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Resumo—Este artigo apresenta um modelo matemático para 

a análise de perdas e dispersão em fibras de Bragg, de núcleo oco, 
baseado no método da matriz de transferência. O artigo introduz 
uma estratégia para o eficiente cálculo numérico das 
características de dispersão de modos TE0n e TM0n. Os resultados 
são validados por comparação com outros métodos na literatura.  

Palavras-Chave—Fibras de Bragg, matriz de transferência, 
modos transversais TE0n e TM0n. 

Abstract— This paper presents a mathematical model for the 
analysis of losses and dispersion in Bragg fibers with hollow core, 
based on the transfer matrix method. The paper introduces a 
strategy for the efficient numerical calculation of the dispersion 
characteristics of TE0n, and TM0n modes. The results are 
validated by comparison with other methods in the literature. 

Keywords—Bragg fibers, transfer matrix, transversal modes 
TE0n, and TM0n. 

 INTRODUCTION 

Bragg fibers began to be studied in the 1970’s [1][3]. 
Since then, the literature on the subject has been vast [1]-[11]. 
Among the several approaches employed in the analysis of 
Bragg fibers are the asymptotic method [11], Galerkin, finite 
element methods [8], and transfer matrix method [8], [9]. 

For a Bragg fiber with hollow core, as considered in this 
paper, there are losses due to the occurrence of leaky modes. 
The dispersion curves fall in the complex plane, making the 
analysis of such structures even harder. This paper employs 
two approaches for the solution of the dispersion problem in 
the complex plane: the Fortran routine DZANLY, based on 
Müller’s method, and the well-known regula falsi method. The 
results are validated thorugh comparison with those obtained in 
[9]. The paper introduces a strategy for the complex plane 
calculation of the dispersion characteristics of transversal TE0n, 
and TM0n modes. The same strategy can also be applied to 
hybrid modes. The paper discusses the losses, and dispersion 
properties of the TE01, TE02, and TM01 modes. In general, the 
strategy adopted in this work showed to be reliable, and 
efficient.  

MATHEMATICAL MODEL 

A time variation ejt is assumed throughout. The geometry 
of the Bragg fiber (BF) is illustrated in Figure 1. The refractive 
index profile in the cross section of the fiber is as shown in 
Figure 2. The physical characteristics of the fiber are described 
by the following parameters: core refractive index  n0 = 1; 
Bragg cells refractive indices  n1 = 1.49, n2 = 1.17; cladding 
refractive index N = 1.49; core radius  r0m; 
Bragg cell widths d1 = 0.2133 m, d2 = 0.3460 m; number 
of Bragg cell  N = 16. 

 
Fig. 1. Geometry of Bragg fiber. 

 

 
Fig 2. Refractive index profile. 

The propagating modes of interest are the transversal TE0n, and 
TM0n modes, which do not depend on the azimuthal variable  
( / = 0). 

The transversal components of the TE0n-mode are functions of 
the longitudinal magnetic field. Considering a region “” of the 
fiber, we have: 
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Hz obeys the Helmholtz’s equation: 

2 2
z z( ) + ( ) 0H r,z K H r,z                          (2) 

with 2 2 2 2
T 0 eff 0K K K n n K k                

(3) 

neff is the effective refractive index, a complex quantity. 

The equations for the TM-mode are obtained from (1)(3) with 
the help of the duality theorem. 

TEon MODES: 
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The external region of the Bragg fiber is characterized by 

circular waves that propagate radially ( (2) (1)
0 0H ,H ). The 

internal regions (core, and Bragg cells) are modeled by 
stationary circular waves (J0, Y0). 

TRANSFER MATRIX METHOD: 

 Internal regions (core, and Bragg cells): These regions are 
modeled by superposition of two stationary radial waves: 

 (J0(KTpr) Y0(KTpr)), 2  p  N 1,  = p 1. 

where J0(x), Y0(x) are the zero-order Bessel’s functions of the 
first and the second kind, respectively. 

