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A Performance Evaluation of Branching Particle
Filters: Case Studies

Alexsandro Machado Jacob and Takashi Yoneyama

Abstract— This paper presents two case studies for the perfor- Kallianpur-Kunita (FKK) [1] and Kushner-Stratonovich [2]
mance evaluation of branching particle filters with the objective equations.

of contributing towards understanding and providing useful The unnormalised conditional distributign of X, given

insight for practical implementation. A performance study based . . . )
on the robustness of the estimate in relation to the number of in- the filtration generated by” = {Y;; ¢ > 0} has also been

dependent simulations of three different modes of implementation Studied extensively in the literature. It satisfies the following
of the branching particle filter was also made and the results were linear stochastic partial differential equation, or Zakai equation
compared with those obtained by the extended Kalman filter. [3],
In the first case, an one-dimensional nonlinear stable process, .
all the configurations of the branching particle filter produced

t
slightly better estimates than the extended Kalman one when the p(p) = mo(t) +/0 ps(Ap)ds +/0 ps (I @)dY, ©)

process was located at regions where the linear approximation . o ) .
was not good. For the second case, the filters were tested in anwhere A is the infinitesimal generator associatedXo Uni-

one-dimensional unstable system and the branching particle filter queness of solution to the measure valued equation presented
presented robust results when compared to the extended Kalman above has been established in [4].

one during the simulation steps. Bensoussaet al. [5] - [6] and Le Gland [7] approximated
Keywords— Nonlinear filtering, Zakai equation, Branching al- the solution of the Zakai equation via the splitting-up method
gorithm, Monte Carlo approximation, Parallel processing. for solving stochastic partial differential equations (SPDE).
Kushner [8] did the same, but approximated the referred
I. INTRODUCTION trajectories by using a discrete-time Markov chain, whereas

Sun and Glowinski [9] used a pathwise approximation via
erator splitting.

Trisan [10] described a system of moving branching parti-
cles whose empirical distribution at tintedenoted byU,, (¢),
converges almost surely tg, that is,

Ytz/th(s,Xs)det, 0<t<T. € A (Un(t),0) = pe(e). (4)
0

The standard continuous-time nonlinear filtering proble
consists of estimating a time-homogeneous Markov proce
X = {X;; t > 0} with known law, orsignal processgiven
Y = {Y;; t > 0}, or observation processlefined by

The signal procesX takes values iR?, whereas the obser- The particles move according to the law of the signal

vation one inR™, with d,m > 1. The proces{Vi: ¢ > 0} is independently of each other and after fixed-length intervals

. . . : : : ' will branch. The mean number of offspring of a particle will
a standardn-dimensional Brownian motiori; is a fixed final depend on the inter-branching interval of its trajectory and on
time, andh : RTxR? — R™ is a bounded continuous function P 9 ) y

It is assumed thaly = 0 and X, is a random variable with the observation process, whereas the variance of the branching

. L . _mechanism is the minimum possible.
law £. The classical filtering problem, or the best estimate In fact, Crisan and Lyons [11] early proposed a sequence

of X with respect to the minimum square error relative t?] . . . X
. . o o of similar branching particle systems where the variance
the true signal, can be summarized as finding the condltlonf}ﬂ : : : g
C . . of the branching mechanism was givea priori and only
distribution of X; with respect to the observationts up to . :
. . the (conditional) expectation of that sequence converged to
time ¢, that is, .
p; due to an extra degree of randomness introduced. Then, a
() = / o(z)m(dz) = Elp(X)|FL), a.s., ) whole s_et of copies of the_ par_tlcle system was needed in ord_er
Rd to obtain a good approximation to the solution of the Zakai
equation. More recently, the new approach presented by Crisan
et al. [12] converges directly tp; without any estimate of an
fyerage, but the rate of convergence of the mean square error
was not deduced correctly. In [10], Crisan deduced the exact
kate of convergence of the mean square error and proposed
variations of the branching algorithm, &ranching Particle
The authors are with the Dii® de Engenharia Elémica, Instituto Filter (BPF), with better rates of convergence.
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where F{ is the filtration generated by up to timet and
¢ :R? — R? is a bounded continuous function.

