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A Performance Evaluation of Branching Particle
Filters: Case Studies
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Abstract— This paper presents two case studies for the perfor-
mance evaluation of branching particle filters with the objective
of contributing towards understanding and providing useful
insight for practical implementation. A performance study based
on the robustness of the estimate in relation to the number of in-
dependent simulations of three different modes of implementation
of the branching particle filter was also made and the results were
compared with those obtained by the extended Kalman filter.
In the first case, an one-dimensional nonlinear stable process,
all the configurations of the branching particle filter produced
slightly better estimates than the extended Kalman one when the
process was located at regions where the linear approximation
was not good. For the second case, the filters were tested in an
one-dimensional unstable system and the branching particle filter
presented robust results when compared to the extended Kalman
one during the simulation steps.

Keywords— Nonlinear filtering, Zakai equation, Branching al-
gorithm, Monte Carlo approximation, Parallel processing.

I. I NTRODUCTION

The standard continuous-time nonlinear filtering problem
consists of estimating a time-homogeneous Markov process
X = {Xt; t ≥ 0} with known law, orsignal process, given
Y = {Yt; t ≥ 0}, or observation process, defined by

Yt =
∫ t

0

h(s,Xs)ds + Vt, 0 ≤ t ≤ T. (1)

The signal processX takes values inRd, whereas the obser-
vation one inRm, with d, m ≥ 1. The process{Vt; t ≥ 0} is
a standardm-dimensional Brownian motion,T is a fixed final
time, andh : R+xRd → Rm is a bounded continuous function.
It is assumed thatY0 = 0 and X0 is a random variable with
law ξ. The classical filtering problem, or the best estimate
of X with respect to the minimum square error relative to
the true signal, can be summarized as finding the conditional
distribution of Xt with respect to the observationsY up to
time t, that is,

πt(ϕ) =
∫

Rd

ϕ(x)πt(dx) = E[ϕ(Xt)|F t
0], a.s., (2)

whereF t
0 is the filtration generated byY up to time t and

ϕ : Rd → Rd is a bounded continuous function.
Based on the assumptions presented by equation (1), the

conditional distributionπt(ϕ) is known to satisfy the mea-
sure valued stochastic differential equations called Fujisaki-
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Kallianpur-Kunita (FKK) [1] and Kushner-Stratonovich [2]
equations.

The unnormalised conditional distributionpt of Xt given
the filtration generated byY = {Yt; t ≥ 0} has also been
studied extensively in the literature. It satisfies the following
linear stochastic partial differential equation, or Zakai equation
[3],

pt(ϕ) = π0(t) +
∫ t

0

ps(Aϕ)ds +
∫ t

0

ps(h∗ϕ)dYs, (3)

whereA is the infinitesimal generator associated toX. Uni-
queness of solution to the measure valued equation presented
above has been established in [4].

Bensoussanet al. [5] - [6] and Le Gland [7] approximated
the solution of the Zakai equation via the splitting-up method
for solving stochastic partial differential equations (SPDE).
Kushner [8] did the same, but approximated the referred
trajectories by using a discrete-time Markov chain, whereas
Sun and Glowinski [9] used a pathwise approximation via
operator splitting.

Crisan [10] described a system of moving branching parti-
cles whose empirical distribution at timet, denoted byUn(t),
converges almost surely topt, that is,

lim
n→∞

(Un(t), ϕ) = pt(ϕ). (4)

The particles move according to the law of the signalX
independently of each other and after fixed-length intervals
will branch. The mean number of offspring of a particle will
depend on the inter-branching interval of its trajectory and on
the observation process, whereas the variance of the branching
mechanism is the minimum possible.

In fact, Crisan and Lyons [11] early proposed a sequence
Un of similar branching particle systems where the variance
of the branching mechanism was givena priori and only
the (conditional) expectation of that sequence converged to
pt due to an extra degree of randomness introduced. Then, a
whole set of copies of the particle system was needed in order
to obtain a good approximation to the solution of the Zakai
equation. More recently, the new approach presented by Crisan
et al. [12] converges directly topt without any estimate of an
average, but the rate of convergence of the mean square error
was not deduced correctly. In [10], Crisan deduced the exact
rate of convergence of the mean square error and proposed
variations of the branching algorithm, orBranching Particle
Filter (BPF), with better rates of convergence.