This formulation includes frustrated internal reflections at the 
boundaries between the dielectric regions, which are 
responsible for the radial Poynting vector, and consequently for 
the leaky loss of the mode. 

The solution of Helmholtz’s equation (2) for the longitudinal 
magnetic field yields: 

      z 0 T 0 T
j z

p p p p pH r,z A J K r B Y K r e  
            

(4) 

In the core region, B1 = 0. The substitution of (4) in (1) yields 
the electric field: 
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Equations (4) and (5) are conveniently written in matrix form: 
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with 2 2 0
0 0

0
120TP p p p effK K k ;k n n ; z

K


      . For 

convenience, the factor ejz was omitted. 

EXTERNAL REGION (r  rN) 

This region is modeled by two cylindrical waves that propagate 

radially: one direct wave   (2)
0 TNH K r   and a reverse wave 

  (1)
0 TNH K r : 
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with AN = 0. 

The substitution of (8) in (1) yields: 
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In matrix form, (8)(9) are written as: 
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Before we can determine the dispersion equation for the 
propagating modes, we need to obtain the boundary transfer 
matrices. These matrices express the continuity conditions the 
electromagnetic field must obey at the boundary between 
different regions. 

We must consider two boundaries: one between adjacent Bragg 
cells, one between the last Bragg cell and the external region. 

At the boundary between adjacent Bragg cells, 2  p  N 1,  
= p1, and: 
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Using the matrix form obtained earlier, (12) is written as: 
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Inverting the matrix in (13), we obtain the boundary transfer 
matrix: 
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At the boundary between the last Bragg cell and the external 
region,  p = N,  = N1, and: 
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The boundary transfer matrix is obtained as: 
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with r = rN, 
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 DISPERSION EQUATION FOR THE TE0n MODES 

A Bragg fiber is composed by the core and N cells; therefore, 
there are N + 1 boundaries at which the tangential electric field 
must be continuous. The enforcement of this continuity 
condition corresponds to multiplying the boundary transfer 
matrices obtained earlier.  

Starting at the external boundary, and moving inward, we 
obtain the following 2  2 matrix: 
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The initial hypothesis, AN = 0, B0 = 0, decouples equation (20): 

0 = M(1,1) A0 

BN = M(2,1) A0                                  (21) 

The term M(1,1) = 0 is the dispersion equation for the TEon 
mode, n – 1,2: 

M(1, 1) = F(, neff()) = 0                        (22) 

The solution of equation (22) in the complex plane requires a 
special strategy, to be considered in Section III. 

The formulation outlined above allow for the computation of 
the electromagnetic field {Hz(r), E(r)} of TE0n modes. For 
convenience, the longitudinal field in the core is normalized, so 
that A0 = 1. The field components in the core are given by 
equations (4)−(5): 

   z0 0 T0H r J K r
                          

(23) 

   0 1 T0E r J K r                              (24) 

The electric field has also been normalized, and use was made 

of the identity:    0 1
'J x J x  . 

The transfer matrix is applied at the core boundary, and the 
field coefficients at the next region are given by: 
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The electric field has been normalized again, and use was made 

of the identity:    0 1
'Y x Y x  . 

This process is repeated for all the boundaries. 

SOLUTION OF THE DISPERSION EQUATION 

There are several alternatives for the numerical solution of the 
dispersion equation (22) in the complex plane. In this work, we 
used the well-known regula falsi method, described in [10], 
and the IMSL DZANLY Fortran routine, based on Müller’s 
method. 

All the propagating modes in the Bragg fiber satisfy the 
transverse resonance condition, that correspond to wavelengths 
where the propagation losses are minimum. Therefore, at 
theses wavelengths, the dielectric layers of the Bragg cells 
reflect the radial energy strongly, and the structure can be 
modeled by a resonant core with metallic boundary. The 
electric field E must then go to zero at the core boundary. 

