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A Simple Approximation to the the κ-µ Phase
Probability Density Function
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Abstract— In this article, a new random variable whose
distribution closely follows that of the exact distribution of
the κ-µ phase distribution is introduced. Whereas the exact
statistics is given in an integral form, the approximate one is
obtained in a simple formulation that can be computed in a very
efficient manner. More interestingly, whereas the exact phase
distribution of the κ-µ model comprises Rice and Nakagami-m
as special cases, as designed, the special cases of the approximate
phase solution are correspondingly Von Mises and, amazingly,
Nakagami-m, obtained in an exact manner.
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I. INTRODUCTION

In wireless communications, an accurate modeling of the
propagating channels is needed for better system design and
performance analysis. In particular, the study of phase beha-
vior is useful in the design of optimal carrier recovery schemes
needed in the synchronization subsystem of coherent receivers
[1].

The κ-µ distribution is a general fading distribution that
encompasses several important fading distributions as special
cases, namely Rice and Nakagami-m [2]. The κ-µ distribution
can be used to represent the small-scale variation of the fa-
ding signal under line-of-sight (LoS) conditions. Its flexibility
renders it suitable to better fit field measurements data in a
variety of scenarios, both for low- [2] and high-order statistics
[3].

Whereas several statistics of the κ-µ fading channel have
been derived in a closed-form fashion, no closed-form has
been found for the probability density function (PDF) of
the phase. This hinders the practicality of using the κ-µ for
studying phase related phenomena. Specifically, finding a set
of parameters of the κ-µ distribution that fits an experimental
curve is a non linear optimization problem that requires the
evaluation of the PDF several times. This calculation can
become prohibitive if the exact integral form is used.

In this paper we introduce a simpler and more computati-
onally efficient approximation for the κ-µ phase PDF, which
yields excellent results for all of the range of the distribution
parameters.
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II. THE κ-µ FADING MODEL

The κ-µ distribution is a general fading distribution that
represents the small-scale variations of the fading signal under
a LoS condition [2].The κ-µ envelope is given by

R2 =

µ∑
i=1

(Xi + pi)
2 +

µ∑
i=1

(Yi + qi)
2, (1)

in which Xi and Yi are independent gaussian processes with
E(Xi) = E(Yi) = 0 and E(X2

i ) = E(Y 2
i ) = σ2 and pi

and qi are the mean values of the in-phase and quadrature
components of the multipath cluster i. In [2] it is shown that

κ = d2/2µσ2 and σ2 =
r̂2

2µ(1 + κ)
(2)

in which r̂ =
√
E[R2] and d2 =

∑µ
i=0 p

2
i + q2i . Let p2 =∑µ

i=0 p
2
i and q2 =

∑µ
i=0 q

2
i . In [4], a phase displacement ϕ

has been established such that ϕ = arg(p+jq). It follows that

p =

√
κ

1 + κ
r̂ cos(ϕ) and q =

√
κ

1 + κ
r̂ sin(ϕ). (3)

Let X be the in-phase and Y be the quadrature part of the
signal (X2 =

∑µ
i=1(Xi + pi)

2 and Y 2 =
∑µ

i=1(Yi + qi)
2).

Let Z denote X or Y and λ denote p or q as required. In [4],
the PDF of Z was derived, and it was found to be

fZ(z) =
|z|

µ
2 exp

(
− (z−λ)2

2σ2

)
Iµ

2 −1

(
|λz|
σ2

)
2σ2|λ|µ2 −1 cosh

(
λz
σ2

) . (4)

The joint PDF of the normalized envelope P and the phase
Θ of the κ-µ model is given as [4]

fP,Θ(ρ, θ) =
1

2
µ2κ1−µ

2 (1 + κ)
µ+2
2 ρµ+1| sin 2θ|

µ
2 | sin 2ϕ|1−

µ
2

× exp
(
−µ(1 + κ)ρ2 − κµ+ 2µ

√
κ(1 + κ)ρ cos(θ − ϕ)

)
×Iµ

2 −1

(
2µ
√
κ(1 + κ)ρ| cos θ cosϕ|

)
×Iµ

2 −1

(
2µ
√
κ(1 + κ)ρ| sin θ sinϕ|

)
× sech

(
2µ
√
κ(1 + κ)ρ cos θ cosϕ

)
× sech

(
2µ
√
κ(1 + κ)ρ sin θ sinϕ

)
.