Based on the assumptions presented by equation (1),
conditional distributionm; () is known to satisfy the mea-
sure valued stochastic differential equations called Fujisa
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insight for practical implementation. A performance studwhere

based on the robustness of the estimate in relation to the _ t

number of independent simulations of three different modes pe(p) = Elp(Xy) exp(/ h' (s, X,)dY,

of implementation of BPF was also made and the results were .0

compared with those obtained by the extended Kalman filter _1/ ||h(s, X,)|[2ds)| F], (11)
(EKF). The first case, an one-dimensional nonlinear stable 2 Jo

process, all the configurations of BPF produce slightly better 5 random measure arfitlis the expectation with respect to
estimates than the EKF when the process is located at regignsgyrther, equation (3) is uniquely satisfied by (11).
where the linear approximation was not good. For the secondrnegrem 1 (Kurtz and Ocone [17]jJunder the conditions

case, the filters were tested in an one-dimensional unstabig up above, it; is a F,-adapted, adlg, measure valued
system and the BPF presented robust results when compgigstess satisfying

to the EKF during the simulation steps. These results are ,
consistent with those obtained by Jacebal. [13] when a U®),0) = (m0,9) +/ (U(s), Ap)ds
Monte Carlo-based nonlinear filter proposed by Davis [14] 0
was submitted to the same tests. t R

The basic concepts about the filtering framework are descri- +/0 (U(s), i )dYs, a.s.,  (12)
bed in Section 2. Section 3 presents the simple Monte Caglo . .
approach to solve the Zakai equation, whereas Section 4 sth)(\?vrsa" t and for a suitable large class of test functignghen
the main results of the BPF. A brief discussion about the BPF U(t) =pi, a.s., (13)

implementation occurs in Section 5 and numerical exampIFs I
are posted in Section 6. The conclusions are in Section 6. ora t. , ) ) ,
Since U(t) is not easy to be obtained, the idea is that
II. THE FILTERING FRAMEWORK it might be possible to approximate the Zakai equation by

. . . creating asamplefrom the posterior measure. Next sections
Let (&, 7, .}-@O’P) be a filtered propablllty space on.Wh'Chshow the branching particle approach to solve the filtering
the signalX is described by the following stochastic differen- :
. . problem described here.
tial equation (SDE)

dXy = f(t, Xy) dt + g(t, X;) AW, ) I1l. M ONTE CARLO FILTER
where {W;;t > 0} is a standardi-dimensional Brownian ~Assume thatV;(¢), i = 1,...,P andt € [0,7], are
motion independent of’, and independent realizations of the signal and that they are
independent of the observatidn. Let éy,;) be an impulse
dYy = h(t, X¢) dt + dVy () measure defined om(R?) for eacht, where
is its corresponding noisy observation, in accordance to the i
assumptions related to (1) and that Op(t) = P Z%;ﬁw(t)’ (14)
[|h]| = max sup |hi(t,x)|, forallt. (7) =t
Isism gegrm is the empirical measure d? particles with mass determined

The functionsf : RTxR? — R? and g : RFxR! — by

L(RY,RY) ~ R? are assumed to be globally Lipschitz t 1 rt

and X, ~ ¢ is a d-dimensional square integrable random Ko = efﬁp(/ h*(Vi(t))dYs — 5/ [|h(Vi(t))|5ds), (15)

vector, Fyp-measurable and independent16f and V. These 0 0

hypothesis satisfy the sufficient conditions for the uniqueneft is, the likelihood/weight corresponding ().