The purpose of this paper is to present two case studies
for the performance evaluation of BPF with the objective
of contributing towards understanding and providing useful
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insight for practical implementation. A performance study
based on the robustness of the estimate in relation to the
number of independent simulations of three different modes
of implementation of BPF was also made and the results were
compared with those obtained by the extended Kalman filter
(EKF). The first case, an one-dimensional nonlinear stable
process, all the configurations of BPF produce slightly better
estimates than the EKF when the process is located at regions
where the linear approximation was not good. For the second
case, the filters were tested in an one-dimensional unstable
system and the BPF presented robust results when compared
to the EKF during the simulation steps. These results are
consistent with those obtained by Jacobet al. [13] when a
Monte Carlo-based nonlinear filter proposed by Davis [14]
was submitted to the same tests.

The basic concepts about the filtering framework are descri-
bed in Section 2. Section 3 presents the simple Monte Carlo
approach to solve the Zakai equation, whereas Section 4 shows
the main results of the BPF. A brief discussion about the BPF
implementation occurs in Section 5 and numerical examples
are posted in Section 6. The conclusions are in Section 6.

II. T HE FILTERING FRAMEWORK

Let (Ω,F ,Ft≥0, P ) be a filtered probability space on which
the signalX is described by the following stochastic differen-
tial equation (SDE)

dXt = f(t,Xt) dt + g(t,Xt) dWt, (5)

where {Wt; t ≥ 0} is a standardd-dimensional Brownian
motion independent ofV , and

dYt = h(t, Xt) dt + dVt (6)

is its corresponding noisy observation, in accordance to the
assumptions related to (1) and that

||h|| = max
1≤i≤m

sup
x∈Rm

|hi(t, x)|, for all t. (7)

The functionsf : R+xRd → Rd and g : R+xRd →
L(Rd,Rd) ' Rd2

are assumed to be globally Lipschitz
and X0 ∼ ξ is a d-dimensional square integrable random
vector,F0-measurable and independent ofW and V . These
hypothesis satisfy the sufficient conditions for the uniqueness
of the solution of equation (5) [15].

A new probability measurẽP absolutely continuous with
respect toP can be defined as

P̃ (A) = E[1AZt], for all A ∈ Ft, t ≥ 0, (8)

whereZ = {Zt,Ft; t ≥ 0} is the exponential martingale

Zt = exp(−
∫ t

0

hT (s, Xs)dWs− 1
2

∫ t

0

||h(s,Xs)||2ds). (9)

Under the new measurẽP and according to Girsanov’s the-
orem [15], the observation processY becomes a Brownian
motion independent of the signal processX. Thus, the conditi-
onal law (2) can be calculated by using the Kallianpur-Striebel
formula [16]

πt(ϕ) =
pt(ϕ)
pt(1)

, P − a.s., (10)

where

pt(ϕ) = Ẽ[ϕ(Xt) exp(
∫ t

0

hT (s,Xs)dYs

−1
2

∫ t

0

||h(s, Xs)||2ds)|Ft], (11)

is a random measure and̃E is the expectation with respect to
P̃ . Further, equation (3) is uniquely satisfied by (11).

Theorem 1 (Kurtz and Ocone [17]):Under the conditions
set up above, ifUt is a Ft-adapted, ćadĺag, measure valued
process satisfying

(U(t), ϕ) = (π0, ϕ) +
∫ t

0

(U(s), Aϕ)ds

+
∫ t

0

(U(s), h∗ϕ)dYs, a.s., (12)

for all t and for a suitable large class of test functionsϕ, then

U(t) = pt, a.s., (13)

for all t.
Since U(t) is not easy to be obtained, the idea is that

it might be possible to approximate the Zakai equation by
creating asamplefrom the posterior measure. Next sections
show the branching particle approach to solve the filtering
problem described here.

