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Relationship Between Supervised and Unsupervised
Criteria for Minimum BER Filtering
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Abstract— In this paper we present a relationship between
supervised and unsupervised criteria for minimum bit error rate
(BER) filtering. A criterion based on the probability density
function (pdf) estimation is used to link the minimum mean
square error (MMSE) criterion and the maximum a posteriori
one in order to obtain a linear filter that minimize the BER. An
important analytical relationship of the three criteria is presented
and analyzed showing that is not possible to achieve minimum
BER without training sequences when the pdf estimation-based
criterion is considered.

Index Terms— Minimum BER, MMSE, blind criterion, pdf
estimation.

I. I NTRODUCTION

Signal processing is a powerful tool on the design of robust
digital communication systems. In particular, the recovering
device, called equalizer, plays a key role on the project since
the interference can damage the transmitted information. Deal-
ing with the mitigation of interference in transmitted signals,
the conception of the equalizer is linked to the choice of an
optimization criterion able to recover the original information
at the receiver.

A classical strategy for the optimization of the equalizer is
the use of a sequence known at the transmitter and the receiver
and transmitted periodically in order to minimize the square
error given by the difference of the transmitted signal and the
recovered one. This is known as the minimum mean square
error (MMSE) supervised criteria [1].

When there is no such known sequence available, an unsu-
pervised, orblind, processing is employed in order to optimize
the equalizer [2]. Blind processing is based on some known
statistical characteristics of the transmitted signal that are used
to estimate the transmitted symbol at the receiver. Even that
most blind algorithm have higher computational complexity
they have a lower information complexity since they require
less information about the signal than supervised strategies.

Despite its frequent use in supervised strategies, the MMSE
is not the optimum solution in practical systems [3]. The
minimization of the bit error rate (BER) is more useful due
to the importance of such measure in practice. Further, it is
known that MMSE does not achieve minimum BER when the
equalizer does not have an appropriate length [4].
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Some works have considered an optimization criterion based
on minimum BER [4-7]. However, they rely on a known
sequence to minimize the criterion. So the following question
arises:when a training sequence is not available or desired
is it possible to perform minimum BER filtering? This paper
aims to provide an answer to this question.

A probability density function (pdf) estimation-based blind
criterion was proposed in [8]. Using a parametric model that
matches the statistical characteristics of the transmitted signal,
the equalizer is designed to minimize the divergence between
the pdf of the equalized signal and such parametric model.

In this paper, we present a relationship that shows that it
is not possible achieve minimum BER using the proposal in
[8]. Using the maximuma posteriori (MAP) criterion, which
minimizes the BER, we derive a relationship between the
MMSE, MAP and the blind criteria proposed in [8]. This
new result shows an important property of the blind filtering
approach when minimum BER is required.

The rest of the paper is organized is follows. Section II
describes the system model. The blind criterion is revisited
in Section III and the relationship of the blind criterion and
minimum BER approach is presented in Section IV. Finally,
our conclusions are stated in Section V.

II. SYSTEM MODEL

The considered base-band system model is depicted in
Figure 1.� ��� � ���� � ��� � �����	
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Fig. 1. Base-band system model.

The discrete transmitted sequence is represented by:

a(n) =




a(n)
...

a(n−N −M + 1)


 , (1)

whereN andM are, respectively, the channel and equalizer
lengths. It is assumed that the independent and identically
distributed (i.i.d) symbolsa(n) ∈ A, which has cardinality
S.
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The channel is represented by a FIR filter given by

h =




h0

...
hN−1


 . (2)

The additive noise denoted in vectorial way byv(n) =[
v(n) · · · v(n−M + 1)

]T
is white, Gaussian, uncorre-

lated from the transmitted sequence and has varianceσ2
v .

The equalizer, which has finite impulse response (FIR)
denoted by

w(n) =




w(n)
...

w(n−M + 1)


 , (3)

is fed by the channels outputsx(n) = x̃(n) + v(n) where

x̃(n) =
N−1∑
i=0

hia(n− i) are the noiseless channel outputs.