of the solution of equation (5) [15]. Proposition 1 (Crisan [10]): If ©p(t) is the approximation
A new probability measure® absolutely continuous with given by (14), then

respect toP can be defined as . 0 colt)

~ E[((GP(t)’(p> _pt“@)) ] = T A7 0 (16)

P(A) =E[14Z], forall A € Fy,t >0, (8) N

. . . wherecg(t) is a constant independent &f for eacht.
whereZ = {Z;, F;;t > 0} is the exponential martingale co(t) 0 P t

t t . X
Z, = emp(_/ KT (s, X3)dW, — %/ ||h(s, X,)|[*ds). (9) A. Monte Carlo Filter Algorithm
0 R 0 Consider a partition with a time discretizati¢@;) where
Under the new measurB and according to Girsanov’'s the-
orem [15], the observation proce$s becomes a Brownian 0=To<Th < <T<<Iyn=T, a7
motion independent of the signal procéssThus, the conditi-
onal law (2) can be calculated by using the Kallianpur-Striebel 0=— (18)

formula [16] q
an

m(p) = pt(¢), P—a.s., (10)

pe(1)

7}+1 = 7; + 67 i=0,1,.. (N - 1) (19)
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Given an initial distributiorg, the step-by-step algorithm oftime provide an estimate for the conditional distributionXaf
the so-calledMonte Carlo Filter (MCF) is described as thein the following manner

following:
At time t = 7,
Step 0: Initialization
e Fori=1,..., P, sampleV;(t) ~ ¢&;
o Sett =17;.
While t # Ty,
Step 1: Evolution

e Fori=1,..., P, evolve V;(t) in accordance to
the model described by (5).

Step 2: Importance weights evaluation
« For i = 1,..., P, evaluate the importance
weights ., using equation (15).
Step 3: Conditional law computation

« Compute the conditional law according to (14);
« Setj=j+1 and go toStep 1
end

IV. PRINCIPLES OF THEBRANCHING PARTICLE FILTER

Initially, based on the time discretization presented by (lﬁ

the inter-branching time interval is defined by
AT =AN1—A;r=nd, I,neN (20)

and can be visualized in Figure 1 below.

A, A1, A,
>

o T T T, T T, !

Fig. 1. Discretization of the time line.

P(A) _
Upa)(AT)) = A > bavaraviany,  (23)
=1

where P(4,;) is the number of particles corresponding to the
instantt = A;.

This approach is feasible in the sense that one carry it out
and get a return directly related to the amount of computational
effort invested. However, the convergence could still be quite
slow. Paths exploring unfruitful directions of exploration are
rapidly killed suggesting a model akin to lemmings flowing
along and reproducing heavily, but being killed if they drift
away form the plausible values of the variables.

Corollary 1 (Crisan [10]): If the length of the inter-
branching times isg~, wherea € (%,2), then

Am P'EE[((Up(t),9) —pu(9))?] = cu(t),  (24)

wherecy (t) is a constant independent &%

According to the corollary, the larger the length of the inter-
ranching timesA7 is, the better rate is. However, the order
fthe length of the inter-branching times cannot be larger than

— as the last part of evolution of the system is not corrected
and hence a bias is introduced. By other hand, if the inter-
branching times are of ordqig, thenUp no longer converges
to p;. By branching so often, the randomness introduced in
the system at branching times overpowers the corrective effect
and, as a result, just as in the case when the branching variance
is fixed, the limiting process is measure valued process whose
conditional expectation given the environméntis p, [10].

