
XXI SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES-SBT’04, 06-09 DE SETEMBRO DE 2004, BELÉM, PA 1

A Factor-Graph Schedule for Stream-Oriented
Turbo Codes

Alexandre de Andrade and Jaime Portugheis

Abstract—The paper considers the application of a factor-
graph approach to decoding stream-oriented turbo codes.
The decoding schedule proposed can be interpreted as only
two decoder modules replacing the pipelined structure orig-
inally used in stream-oriented decoding. Simulation results
corroborate the efficiency of the schedule and also show po-
tential improvements that can be obtained by using MAP
instead of Max-Log-MAP calculations.

Keywords— Stream-Oriented Turbo Codes, Convolutional
Interleaver, Factor-Graphs, Decoding Schedules.

I. Introduction

Original turbo scheme uses block encoding, where each
block of data is encoded and decoded independently. Trellis
termination is required in order to obtain the best perfor-
mances.

In [1]-[5], the stream decoding paradigm was developed.
Encoder uses continuous encoding, without explicit block
boundaries. In a stream-oriented scheme, encoders are free-
running, and its trellises evolve without forcing any state
configuration by termination bits or truncation. Stream
decoding is proposed to use a pipeline of continuous in-
dependent decoding modules, each one using a continuous
version of the symbol-by-symbol sliding-window MAP de-
coding algorithm.

In a sliding window decoding we have information about
initial machine states and final states must be learned. This
is usually done by performing advanced backward decod-
ing.

In articles where the stream decoding paradigm was de-
veloped a more detailed description of decoding calcula-
tions is lacking. We focus on the possible optimizations
and variations of this calculations through the scheduling
analysis of the factor-graph approach.

Recently introduced [6], the factor-graph environment
has not been fully explored yet, leaving as open problems
several scheduling optimizations. Turbo-like decoding are
shown to be a special case of the sum-product algorithm
applied to a factor graph that describes the concatena-
tion. Previous articles has translated the traditional
turbo decoding sequence of calculations to the correspond-
ing scheduling, which is almost straightforward given the
blockwise nature of the graph.

The decoding schedule proposed here can be interpreted
as only two decoder modules: one for each constituent en-
coder. This replaces the pipelined structure originally used
in stream-oriented decoding. Although this can be equiva-

Alexandre de Andrade e Jaime Portugheis are with Departa-
mento de Comunicações, Faculdade de Engenharia Elétrica e de
Computação, Universidade Estadual de Campinas, Brazil, e-mails:
wwx@decom.fee.unicamp.br, jaime@decom.fee.unicamp.br

lent to the pipelined structure, the scheme of two decoding
modules can simplify memory management and allow op-
timizations more easily.

II. Stream-Oriented Turbo Codes

The stream scheme provides compatibility for turbo
codes with any periodic (block or nonblock) interleaver.

The most common type of non-block interleavers is the
convolutional interleaver, a very structured non-block in-
terleaver with permutation law

πN,B (k) = k −BN (k mod N) , k = . . . ,−1, 0, 1, . . .

where N is the period and B is the multiplicity. Con-
catenating B interleavers, each one with permutation law
πN,1 (k) results in a overall interleaver with permutation
law πN,B (k).

Generalized convolutional interleaver has a permutation
law

πf (k) = k −Nf (k)

where f (k) is any nonnegative periodic function with pe-
riod N .

A permutation law π (k) is causal if π (k) < k for all k.
The interleaver spread, delay or span D for a causal per-

mutation law π (k) can be defined as

D = max
k
{k − π (k)} .

For a generalized convolutional interleaver we have

D = N max
k

f (k)

and for a convolutional interleaver

D = NB (N − 1) .

As stated in various previous works, the total decoding
delay is

Dtot = I (D + 2W ) ,

where W is the length of advanced symbols used in back-
ward calculations, and I is the number of decoding itera-
tions. If a pipelined decoding architecture is assumed, and
in addition, processors work with frequencies close to in-
formation rates, the decoding delay per iteration should be
considered [3], [5].

Since W is small for practical encoders, we have

Dtot ' INB (N − 1)

for a convolutional interleaver. In this case, D is the de-
coding delay per iteration.



XXI SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES-SBT’04, 06-09 DE SETEMBRO DE 2004, BELÉM, PA 2

III. The Proposed Schedule

Figure 1 shows the factor-graph for the serial concate-
nation of two constituent finite state machines. We prefer
to describe the serially concatenated scheme because it has
a simpler factor-graph description and it results in a more
concise explanation of the algorithm operations. The par-
allel configuration is similar and can be easily deducted.

Fig. 1. Factor-graph for the serial concatenation of two codes.