The equalizer output is denoted in vectorial representation
by

y(n) = wT (n)x(n), (4)

where

x(n) =




x(n)
...

x(n−M + 1)


 . (5)

This model will be used in the rest of this paper.

III. B LIND CRITERION FORPDF ESTIMATION : A REVIEW

In this section, we present the concepts and model of the
criterion proposed in [8].

Let wideal be an ideal zero-forcing linear equalizer, the
output of which can be written as

y(n) = wT
idealx(n), (6)

where
x(n) = Ha(n) + v(n) (7)

and H is theM × (N + M − 1) convolution matrixof the
channel [9].

Then, using Equation (7) in (6), it is possible to write:

y(n) = (Ha(n) + v(n))
T

wideal

= aT (n)HT wideal + vT (n)wideal

= aT (n)HT wideal︸ ︷︷ ︸
gideal

+vT (n)wideal

= aT (n)gideal + ϑ(n)

= a(n− δ) + ϑ(n),

(8)

wheregideal is the ideal system response,δ is a delay andϑ(n)
is a random variable (r.v.) assumed with independent Gaussian
samples [9].

Equation (8) states that the pdf of the signal on the output
of the equalizer is a mixture of equiprobable Gaussians (since
the transmitted symbols are i.i.d.) given by:

pY,ideal(y) =
1√

2πσ2
ϑ

·
S∑

i=1

exp

[
−|y(n) − ai|2

2σ2
ϑ

]
· p(ai), (9)

where theai are the possible values ofa(n− δ) that are also
symbols of the transmitted alphabetA.

Since the pdf of the equalized signal is known, we desire to
construct a criterion that forces the adaptive filter to produce
signals with the same (or similar) pdf than the ideal one. It is
then interesting to use the well known measure of similarities
between strictly positive functions (such as the pdfs), the
Kullback-Leibler Divergence(KLD) [10].

In order to use the KLD, a parametric model, which is
function of the filter parameters, to provide pdf estimation
it is constructed [9]. A natural choice is the same model of
mixture of Gaussians like the one in Equation (9). Then

Φ(y, σ2
r) = A ·

S∑

i=1

exp

(
−|y(n) − ai|2

2σ2
r

)
· p(ai), (10)

is the chosen parametric model, whereσ2
r is the variance of

each Gaussian in the model and whereA = 1√
2πσ2

r

. In pattern

classification field these kind of parametric functions, which
are used to measure similarities against other functions, are
called target functions[9].

Then, applying KLD to compare Equations (9) and (10)
yields:

Dp(y)||Φ(y,σ2
r
) =

∞∫

−∞

p(y) · ln
(

p(y)

Φ (y, σ2
r)

)
dy

=

∞∫

−∞

p(y) · ln (p(y)) dy −
∞∫

−∞

p(y) · ln
(
Φ(y, σ2

r)
)
dy,

(11)

wherep(y) = pY,ideal(y).
Minimizing (11) is equivalent to minimizing only the

Φ
(
y, σ2

r

)
-dependent term, that is:

JFPC(w) = −E
{
ln
[
Φ
(
y, σ2

r

)]}

= −E
{

ln

[
A ·

S∑

i=1

exp

(
−|y(n) − ai|2

2σ2
r

)]}
.

(12)
The Fitting pdf (FP) criterion corresponds to minimizing

JFPC(w). Furthermore, it is known that minimizing Equation
(12) corresponds to finding the entropy ofy if Φ

(
y, σ2

r

)
=

pY,ideal(y) [11, p. 59].
A stochastic algorithm for filter adaptation is given by:

w(n+ 1) = w(n) − µw∇JFPC(w)

∇JFPC(w(n)) =

S∑
i=1

exp
(
− |y(n)−ai|

2

2σ2
r

)
(y(n) − a∗i )

σ2
r ·

S∑
i=1

exp
(
− |y(n)−ai|

2

2σ2
r

) x,

(13)
whereµw is the step size.