A. Branching Particle Filter Algorithm
Let {U,(t),F:;0 < t < 1} be a sequence of branching

Crisan and Lyons [11] constructed a measured value processticle systems on(Q, F, P) with values in R™ defined
whose expectation at any time is the conditional distributicaccording to (23) and let?(7,) be the initial number of
of X;. This has a branching particle system approximatiquarticles. The BPF step-by-step algorithm is described as the
and the particles evolve independently moving with the sarf@lowing:
law as X and branch according to a mechanism that depends At time ¢t = 75 = Ao,

on the trajectory of the particle arid, but is independent of

Step O: Initialization

the events elsewhere in the system. The mechanism is chosen | £qr; — 1 (To), sampleV;(t) ~ &;

so that it has finite second moment and the mean number of

offspring for a particle given the-field Fa,,,— = o(F,s <
A4q) of events up to time\;; is

) JAVESY T
par = ean( [ HT0AO)aY;
l

JAVESY
—3/ R(Vi(t))|2db). (21)

2 Ja,

« ComputeA7, according taa priori convergence
rate andP(7,) by using (24);
o Sett = A;.
While ¢ < AM, AM = TN,
Step 1: Evolution
e Fori = 1,..,P(A;_1), evolve V;(A7,_1) in
accordance to the model described by (5).
Step 2: Importance weights evaluation

The referred variance must be minimal and consistent with the | Forj = 1,.., P(A,_;), evaluate the importance

number of offspring being an integer, that is,

—

Vaz = (Haz, — az ) (Wag] +1—phg) <= (22)

=~

where [1/y ] is the largest integer smaller thar, .. The

weights ;. using equation (21).
Step 3: Conditional law computation
« Compute the conditional law according to (23).
Step 4: Offspring computation

result is a cloud of paths where those surviving to the current o Fori=1,..., P(A;_1),
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— Samplee ~ U0, 1];
— Compute

m'(A;) = round(pay, +€—0.5), (25)

wherem?(4,;) is the number of particles.
Step 5: Replacement
e Fori=1,..,P(A;_1), replace the particles in
Vi(A,;) according tom®(4A,;).
Step 6: Inter-branching interval computation
« Compute the total number of particles as
P(A1-1)
S omiA);  (26)
=0
« ComputeA7; according toa priori convergence
rate andP(4;) by using (24);
e Sett = A;4; and go toStep 1
end

P(A;) =

« Compute the normalization factor

P
Y= Haz i (27)
i=1
o Fori=1,..., P, normalize the weights

fing o =7 Haz,- (28)

Step 5: Replacement

o« Fori = 1,..., P, replace proportionally the
particles inV;(4A;) based on the normalized
weights i 7. ;

o Sett = A;y; and go toStep 1

end

V. DETAILS ABOUT THE IMPLEMENTATION

Computer programs were produced to simulate the MCF,

Specifically, in order to keep the number of particles limite®8PF and MBPF by using equations (5) and (6).
a range containing the minimum and a maximum number

of particles for BPF algorithm was established. According to _
preliminary tests, in this approach a process can be complet@ly Simulation of Sample Paths

killed or the number of particles can be large enough 10 The objective is to use a discretization scheme aiming at the
difficult applications in real time, what is not interesting imest possible order of accuracy, given the SDE to be solved,
many applications. When the number of particles at ilnés  from among schemes that use only increments of Brownian
larger than an upper limit, then the particles are not replacedgth_

when the number of particles at tim&; is smaller than a = gased on the assumptions presented in (5)thecompo-
downer limit, then the particles are replaced for that with wide{ant of the Milstein scheme [19] has the form

likelihood.

Xk, = Xp+fro+gtawE +
B. Modified Branching Particle Filter Algorithm 1 & ,dg* Lo
The idea here is to maintain the number of particles fixed 5(29 @){(AWT) =0}, (29)

during the evolution of the branching system, thati$A;) = =1

P for all [. For this case, it is not necessary to compute a nemhere
number of offspring and the replacement procedure must be
modified. Based on the resampling ideas presented by Doucet
et al. [18], the new step-by-step algorithm for the so-called

Modified Branching Particle Filter(MBPF) is presented as IS the_N(O;(S) increment of the Wlene_r process’. Particu-
follows: larly, if g does not depend om, equation (29) becomes the