This is actually the initial fragment of the graph, since
the whole scheme is semi-infinite, as well as the sequences
of variables. The first machine (outer) is defined by the se-
quence of states

{
SA

i

}
i=0,1,2,...

and has as output symbols
the sequence

{
CA

i

}
i=1,2,3,...

. This sequence is interleaved
by some permutation law π (i) and is passed as input sym-
bols to the second state machine (inner), which has state
evolution represented by the sequence

{
SB

i

}
i=0,1,2,...

. It
outputs the symbols

{
CB

i

}
i=1,2,3,...

to the channel. The
sequence {Yi}i=1,2,3,... is the output of the channel, the
received sequence.

The application of the sum-product algorithm to the
factor-graph above can be summarized by describing the
types of messages on nodes inside state machines. For a
general state machine, with input symbols Ui, output sym-
bols Ci and states Si, we define the following scheme of
messages, illustrated in Figure 2.

The sum-product algorithm for this scheme uses
as kernel in the central node T (ui, si, ci, si+1) =
Pr {ci, si+1|si, ui}, and we have the following update equa-
tions for iterative calculations:

α (si+1) =
∑

ui,si,ci

T (ui, si, ci, si+1)α (ui) α (si) β (ci)

α (ci) =
∑

ui,si,si+1

T (ui, si, ci, si+1)α (ui)α (si) β (si+1)

β (si) =
∑

ui,ci,si+1

T (ui, si, ci, si+1)α (ui) β (ci)β (si+1)

β (ui) =
∑

si,ci,si+1

T (ui, si, ci, si+1) α (si) β (ci) β (si+1)

This set of equations is valid for both constituent de-
coders, including the directions for the graphical represen-
tation of the messages flow. In this unified view, we have
two Markov chains

(
UA

i , SA
i , CA

i

)
and

(
UB

i , SB
i , CB

i

)
con-

nected by a interleaver that identifies UB
i to CA

π(i). The in-
terleaver map makes the interface between messages from
one decoder to another. Messages βB (ui) from the decoder
B are sent to the decoder A as βA

(
cπ(i)

)
, and in the op-

posite way messages αA (ci) are sent as αB
(
uρ(i)

)
, where

ρ is the mapping function corresponding to π.

Fig. 2. Illustration of message flow at a function node.

At a given instant k, we have the received sequence
y0, . . . yk from the channel. Instead of a symbol by symbol
decoding, we chose to decode groups of symbols in a period
(the synchronization length).

So, at each N symbols received (one period length), we
start calculations that result in N symbols decoded. At
receiving channel observations yk, . . . , yk+N−1 we end up
with decisions on the symbols cA

k−d, . . . , c
A
k+N−1−d, with

d = Dtot = I (D + 2W ).
The stream-oriented decoding algorithm can be summa-

rized as follows:



XXI SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES-SBT’04, 06-09 DE SETEMBRO DE 2004, BELÉM, PA 3

(1) receive the channel values corresponding to one pe-
riod and calculate the a posteriori probabilities βB (ci) =
p (yi|ci) , k < i ≤ k + N − 1. We use two indexes kmin and
kmax to denote the range of calculations inside a period and
through iterations. We start with

kmin = k

and
kmax = k + N − 1.

The items (a) through (e) describe calculations for the cur-
rent period:

(a) calculations on decoder B

evaluate αB (si) , kmin < i ≤ kmax

make kmin = max {0, kmin −W}
evaluate βB (si) , kmin < i ≤ kmax

make kmax = kmax −W
evaluate βB (ui) , kmin < i ≤ kmax

(b) here we have the deinterleaver delay:

make kmin = max {0, kmin −D}
make kmax = kmax −D

(c) calculations on decoder A

evaluate αA (si) , kmin < i ≤ kmax

make kmin = max {0, kmin −W}
evaluate βA (si) , kmin < i ≤ kmax

make kmax = kmax −W
evaluate αA (ci) , kmin < i ≤ kmax

(d) if we have enough iterations, decide for symbols CA
i

using the product αA (ci)βA (ci) in the range kmin < i ≤
kmax, and restart the process (1) for the next period of
symbols; if not enough iterations, go to item (a) (next it-
eration);

Initial calculations with contour conditions (before
stream decoding become stationary) are handled by trun-
cations in kmin to zero (the “max” statements in the de-
scription above).

As an elucidative example, we sketch below a simple case
with a convolutional interleaver of period N = 3, two iter-
ations (I = 2) are realized, and the advance window length
is W = 3. So, we have Dtot = 24.