(5)
In (5), P denotes the normalized envelope rather than the

scaled version found in [4].
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III. THE APPROXIMATE κ-µ PHASE PDF

The phase PDF can be calculated by integrating (5) with
respect to ρ. Unfortunately, no closed-form is known for this
integral.

fΘ(θ) =

∫ ∞

0

fP,Θ(ρ, θ)dρ. (6)

It is possible to find a suitable approximation by looking for
a candidate function g∗(θ) with a similar shape of the exact
phase PDF. By definition, a continuous probability density
function is non-negative and integrates to unitary area over
its domain [5]. If g∗(θ) does not change its sign within its
domain and integrates to a finite, non zero number, it can be
normalized to have unitary area. In that case, f∗

Θ(θ) in (7)
defines a probability density function.

f∗
Θ(θ) =

g∗(θ)∫ π

−π
g∗(t)dt

. (7)

A candidate function is found by approximating the inte-
grand of (6) by a truncated Taylor series and then performing
the integration. Unfortunately that integral does not converge.
A workaround to address this problem is discussed here. First,
the interval of integration is changed,

fΘ(θ) =

∫ 1

0

fP,Θ(x, θ)dx+

∫ ∞

1

fP,Θ(x, θ)dx. (8)

Next, the variable x of the second integral is changed to
y = 1/x, so that y = 0 when x = ∞, y = 1 when x = 1 and
dx = −dy

y2 . Accordingly,

fΘ(θ) =

∫ 1

0

fP,Θ(x, θ)dx+

∫ 1

0

fP,Θ

(
1
y , θ
)

y2
dy. (9)

The dummy variable y is then changed back to x and both
integrals are regrouped under a single integral from 0 to 1.

fΘ(θ) =

∫ 1

0

(
fP,Θ(x, θ)dx+

fP,Θ

(
1
x , θ
)

x2

)
dx. (10)

After fixing θ in (10), the integrand is approximated by
a truncated Taylor series around x. The integration of this
series converges for the Taylor polynomial of degree 1 around
ρ0 = 1, and the resultant expression is shown in (11).

g(θ) =
3

2
µ2κ1−µ

2 (1 + κ)1+
µ
2 | sin 2θ|

µ
2 | sin 2ϕ|1−

µ
2

× exp
(
−µ(1 + 2κ) + 2µ

√
κ(1 + κ) cos(θ − ϕ)

)
×Iµ

2 −1

(
2µ
√
κ(1 + κ)| cos θ cosϕ|

)
×Iµ

2 −1

(
2µ
√
κ(1 + κ)| sin θ sinϕ|

)
× sech

(
2µ
√
κ(1 + κ) cos θ cosϕ

)
× sech

(
2µ
√
κ(1 + κ) sin θ sinϕ

)
.

(11)

Since (11) will be multiplied by a scaling constant, the
terms that are not function of θ can be dropped. The simplified
version of g(θ) is given by (12).

g∗(θ) = κ1−µ
2 | sin 2θ|

µ
2 exp

(
2µ
√
κ(1 + κ) cos(θ − ϕ)

)
×Iµ

2 −1

(
2µ
√
κ(1 + κ)| cos θ cosϕ|

)
×Iµ

2 −1

(
2µ
√
κ(1 + κ)| sin θ sinϕ|

)
× sech

(
2µ
√
κ(1 + κ) cos θ cosϕ

)
× sech

(
2µ
√
κ(1 + κ) sin θ sinϕ

)
.

(12)
The term κ1−µ

2 was maintained because otherwise the
inderterminacy obtained by setting κ → 0 cannot be resolved.
For µ ≥ 0, g∗(θ) is always positive. Hence, a probability
density function can be found by the means of (7). Denote
by O the random variable that has the resulting PDF. Let

S(κ, µ, ϕ) =
(∫ π

−π
g∗(θ)dθ

)−1

. The PDF of O is given by

fO(θ) = S(κ, µ, ϕ) · | sin 2θ|
µ
2 exp

(
2µ
√

κ(1 + κ) cos(θ − ϕ)
)

×Iµ
2 −1

(
2µ
√
κ(1 + κ)| cos θ cosϕ|

)
×Iµ

2 −1

(
2µ
√
κ(1 + κ)| sin θ sinϕ|

)
× sech

(
2µ
√
κ(1 + κ) cos θ cosϕ

)
× sech

(
2µ
√
κ(1 + κ) sin θ sinϕ

)
.

(13)
Numerical evaluations have shown that fO(θ) follows very

closely the exact PDF of the phase of the κ-µ channel. This
approximation has an almost closed-form expression as it
demands only the calculation of a single integral, instead
of one for each point. As a result, it can be computed
substantially faster than the exact phase PDF. In Figures 1
- 4 the approximation of the phase distribution is compared
to its exact value. This comparison shows a close fit between
both formulations.
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Fig. 1. Phase PDF of the κ-µ model. Comparison between exact (solid line)
and approximate (dotted line) solutions.

IV. SPECIAL CASES

As it was discussed, the κ-µ distribution encompasses
several other distributions, including Nakagami-m and Rice.
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Fig. 2. Phase PDF of the κ-µ model. Comparison between exact (solid line)
and approximate (dotted line) solutions.
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Fig. 3. Phase PDF of the κ-µ model. Comparison between exact (solid line)
and approximate (dotted line) solutions.