The adaptive algorithm which uses the proposed criterion
will be called Fitting pdf Algorithm (FPA). Equation (13)
shows an important property of the algorithm: it takes into
account the phase of the transmitted symbols.

The computational complexity of this algorithm is propor-
tional to the computation ofS exponentials which are required
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by Equation (13). Thus, its complexity is a little higher than
other LMS-like algorithms.

Another important point is thats, although the ideal equalizer
is known to have infinity length, the use of the FP criterion
does not require a long filter to compensate the channel effect.
It has been observed, through simulations, that the length of
the equalizer for this criterion has the same order of other
blind criteria.

• The parameterσ2
r :

As shown in the previous section, the parametric model
used to update the filter coefficients is alsoσ2

r -dependent. This
parameter plays an important role since it is the variance of
each Gaussian in the parametric model.

Moreover, σ2
r is also important for the convergence rate

because it modifies the effective step size, that is,µeff = µw

σ2
r

.
In the classification field this parameter is similar to the
temperatureone in annealing processes [9].

A numerical problem that arises with the use of the FPA is
the nonconvergence for very small values ofσ2

r . This is due
to the Gaussians being very sharp and much more difficult to
fit the data on them. This model have also been considered in
[12], where the ideal pdf of the received signal is assumed to
be a mixture of impulses and later a Gaussian mixture model
is considered in order to make the assumption more realistic
and feasible.

IV. M INIMUM BER: SUPERVISED ANDBLIND CRITERIA

In order to allow the analysis of a minimum BER criterion,
we consider the MAP one.

The MAP criterion aims to maximize the probability of
recovering a symbolai given that y has been observed in
the equalizer output. Then, MAP criterion can written as [13]:

JMAP(w) = E {ln [p (ai |y )]} , (14)

where we are considering the logarithm in Equation (14) in
order to simplify computations [14].

Let us write thea posteriori probability density functions
using the Bayes’ rule as [13]:

p (ai |y ) =
p (y |ai ) · p (ai)

S∑
i=1

p (y |ai ) · p (ai)

. (15)

Here, we have to change the way we use to present the
FPC. The parametric modelΦ(y) represents the sum of
probabilities of a possible transmitted signalai given that
y has been observed. Since there is no knowledge about
the transmitted symbol itself,Φ(y) is then the sum of all
conditional probabilities of the received signaly given the
transmission of symbolai. In other words, we can write:

Φ(y) =
S∑

i=1

p(y|ai). (16)

Of course, if we assume that the signal is corrupted by
AWGN, we obtain Equation (10). Besides, we can use the

gradient ofJFPC without the stochastic approximation in the
form

∇JFPC(w) = −EY




EA

{
A · exp

(
− |y−a|2

σ2
r

)
[y − a∗]

}

σ2
r · EA

{
A · exp

(
− |y−a|2

σ2
r

)} x



 ,

(17)
whereEY andEA stand for expectation with respect to the
variablesY andA, respectively.

As in [15], we can define an auxiliary function given by

ψ(y, a) =
A · exp

(
− |y−a|2

σ2
r

)

EA

{
A · exp

(
− |y−a|2

σ2
r

)} , (18)

that measures “how sure” is the decision of symbola since
only y has been observed and the signal has a conditional pdf
given as a Gaussian.

Then, comparing Equations (15) and (18), we can observe
that considering the Gaussian model for the conditional pdf
we have the same measure [16].