III. M ONTE CARLO FILTER

Assume thatVi(t), i = 1, ..., P and t ∈ [0, T ], are
independent realizations of the signalX and that they are
independent of the observationY . Let δVi(t) be an impulse
measure defined onσ(Rd) for eacht, where

ΘP (t) =
1
P

P∑

i=1

µi
0:tδVi(t), (14)

is the empirical measure ofP particles with mass determined
by

µi
0:t = exp(

∫ t

0

h∗(Vi(t))dYs − 1
2

∫ t

0

||h(Vi(t))||22ds), (15)

that is, the likelihood/weight corresponding toVi(t).
Proposition 1 (Crisan [10]): If ΘP (t) is the approximation

given by (14), then

Ẽ[((ΘP (t), ϕ)− pt(ϕ))2] =
cΘ(t)
N

, (16)

wherecΘ(t) is a constant independent ofP for eacht.

A. Monte Carlo Filter Algorithm

Consider a partition with a time discretization(Tδ) where

0 = T0 < T1 < · · · < T < · · · < TN = T, (17)

δ =
T

N
(18)

and

Tj+1 = Tj + δ, j = 0, 1, ..., (N − 1). (19)
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Given an initial distributionξ, the step-by-step algorithm of
the so-calledMonte Carlo Filter (MCF) is described as the
following:

At time t = T0,
Step 0: Initialization

• For i = 1, ..., P , sampleVi(t) ∼ ξ;
• Set t = T1.

While t 6= TN ,
Step 1: Evolution

• For i = 1, ..., P , evolveVi(t) in accordance to
the model described by (5).

Step 2: Importance weights evaluation

• For i = 1, ..., P , evaluate the importance
weightsµi

0:t using equation (15).

Step 3: Conditional law computation

• Compute the conditional law according to (14);
• Set j = j + 1 and go toStep 1.

end

IV. PRINCIPLES OF THEBRANCHING PARTICLE FILTER

Initially, based on the time discretization presented by (17),
the inter-branching time interval is defined by

∆Tl = ∆l+1 −∆l = nδ, l, n ∈ N (20)

and can be visualized in Figure 1 below.

t
0 T1 T2 Tj-1 Tj Tj+1

D
1

D
0

DT
0

Fig. 1. Discretization of the time line.

Crisan and Lyons [11] constructed a measured value process
whose expectation at any time is the conditional distribution
of Xt. This has a branching particle system approximation
and the particles evolve independently moving with the same
law asX and branch according to a mechanism that depends
on the trajectory of the particle andY , but is independent of
the events elsewhere in the system. The mechanism is chosen
so that it has finite second moment and the mean number of
offspring for a particle given theσ-field F∆l+1− = σ(Fs, s <
∆l+1) of events up to time∆l+1 is

µi
∆Tl

= exp(
∫ ∆l+1

∆l

hT (Vi(t))dYt

−1
2

∫ ∆l+1

∆l

||h(Vi(t))||2dt). (21)

The referred variance must be minimal and consistent with the
number of offspring being an integer, that is,

νi
∆Tl

= (µi
∆Tl

− [µi
∆Tl

])([µi
∆Tl

] + 1− µi
∆Tl

) ≤ 1
4

(22)

where [µi
∆Tl

] is the largest integer smaller thanµi
∆Tl

. The
result is a cloud of paths where those surviving to the current

time provide an estimate for the conditional distribution ofXt

in the following manner

UP (∆l)(∆Tl) =
1

P (∆l)

P (∆l)∑

i=1

µi
∆l:∆l+1

δVi(∆l+1), (23)

whereP (∆l) is the number of particles corresponding to the
instantt = ∆l.

This approach is feasible in the sense that one carry it out
and get a return directly related to the amount of computational
effort invested. However, the convergence could still be quite
slow. Paths exploring unfruitful directions of exploration are
rapidly killed suggesting a model akin to lemmings flowing
along and reproducing heavily, but being killed if they drift
away form the plausible values of the variables.

