithm behavior for all
practical design purposes.
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Fig. 6. MSE - AR(1), �  �������� 	 , algorithm AP(3), 
 ���� . Monte Carlo
Simulations (200 runs) .
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VIII. CONCLUSIONS

This paper presented new results and insights on the perfor-
mance of the Affine Projection algorithm, based on the analyt-

ical model derived in [7]. A new mean weight error vector sta-
bility condition was derived and verified through simulations.
A closed form expression was obtained for the transient be-
havior of the second order moments of the weight error vector.
This latter result led to an expression for the steady-state MSE,
which provided new interesting insights on the algorithm behav-
ior. Monte Carlo simulations illustrated the accuracy of the new
theoretical results.
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