Using such consideration and supposing thatσ2
r is chosen

appropriately, the MAP criterion can be written as [16]:

E {ln [p (ai |y )]} = E

{
ln

[
p (y |ai ) · p (ai)

Φ(y)

]}

JMAP = E {ln [p (y |ai )]}−E {ln [Φ(y)]}︸ ︷︷ ︸
JFPC

.
(19)

It is worth mentioning that the conditional probability
p (y |ai ) concerns the assumed model to the signal at the
output of the equalizer and we are also assuming an ideally
equalized signal in presence of additive Gaussian noise. We
then have:

p (y |ai ) =
1√

2πσ2
ϑ

exp

(
−|y − ai|2

2σ2
ϑ

)
. (20)

Therefore, we can rewrite Equation (19) as

JMAP = − 1

2σϑ2

E
{
|y − ai|2

}
+ ln

[
1√

2πσ2
ϑ

]
+ JFPC

JFPC− JMAP =
1

2σϑ2

E
{
|y − ai|2

}
− ln

[
1√

2πσ2
ϑ

]
.

(21)

Now, we need to explore the right side of Equation (21) in
order to provide an appropriate relationship.

Equation (16), as we stated before, corresponds to the sum
of all probabilities of symbolai given the observationy.

This is due to the blind processing, when there is no
information about the transmitted symbol in a given time
instant. In the case of supervised processing, the transmitted
symbol is known at each time instant and there is no need of
computing the contribution of all symbols from alphabetA.
Thus, the parametric model for the supervised case is given
by [16]:

Φ(y) = p(y(n)|a(n)). (22)

Considering Equation (22), and also assuming the ideally
recovered signal immersed in AWGN, that is, the conditional
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probability as given by Equation (20), we can writeJFPC(w)
in Equation (12) for the supervised case as:

JFPC(w) = −E
{

ln

[
A · exp

(
−|y(n) − a(n)|2

2σ2
r

)]}

=
1

2σ2
r

E
{
|y(n) − a(n)|2

}
− ln[A].

(23)

Clearly, the cost function in Equation (23) is the MMSE
cost function up to scaling and translation effects. However,
the optimization of Equation (23) with respect tow provides
the same solution than the classical MMSE cost function given
as [1]:

JMMSE(w) = E
{
|y(n) − a(n)|2

}
.

Therefore, the cost function in Equation (23) will be denoted
JMMSE as it stands for the MMSE in the supervised case.

Observing Equation (21) and comparing the right side with
Equation (23) we can see that it is the same. Thus, the
following relationship can be given consideringσ2

r = σ2
v [16]:

JMAP = JFPC− JMMSE. (24)

Equation (24) provides an important issue about relation-
ships of blind and supervised criteria for minimum BER
filtering using the FPC criterion. It shows that when there
is no knowledge about the transmitted signal, the FPC does
not achieve minimum BER. So, it is not possible to perform
minimum BER filtering with this criterion without the knowl-
edge of the transmitted sequence. Further, since the criteria are
defined as positive functions we can also write the following
inequality for the FPC and MAP:

JFPC≥ JMAP, (25)

showing that achieving the minimum forJFPC does not nec-
essarily imply achieve minimum BER.

V. CONCLUSIONS ANDPERSPECTIVES

In this paper we have presented a relationship between
supervised and unsupervised criteria aiming a minimum bit
error rate filtering.

The unsupervised criteria is based on the approach of
estimation of the probability density function of the signal on
the equalizer output using a parametric model. The Kullback-
Leibler divergence is used to minimize the divergence of the
equalizer output pdf and the parametric model.

This criterion presents some interesting properties that are
based on the evaluation of the conditional probabilities ofre-
ceived signal over all possible transmitted ones. As a result, the
presented approach allows to achieve a relationship between
the supervised and unsupervised criteria.

The obtained relationship states that minimum BER is
not attained with the blind criteria because it requires the
instantaneous knowledge of the transmitted signal. Thus, such

relationship is given in terms of the minimum mean square
error and FPC criteria for achieving maximuma posteriori
probabilities.

The main perspective for future works is the investigation
and proposal of a semi-blind criterion that can possibly mini-
mize BER and some other metric (e.g. Kullback-Leibler one)

with a good compromise of computational and information
complexity.
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