In this section, the behavior of the approximate expression for
those two special cases is explored.

A. Rice
The Rice distribution is obtained from the κ-µ distribution

by setting µ = 1. It can be obtained by substituting µ = 1 in
(5) and integrating the resulting expression with respect to ρ
from −∞ to ∞, yielding

fΘ(θ)Rice =
exp(−κ)

2π (1 +
√
κπ exp(κ cos2(θ − ϕ)) cos(θ − ϕ)

×[1 + erf(
√
κ cos(θ − ϕ))]).

(14)

The approximate phase PDF is obtained in the same fashion,
by substituting µ = 1 in (13). Surprisingly, this leads to a
rather simple and closed-form expression,

f∗
Θ(θ)Rice =

exp
(
2
√
κ(1 + κ) cos(θ − ϕ)

)
2πI0(2

√
κ(1 + κ))

. (15)
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Fig. 4. Phase PDF of the κ-µ model. Comparison between exact (solid line)
and approximate (dotted line) solutions.

The expression (15) is the PDF of the von Mises distribu-
tion, which can be viewed as a circular analog of the normal
distribution [6]. In Figure 5, exact and approximate solutions
are compared for several values of κ. The parameter ϕ only
shifts the distributions horizontally. The approximate and exact
solutions become closer as κ approaches both zero and infinity.
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Fig. 5. Phase PDF of the κ-µ model. Comparison between exact (solid line)
and approximate (dotted line) solutions for the Rice distribution (µ = 1 ,
ϕ = 0). In this case, the approximate solution is the Von Mises distribution.

B. Nakagami-m

Nakagami-m is a particular case of the κ-µ distribution with
κ → 0. Its phase distribution was derived in [7] and is given
by

fΘ(θ)nak−m =
| sin 2θ|m−1Γ(µ)

2µΓ2(µ/2)
. (16)

Obtaining the approximate expression for the Nakagami-m
case is more complicated, since setting κ = 0 leads to an
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indeterminacy. It can be shown that

lim
x→0

(
x

1
2−

m
4 Iµ

2 −1(ax
1/2)

)
=

(a/2)
m
2 −1

Γ
(
m
2

) . (17)

To solve the indeterminacy, the limit (17) is used in (11)
and then the resulting expression is scaled to unitary area. The
approximation of the phase PDF of the Nakagami-m model
obtained this way reduces to the exact Nakagami-m phase
PDF. This is an interesting result that shows one particular
case in which the proposed approximate phase PDF reduces
to the exact phase PDF.

V. COMPARISON BETWEEN APPROXIMATE AND EXACT
SOLUTIONS

This section shows two measures of the efficiency of the
approximation: the error between exact and approximate solu-
tions and the time needed to compute both formulations. These
two aspects are important to quantify the usefullness of the
approximation. Whereas the latter shows the main advantage
of using an approximation, the former reveals the quality of
the fit between the curves.

The error was measured as the energy of the difference
between the two PDFs,

error =
∫ π

−π

[fκ−µ(θ)− fP(θ)]
2
dθ. (18)

Figures 6 - 8 show the behavior of the error as a function
of the parameters. It reaches its maximum value at κ = 1 and
µ = 1, and it goes down as κ and µ increase. The error is
periodic in relation to ϕ, with period π/2, reaching its lowest
value at odd multiples of π/4.
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Fig. 6. Total squared error between exact and approximate solutions for the
PDF of the phase of the κ-µ process as a function of κ (ϕ = 0).

The CPU time was measured by the Mathematica software
[8]. In Figure 9, the time needed to map the exact and
approximate solutions is given as a function of the number of
points used in the mapping. All the times were measured on
the same computational system. The time needed to calculate
the exact expression is around two orders of magnitude greater
than the time needed to calculate the approximation.
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Fig. 7. Total squared error between exact and approximate solutions for the
PDF of the phase of the κ-µ process as a function of µ (ϕ = π/5).
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PDF of the phase of the κ-µ process as a function of ϕ.

VI. CONCLUSION

In this paper, a new random variable O is described. This
new RV has an almost closed-form expression and can be
computed efficiently. The O random variable was derived as a
simpler approximate solution of the κ-µ phase PDF. Sample
curves comparing both formulations were provided. It is shown
that the proposed approximation of the phase distribution
reduces to the von Mises distribution in the Ricean case. It
is also shown that, in the particular case when κ → 0, the
approximate solution coincides with the Nakagami-m phase
distribution. Finally, a comparison is made between the exact
and approximate expressions. This comparison shows the ove-
rall quality of the fit and the superiority of the approximation
in terms of computational performance.
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