Corollary 1 (Crisan [10]): If the length of the inter-
branching times is 1

P α , whereα ∈ ( 2
3 , 2), then

lim
P→∞

P 1−α
2 Ẽ[((UP (t), ϕ)− pt(ϕ))2] = cU (t), (24)

wherecU (t) is a constant independent ofP .
According to the corollary, the larger the length of the inter-

branching times∆T is, the better rate is. However, the order
of the length of the inter-branching times cannot be larger than

1

P
2
3

as the last part of evolution of the system is not corrected
and hence a bias is introduced. By other hand, if the inter-
branching times are of order1P 2 , thenUP no longer converges
to pt. By branching so often, the randomness introduced in
the system at branching times overpowers the corrective effect
and, as a result, just as in the case when the branching variance
is fixed, the limiting process is measure valued process whose
conditional expectation given the environmentY is pt [10].

A. Branching Particle Filter Algorithm

Let {Un(t),Ft; 0 ≤ t ≤ 1} be a sequence of branching
particle systems on(Ω,F , P̃ ) with values in Rm defined
according to (23) and letP (T0) be the initial number of
particles. The BPF step-by-step algorithm is described as the
following:

At time t = T0 = ∆0,
Step 0: Initialization

• For i = 1, ..., P (T0), sampleVi(t) ∼ ξ;
• Compute∆T0 according toa priori convergence

rate andP (T0) by using (24);
• Set t = ∆1.

While t ≤ ∆M , ∆M = TN ,
Step 1: Evolution

• For i = 1, ..., P (∆l−1), evolve Vi(∆Tl−1) in
accordance to the model described by (5).

Step 2: Importance weights evaluation

• For i = 1, ..., P (∆l−1), evaluate the importance
weightsµi

∆Tl−1
using equation (21).

Step 3: Conditional law computation

• Compute the conditional law according to (23).
Step 4: Offspring computation

• For i = 1, ..., P (∆l−1),
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– Sampleε ∼ U [0, 1];
– Compute

mi(∆l) = round(µi
∆Tl

+ ε− 0.5), (25)

wheremi(∆l) is the number of particles.

Step 5: Replacement

• For i = 1, ..., P (∆l−1), replace the particles in
Vi(∆l) according tomi(∆l).

Step 6: Inter-branching interval computation

• Compute the total number of particles as

P (∆l) =
P (∆l−1)∑

i=0

mi(∆l); (26)

• Compute∆Tl according toa priori convergence
rate andP (∆l) by using (24);

• Set t = ∆l+1 and go toStep 1.
end

Specifically, in order to keep the number of particles limited,
a range containing the minimum and a maximum number
of particles for BPF algorithm was established. According to
preliminary tests, in this approach a process can be completely
killed or the number of particles can be large enough to
difficult applications in real time, what is not interesting in
many applications. When the number of particles at time∆l is
larger than an upper limit, then the particles are not replaced;
when the number of particles at time∆l is smaller than a
downer limit, then the particles are replaced for that with wider
likelihood.

B. Modified Branching Particle Filter Algorithm

The idea here is to maintain the number of particles fixed
during the evolution of the branching system, that is,P (∆l) =
P for all l. For this case, it is not necessary to compute a new
number of offspring and the replacement procedure must be
modified. Based on the resampling ideas presented by Doucet
et al. [18], the new step-by-step algorithm for the so-called
Modified Branching Particle Filter(MBPF) is presented as
follows:

At time t = T0 = ∆0,
Step 0: Initialization

• For i = 1, ..., P , sampleVi(t) ∼ ξ;
• Compute the fixed∆T according toa priori

convergence rate andP by using (24);
• Set t = ∆1.

While t ≤ ∆M , ∆M = TN ,
Step 1: Evolution

• For i = 1, ..., P , evolve Vi(∆Tl−1) in accor-
dance to the model described by (5).

Step 2: Importance weights evaluation

• For i = 1, ..., P , evaluate the importance
weightsµi

∆Tl−1
using equation (21).

Step 3: Conditional law computation

• Compute the conditional law according to (23).

Step 4: Weights normalization

• Compute the normalization factor

γ =
P∑

i=1

µi
∆Tl−1

; (27)

• For i = 1, ..., P , normalize the weights

µ̃i
∆Tl−1

= γ−1µi
∆Tl−1

. (28)

Step 5: Replacement

• For i = 1, ..., P , replace proportionally the
particles in Vi(∆l) based on the normalized
weightsµ̃i

∆Tl−1
;

• Set t = ∆l+1 and go toStep 1.

end

V. DETAILS ABOUT THE IMPLEMENTATION

Computer programs were produced to simulate the MCF,
BPF and MBPF by using equations (5) and (6).