In Figure 3, we represent each stage of the decoding pro-
cedure as a frame column. Each column is a very simplified
visualization of the factor-graph for the serial concatena-
tion, where it is shown just the interleaver connections and
the function nodes at the two state machines. Left nodes
represent the outer code, and right nodes the inner code.
Up arrows are α (si) message calculations; down arrows
are β (si) calculations; left directed arrows are β (ui) cal-
culations; and right directed arrows are α (ci) calculations.
Arrows on the left nodes indicate calculations performed
on the outer decoder; arrows on the right nodes are calcu-
lations on the inner decoder.

IV. Simulation Results

In the previous section we have described a schedule for
a serially concatenated turbo code in order to obtain a con-
cise explanation of the algorithm operations. However, in
order to compare our performance results with those results
of [1], we have decided to implement a similar schedule for a
factor-graph representing a parallel concatenation of con-
volutional codes (PCCCs). All the results are for BPSK
signaling over an additive white Gaussian noise channel.

Figure 4 shows the obtained performance for a fixed pe-
riod N = 14 and several values of parameter B. The
codes were generated by recursive systematic convolutional
(RSC) constituent encoders and puncturing of the parity
streams were performed to achieve a code rate R = 1/2.
Both the encoders and the number of iterations are the
same as in Figure 14 of [1]. However, our factor-graph ap-
proach corresponds to the use of a sliding-window MAP
algorithm at each constituent decoder instead of a sliding-
window Max-Log-MAP, as was used in [1]. As can be no-
ticed from the Figure, this yields a better performance of
our approach for medium to low error rates. For example,
for Eb/N0 = 1.5 dB and B = 5, our approach yields an
improvement of about two decades in error rate !

Fig. 4. Bit Error Rate (ordinate) versus Eb/N0 dB (abscissa) for
fixed N = 14 and variable B.

Figure 5 shows the obtained performance for a fixed de-
lay D = 1260 and several values of parameters N, B, where
we have also used the same scheme described in Figure 15 of
[1]. Similarly, we have a better performance in comparison
to the original algorithm described in [1] (For Eb/N0 = 1.5
dB and N = 15, B = 6, our approach yields an improve-
ment of about one decade in error rate).

V. Conclusions

We have developed a factor-graph approach to decode
stream-oriented turbo codes. Simulation results were ob-
tained and they corroborate the efficiency of this approach.
The sum-product algorithm was applied to the factor-graph
in its original form. We expect that a Log-MAP version of



XXI SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES-SBT’04, 06-09 DE SETEMBRO DE 2004, BELÉM, PA 4

Fig. 3. Graphical representation of the proposed schedule for two iterations at a given instant k.

Fig. 5. Bit Error Rate (ordinate) versus Eb/N0 dB (abscissa) for
fixed D = 1260 and variable N and B.

the sum-product algorithm (with few values in the correc-
tion table) results in negligible performance losses as was
the case for the turbo-code system simulated in [7].

The algorithm developed in this paper for the proposed
factor-graph schedule uses the concept of a semi-infinite

time index for all graph variables. This can be easily imple-
mented by any computer programming language by using
the operation of integer modulus on memory addressing.
The concept of integer modulus can also lead to a hardware
implementation with a circular memory filling. Hence, we
believe that the factor-graph representation is more suited
in a continuous decoding environment.

References

[1] E. K. Hall and S. G. Wilson, Stream-Oriented Turbo Codes,
IEEE Trans. Inform. Theory, vol. 47, pp. 1813-1831, July 2001.

[2] E. K. Hall and S. G. Wilson, Stream-Oriented Parallel Concate-
nated Convolutional Codes, Proc. IEEE Inform. Theory Work-
shop, pp. 4-5, Killarney, Ireland, June 1998.

[3] E. K. Hall and S. G. Wilson, Stream-Oriented Turbo Codes,
Proc. IEEE Vechicular Technology Conf., pp. 71-75, Ottawa,
Canada, May 1998.

[4] Eric K. Hall and Stephen G. Wilson, Convolutional Inter-
leavers for Stream-Oriented Parallel Concatenated Convolu-
tional Codes, Proc. IEEE Int. Symp. Inform. Theory, p. 33,
Cambridge, USA, Aug. 1998.

[5] W. Henkel, L. Jusif and J. Sayir, Random Convolutional Inter-
leaving in Turbo Coding, unpublished work.

[6] F. R. Kschischang, B. J. Frey and H.-A. Loeliger, Factor Graphs
and the Sum-Product Algorithm, IEEE Trans. Inform. Theory,
vol. 47, pp. 498-519, February 2001.

[7] P. Robertson, E. Villebrun and P. Hoeher, A Comparison of
Optimal and Sub-optimal MAP Decoding Algorithms Operating
in the Log Domain, Proc. IEEE Int. Conf. on Communications,
pp. 1009-1013, Seattle, USA, June 1995.