) Euler-Maruyama scheme.
At time t = 75 = Ao,

AWg = Wq,, — Wr, (30)

e When the SDE is one-dimensional or the functign=
Step 0: Initialization

g(t, z) satisfies the commutativity condition
e« Fori=1,..., P, sampleV;(t) ~ &;

« Compute the fixedA7 according toa priori
convergence rate anfl by using (24);
e Sett = Al.
While t < Ay, Ay = Ty,
Step 1: Evolution
e« Fori = 1,..., P, evolve V;(A7;_,) in accor-
dance to the model described by (5).
Step 2: Importance weights evaluation
o For i 1,..., P, evaluate the importance
weightsu 5, | using equation (21).
Step 3: Conditional law computation

« Compute the conditional law according to (23).

Step 4: Weights normalization

n 6 ] a J

D (kg = 5orak) =0 (3D)

k=1
Vj =1,..,d,Vp,q = 1,...r1, the best order of accuracy is
usuallyO(d) and it can be obtained using the Milstein scheme.
In the general case of an SDE in more than one dimension and
not satisfying condition (31), the best obtainable accuracy is
O(V/$), which is obtained using the Euler-Maruyama scheme
[19].

B. Integration

To approximate the integrals in (15) and (21), both needed
for determining the mean number of offspring for each particle
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at the end of each generation, the simplest method is the wellThen, the Student t-distribution witlk — 1 degrees of
known Euler one freedom is used to construct tie— «)% confidence interval

m—1 for ¢ according to
HE T 2_; W (Vi(T)AY (T;) A= (6 A2 2 AD), (38)
jil m—1 with
—5 2 MTR(VA(T))S,  (32) -
j=k A=t _op1 %ﬁ, (39)

where

AY (7)) =Y (Tj41) — Y (T;). (33) wheret,_, r—1 is the significance level.

According to [12], since the integrals involved are stochas- bi
tic, the use of the trapezoidal rule B. Stable System

- T Consider the filtering problem with the following one-
=32k [ (Vi(T5)) + h* (Vi(Tj11))|AY (T;)

/LiT’“’TH’” dimensional Ornstein-Uhlenbeck process
— 1 X BT R(VA(T;)) + hTh(Vi(T341))]6 (34)

dr; = —1.0dt+ 0.25dw, (40)
does not give a higher-order approximation than the Euler 0N ose one-dimensional observation process is
however it does improve the leading coefficient of the error
significantly. The sums in (34) converge to the same values dys = h(xy)dt+ duog (42)
as those in (32), with no correction term required, due to.
independence of the procesdésandY'. with
sin(z) if |z| < 7/2
V1. EXPERIMENTAL RESULTS h(z) = +1 :; z i ”/2/2 ’ (42)
— X —T

The main contribution here is to compare the performances ] ) )
of the MCF, BPF, MBPF nonlinear approaches to the tradmyhere.wt and'vt are |nd.epe.ndent one—d'lmensmnal standard
onal EKF. Generally, for the nonlinear filters, just parameteRfownian motions. The filtering was carried out for the range
related to the initial number of particles and length of thée € [0,5] which was divided inN' = 2! intervals. All the
inter-branching time can be adjusted for improving the ratBtégrals were approximated by the traditional Euler scheme.
of convergence; except for the MCF where just the numb&Pe Signal process initialization was setit®) ~ N(2.0,0.2)
of particles is important. The initial covariance matrix of thé? order to evaluate the performance of the Euler-Maruyama