A. Simulation of Sample Paths

The objective is to use a discretization scheme aiming at the
best possible order of accuracy, given the SDE to be solved,
from among schemes that use only increments of Brownian
path.

Based on the assumptions presented in (5), thekth compo-
nent of the Milstein scheme [19] has the form

Xk
Tl+1

= Xk
Tl

+ fkδ + gk∆W k
Tl

+

1
2
(

d∑

l=1

gl ∂gk

∂xl
){(∆W k

Tl
)2 − δ}, (29)

where

∆WTl
= WTl+1 −WTl

(30)

is the N(0; δ) increment of the Wiener processW . Particu-
larly, if g does not depend onx, equation (29) becomes the
Euler-Maruyama scheme.

When the SDE is one-dimensional or the functiong =
g(t, x) satisfies the commutativity condition

n∑

k=1

(
∂gj

q

∂xk
gk

p −
∂gj

p

∂xk
gk

q ) = 0 (31)

∀j = 1, ..., d, ∀p, q = 1, ...r1, the best order of accuracy is
usuallyO(δ) and it can be obtained using the Milstein scheme.
In the general case of an SDE in more than one dimension and
not satisfying condition (31), the best obtainable accuracy is
O(
√

δ), which is obtained using the Euler-Maruyama scheme
[19].

B. Integration

To approximate the integrals in (15) and (21), both needed
for determining the mean number of offspring for each particle
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at the end of each generation, the simplest method is the well-
known Euler one

µi
Tk:Tk+m

=
m−1∑

j=k

hT (Vi(Tj))∆Y (Tj)

−1
2

m−1∑

j=k

hT h(Vi(Tj))δ, (32)

where
∆Y (Tj) = Y (Tj+1)− Y (Tj). (33)

According to [12], since the integrals involved are stochas-
tic, the use of the trapezoidal rule

µi
Tk:Tk+m

= 1
2

∑m−1
j=k [hT (Vi(Tj)) + hT (Vi(Tj+1))]∆Y (Tj)

− 1
4

∑m−1
j=k [hT h(Vi(Tj)) + hT h(Vi(Tj+1))]δ (34)

does not give a higher-order approximation than the Euler one,
however it does improve the leading coefficient of the error
significantly. The sums in (34) converge to the same values
as those in (32), with no correction term required, due to
independence of the processesVi andY .

VI. EXPERIMENTAL RESULTS

The main contribution here is to compare the performances
of the MCF, BPF, MBPF nonlinear approaches to the traditi-
onal EKF. Generally, for the nonlinear filters, just parameters
related to the initial number of particles and length of the
inter-branching time can be adjusted for improving the rate
of convergence; except for the MCF where just the number
of particles is important. The initial covariance matrix of the
EKF must be adjusted with accuracy in order to minimize the
transient in the first steps. The criteria used for the comparison
and the numerical examples are presented next.

A. The Absolute Error Criterion

This criterion is based on the performance measure used to
verify the estimate accuracy of the filters at fixedT . By fixing
R, j = 1, ..., R, different initial conditions for the estimated
signalx̂j,k

0 , k = 1, ..., M , M different simulated sample paths
of the estimated signal̂x are performed and compared to their
corresponding real valuesx. The jth estimated absolute error
is defined as

ε̂j =
1
M

M∑

k=1

|X̂j,k
T −Xj,k

T | (35)

which is independent and Gaussian for largeM .
To construct a confidence interval for the estimated absolute

error, the mean of the batch averages is

ε̂ =
1
R

R∑

j=1

ε̂j =
1

RM

R∑

j=1

M∑

k=1

|X̂j,k
T −Xj,k

T | (36)

and the estimated variance ofε is

σ̂2
ε =

1
R− 1

R∑

j=1

(ε̂j − ε̂)2. (37)

Then, the Student t-distribution withR − 1 degrees of
freedom is used to construct the(1−α)% confidence interval
for ε according to

[∆ε] = (ε̂−∆ε̂, ε̂−∆ε̂), (38)

with

∆ε = t1−α,R−1

√
σ̂2

ε

R
, (39)

wheret1−α,R−1 is the significance level.