EKF must be adjusted with accuracy in order to minimize tHfiScretization scheme over the nonlinear range of the obser-

transient in the first steps. The criteria used for the comparisé#iion process. _ _ o
and the numerical examples are presented next. The BPF and the MBPF implementation was made aiming

to obtain the best rate of convergence in accordance with
o the result (24) of the Corollary 1. However, to simplify the
A. The Absolute Error Criterion algorithm implementation, the inter-branching times computed
This criterion is based on the performance measure usedsere multiple of2*, k = 0,1,2, ....
verify the estimate accuracy of the filters at fixédBy fixing Figure and 2 present a typical realization of the process (40)
R, j = 1,.., R, different initial conditions for the estimatedwith the filtering results for the MCF with 100 particles, BPF
signalﬁ:{;k, k=1,..., M, M different simulated sample pathsinitialized with 100 particles and range from 1 up to 1000,
of the estimated signal are performed and compared to theiand EKF.
corresponding real values The jth estimated absolute error The performance evaluation was made based on the ro-

is defined as bustness of the MCF, MBPF and BPF estimates, where the
M ' _ formers were tested with three different configuratioRs=
£ = 7 Z | XDF — XDF| (35) 10,100,1000, and the latter with a given initial number of
k=1 particles inside a range of working. The EKF robustness

which is independent and Gaussian for lafge estimate was evaluated for 100 runs. To satisfy dhsolute
To construct a confidence interval for the estimated absol@E0" criterion, the absolute error and its respective 90%
error, the mean of the batch averages is confidence intervaJAc] were computed at instants= 1.0s
' andt = 3.0s, as presented in Tables | and Il, respectively.

o1& 1 M . The performance provided by the nonlinear filters and EKF
TR > &= RM PIPBIRCAER (36) " are similar, except by the fact that here the MCF, MBPF and
=1 J=l k=1 BPF confidence interval at= 1.0s are significantly better for
and the estimated variance ofis P > 100 due to the signal process be located at the strong
R nonlinear region of the observation one.
62 = ﬁ (&5 — )% (37) Note that the MCF obtained better results when compared to

J=1

others nonlinear filters for the same number of initial particles.
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time (s)

practical implementation can be done: 1-) the inter-branching
interval computed was multiple @, and 2-) the results show
that the range limitation of the particles affect the performance
of the estimate.

C. Unstable System

Now the one-dimensional Ornstein-Uhlenbeck process is
defined as

0.5dt + 0.25 dw,, (43)

wherew; is a one-dimensional standard Brownian motion and
x(0) ~ N(0.0;0.20). The corresponding observation process
is as presented by (41) and (42).

The estimation results of the MCF with 100 particles, BPF

dact =

Fig. 2. A realization of (40) and its respective MCF,BPF and EKF estimatddlitialized with 100 particles and range from 1 up to 1000,

ESTIMATION AND 90% CONFIDENCE INTERVAL OF€ OBTAINED BY MCF,

TABELA |

and EKF for a typical realization of (43) is shown in Figure
3.

BPF, MBPFAND EKF AT ¢t = 1.0s FOR THE STABLE SYSTEM (oWl Xyicr ]
P 10~YH || [Aeg](1oh) f N
MCF
10 2.15550.230 || (2.117,2.193) 4
100 2.043£0.151 || (2.018,2.068)
1000 2.023L0.141 || (2.000,2.046)
MBPF °r
10 2.794£0.458 || (2.718,2.870)
100 2.108E0.156 || (2.082,2.134) -l . ki
1000 2.044E0.140 || (2.021,2.067) N
BPF | N
10 [5 15] 2.469£0.316 || (2.417,2.521) e AN
10 [1 1000] || 2.302£0.281 || (2.255,2.349)
100 [50 200] || 2.255L0.189 || (2.220,2.229) 1
100 [1 1000] || 2.075£0.158 || (2.049,2.101) ‘ ‘ ‘ ‘ )
EKF || 2.252£0.158 || (2.226,2.278) ° ' ime(s) ! )

ESTIMATION AND 90% CONFIDENCE INTERVAL OF£ OBTAINED BY MCF,
BPF, MBPFAND EKF AT ¢t = 3.0s FOR THE STABLE SYSTEM

TABELA Il

Fig. 3. Arealization of (43) and its respective MCF, BPF and EKF estimates.

The performance evaluation here is analogous to to the last
example. However, differently from that in the stable case, the

P 1o~ || [Ag@o~h) EKF failed to provide an acceptable bounded error estimate
5 MC('): ( ) when compared to the nonlinear filters, as presented by the
1 1.4910.114 || (1.472,1.510 .
100 4170102 ([ (1.400 1.434) absolute errorg in Tables Il and IV.
1000 1.402+0.104 || (1.385,1.419) TABELA 11|
- . 5’23”735':099 e ESTIMATION AND 90% CONFIDENCE INTERVAL OFé OBTAINED BY MCF,
100 T44T£0.110 || (1.423,1.459) MBPF, BPFAND EKF AT ¢ = 1.0s FOR THE UNSTABLE SYSTEM
1000 1.4170.109 || (1.399,1.435) S .
SPF P | eao—hH || [Agaoh
10 [5 15] || 1.563£0.122 || (1.543,1.583) MCF
10 [1 1000] || 1.495E0.115 || (1.476,1.514) 10 7.027:0.825 || (6.890,7.164)
100 [50 200] || 1.477E0.113 || (1.458,1.496) 100 6.586:0.566 || (6.494,6.682)
100 [1 1000] || 1.420E0.106 || (1.403,1.437) 1000 6.5150.529 || (6.423,6.599)
EKF || 1.41950.104 || (1.402,1.436) MBPF
10 7.4610.854 || (7.319,7.603)
100 6.902£0.608 || (6.801,7.003)
1000 6.570E0.529 || (6.482,6.658)
However, according t€orollary 1, the convergence rate of the T . SeeroFssg TS
branching particle filters can be better to that presented by the 10 [1 1000] || 7.494E1.010 || (7.326.7.662)
Monte Carlo-based ones for an adequate choice of the inter- 100 [50 200] || 6.623E0.547 || (6.532,6.714)
branching times and number of particles. The worst results of 100 [1 1000] || 6.651£0.574 || (6.556,6.746)
the performance evaluation for the branching particle system EKF ][ 10.90G0.730 [[ (9.482,12.318)

must be investigated better, but some explanations about the
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TABELA IV
ESTIMATION AND 90% CONFIDENCE INTERVAL OF£ OBTAINED BY MCF,
MBPF, BPFAND EKF AT ¢ = 3.0s FOR THE UNSTABLE SYSTEM

El

[10]
P I é I [Ag]
MCF
10 157650224 || (1.539,1.613) (11]
100 1.440E0.117 || (1.421,1.460)
1000 1.419E0.104 || (1.402,1.436) [12]
MBPF
10 2.00150.260 || (1.917,2.085)
100 1.56200.130 || (1.540,1.584) [13]
1000 1.42650.109 || (1.408,1.444)
BPF
10 [5 15] 2.049£0.357 || (1.990,2.108) [14]
10 [1 1000] || 1.843L0.300 || (1.793,1.893)
100 [50 200] || 1.738:0.175 || (1.709,1.767) [15]
100 [1 1000] || 1.475L0.118 || (1.455,1.494)

(16]

EKF || 2.8070.206 || (2.732,2.882)

[17]
VIl. CONCLUSION

Two case studies for the performance evaluation of brans]
ching particle filters were used with the objective of contri-
buting towards understanding and providing useful insight fprg,
practical implementation. A performance study based on the
robustness of the estimate in relation to the number of indepen-
dent simulations of three different modes of implementation of
the branching particle filter was also made and the results were
compared with those obtained by the extended Kalman filter.
Under favorable conditions, the performance provided by the
modified nonlinear filter and the extended Kalman filter were
similar, but here the former obtained better results on regions
where the linear approximation of the observation process was
not good. Additionally, based on the example of an unstable
system, it was shown that the nonlinear filter, for an adequate
number of independent realizations, is much better than the
extended Kalman filter.
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