B. Stable System

Consider the filtering problem with the following one-
dimensional Ornstein-Uhlenbeck process

dxt = −1.0 dt + 0.25 dwt (40)

whose one-dimensional observation process is

dyt = h(xt) dt + dvt (41)

with

h(x) =





sin(x) if |x| ≤ π/2
+1 if x > π/2
−1 if x < −π/2

, (42)

where wt and vt are independent one-dimensional standard
Brownian motions. The filtering was carried out for the range
t ∈ [0, 5] which was divided inN = 211 intervals. All the
integrals were approximated by the traditional Euler scheme.
The signal process initialization was set tox(0) ∼ N(2.0, 0.2)
in order to evaluate the performance of the Euler-Maruyama
discretization scheme over the nonlinear range of the obser-
vation process.

The BPF and the MBPF implementation was made aiming
to obtain the best rate of convergence in accordance with
the result (24) of the Corollary 1. However, to simplify the
algorithm implementation, the inter-branching times computed
were multiple of2k, k = 0, 1, 2, ....

Figure and 2 present a typical realization of the process (40)
with the filtering results for the MCF with 100 particles, BPF
initialized with 100 particles and range from 1 up to 1000,
and EKF.

The performance evaluation was made based on the ro-
bustness of the MCF, MBPF and BPF estimates, where the
formers were tested with three different configurations:P =
10, 100, 1000, and the latter with a given initial number of
particles inside a range of working. The EKF robustness
estimate was evaluated for 100 runs. To satisfy theabsolute
error criterion, the absolute errorε and its respective 90%
confidence interval[∆ε] were computed at instantst = 1.0s
and t = 3.0s, as presented in Tables I and II, respectively.
The performance provided by the nonlinear filters and EKF
are similar, except by the fact that here the MCF, MBPF and
BPF confidence interval att = 1.0s are significantly better for
P ≥ 100 due to the signal process be located at the strong
nonlinear region of the observation one.

Note that the MCF obtained better results when compared to
others nonlinear filters for the same number of initial particles.
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Fig. 2. A realization of (40) and its respective MCF,BPF and EKF estimates.

TABELA I

ESTIMATION AND 90% CONFIDENCE INTERVAL OFε̂ OBTAINED BY MCF,

BPF, MBPFAND EKF AT t = 1.0s FOR THE STABLE SYSTEM.

P ε̂(10−1) [∆ε](10−1)

MCF
10 2.155±0.230 (2.117,2.193)
100 2.043±0.151 (2.018,2.068)
1000 2.023±0.141 (2.000,2.046)

MBPF
10 2.794±0.458 (2.718,2.870)
100 2.108±0.156 (2.082,2.134)
1000 2.044±0.140 (2.021,2.067)

BPF
10 [5 15] 2.469±0.316 (2.417,2.521)

10 [1 1000] 2.302±0.281 (2.255,2.349)
100 [50 200] 2.255±0.189 (2.220,2.229)
100 [1 1000] 2.075±0.158 (2.049,2.101)

EKF 2.252±0.158 (2.226,2.278)

TABELA II

ESTIMATION AND 90% CONFIDENCE INTERVAL OFε̂ OBTAINED BY MCF,

BPF, MBPFAND EKF AT t = 3.0s FOR THE STABLE SYSTEM.

P ε̂(10−1) [∆ε](10−1)

MCF
10 1.491±0.114 (1.472,1.510)
100 1.417±0.102 (1.400,1.434)
1000 1.402±0.104 (1.385,1.419)

MBPF
10 1.567±0.099 (1.551,1.583)
100 1.441±0.110 (1.423,1.459)
1000 1.417±0.109 (1.399,1.435)

BPF
10 [5 15] 1.563±0.122 (1.543,1.583)

10 [1 1000] 1.495±0.115 (1.476,1.514)
100 [50 200] 1.477±0.113 (1.458,1.496)
100 [1 1000] 1.420±0.106 (1.403,1.437)

EKF 1.419±0.104 (1.402,1.436)

However, according toCorollary 1, the convergence rate of the
branching particle filters can be better to that presented by the
Monte Carlo-based ones for an adequate choice of the inter-
branching times and number of particles. The worst results of
the performance evaluation for the branching particle system
must be investigated better, but some explanations about the

practical implementation can be done: 1-) the inter-branching
interval computed was multiple of2k, and 2-) the results show
that the range limitation of the particles affect the performance
of the estimate.

C. Unstable System

Now the one-dimensional Ornstein-Uhlenbeck process is
defined as

dxt = 0.5 dt + 0.25 dwt, (43)

wherewt is a one-dimensional standard Brownian motion and
x(0) ∼ N(0.0; 0.20). The corresponding observation process
is as presented by (41) and (42).

The estimation results of the MCF with 100 particles, BPF
initialized with 100 particles and range from 1 up to 1000,
and EKF for a typical realization of (43) is shown in Figure
3.

0 1 2 3 4 5

−12

−10

−8

−6

−4

−2

0

time (s)

X 

X
EKF

 

X
MCF

 

X
BPF

 

Fig. 3. A realization of (43) and its respective MCF, BPF and EKF estimates.

The performance evaluation here is analogous to to the last
example. However, differently from that in the stable case, the
EKF failed to provide an acceptable bounded error estimate
when compared to the nonlinear filters, as presented by the
absolute errorŝε in Tables III and IV.

TABELA III

ESTIMATION AND 90% CONFIDENCE INTERVAL OFε̂ OBTAINED BY MCF,

MBPF, BPFAND EKF AT t = 1.0s FOR THE UNSTABLE SYSTEM.

P ε̂(10−1) [∆ε](10−1)

MCF
10 7.027±0.825 (6.890,7.164)
100 6.588±0.566 (6.494,6.682)
1000 6.511±0.529 (6.423,6.599)

MBPF
10 7.461±0.854 (7.319,7.603)
100 6.902±0.608 (6.801,7.003)
1000 6.570±0.529 (6.482,6.658)

BPF
10 [5 15] 7.366±0.889 (7.219,7.513)

10 [1 1000] 7.494±1.010 (7.326,7.662)
100 [50 200] 6.623±0.547 (6.532,6.714)
100 [1 1000] 6.651±0.574 (6.556,6.746)

EKF 10.900±0.730 (9.482,12.318)
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TABELA IV

ESTIMATION AND 90% CONFIDENCE INTERVAL OFε̂ OBTAINED BY MCF,

MBPF, BPFAND EKF AT t = 3.0s FOR THE UNSTABLE SYSTEM.

P ε̂ [∆ε]

MCF
10 1.576±0.224 (1.539,1.613)
100 1.440±0.117 (1.421,1.460)
1000 1.419±0.104 (1.402,1.436)

MBPF
10 2.001±0.260 (1.917,2.085)
100 1.562±0.130 (1.540,1.584)
1000 1.426±0.109 (1.408,1.444)

BPF
10 [5 15] 2.049±0.357 (1.990,2.108)

10 [1 1000] 1.843±0.300 (1.793,1.893)
100 [50 200] 1.738±0.175 (1.709,1.767)
100 [1 1000] 1.475±0.118 (1.455,1.494)

EKF 2.807±0.206 (2.732,2.882)

VII. C ONCLUSION

Two case studies for the performance evaluation of bran-
ching particle filters were used with the objective of contri-
buting towards understanding and providing useful insight for
practical implementation. A performance study based on the
robustness of the estimate in relation to the number of indepen-
dent simulations of three different modes of implementation of
the branching particle filter was also made and the results were
compared with those obtained by the extended Kalman filter.
Under favorable conditions, the performance provided by the
modified nonlinear filter and the extended Kalman filter were
similar, but here the former obtained better results on regions
where the linear approximation of the observation process was
not good. Additionally, based on the example of an unstable
system, it was shown that the nonlinear filter, for an adequate
number of independent realizations, is much better than the
extended Kalman filter.
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