For TE0n modes, equation (24) yields 
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0
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T T
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J K r ,K
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(27) 

where x1,m is the m–th root of the Bessel function of order 1, 
and r0 is the core radius. 

An estimate of the real part of the effective refractive index is 
obtained for the TE0m mode as 
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It is assumed that Im(neff) << Re(neff). Each root x1,m of the 
Bessel function J1 correspond to a different TE0m mode. 

At and near to the low loss operation point of the Bragg fiber, 
the results obtained with equation (28) agree with those 
obtained with the electromagnetic method provided the mode is 
in the photonic band of the structure. For the Bragg fiber 
described in Figures 1 and 2, the first two TE modes are 
characterized by: 

TE01: x11 = 3.832,   2
TE01

Re 1 0 211effn .             (29) 

TE02: x11 = 0.7016,   2
TE02

Re 1 0 7072effn .  
      

(30) 

The estimates of Re(neff) is valid solely for the fundamental 
mode TE01, as the TE02 mode is not in the photonic band. But it 
is sufficient, and allows for the determination of the dispersion 
characteristics of the other modes. 

Figure 3 shows that only the TE01 mode is in the photonic band 
of the Bragg fiber. We can also conclude that the strategy of 
orienting the curve for Re(neff) according the estimate in eq. 
(29) is recommended for the TE0n modes that fall in the 
photonic band; in the present case, it is only the TE01mode. The 
results obtained with the DZANLY routine, and the regula falsi 
method agree within 2%. 
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Fig. 3. Real part of the effective refractive index as obtained by equation (29)-
(30), DZANLY routine, and regula falsi method. 

A mode in the photonic band of the Bragg fiber exhibits a “” 
associated with minimum losses, due to the field reflection by 
the Bragg cells. As “” varies, the reflections become less 
intense, and the losses increase. Therefore, the losses of a mode 
in the photonic band will be represented by a parabolic curve; 
the real part of neff varies slowly close to minimum loss 
wavelength . 

Figures 45 show the losses and Re(neff) for the TE02 mode, 
and we notice that there are no points of minimum losses, and 
no the variation of Re(neff) is not slow. This indicates that the 
TE02 mode is not in the photonic band of the Bragg fiber. This 
explains the large discrepancy between the values estimated for 
Re(neff)  equation (30) and the ones shown in Figure 3. 

IV. RESULTS 

To validate the model developed here for the hollow core 
Bragg fiber, we compare our results with other found in the 
literature [9]. The Bragg fiber is the same as before. The mode 
losses were calculated as [7,8]: 

         640 54 57
Im Im 10 dB/m

10 eff eff
.

Loss n n
ln


 

  
 

(31) 

Figure 4 shows Re(neff)for the TE01 and TE02 modes as 
calculated by the DZANLY routine, the regula falsi method, 
and reference [9]. The agreement between the various results is 
very good. 

 
Fig.4.  Comparison of the Real(neff). 

 
Fig. 5. Comparison of the losses. 

Figure 5 shows a comparison of results obtained for the losses 
of the same modes. For the TE02 mode, this figure indicates a 
difference of about 12% between the results obtained with the 
DZANLY routine and the regula falsi method, although the 
curves exhibit the same general behavior. For the fundamental 
TE01 mode, the difference between the results is smaller than 
2%.  

At the point of minimum loss of the TE01 mode,  = 1 m, and 
the effective refractive indices of the two modes are given by: 

Mode Reference [8]                  This work 

TE01 0.8910672175 j1.422605108 0.891067 j1.4230108 

TE02 0.7920859031 j1.819323103 0.792975 j1.8140103 

                

The asymptotic method of reference [11] yields, also at  = 1 
m: 

TE01: 0.90919 j6.86126109 ; TE02: 0.7869166 j3.556103 

Figures 4 and 5 confirm that the TE02 mode is outside the 
photonic band, and that explains the large losses. 

The TM01 and TM02 modes were also investigated with the 
DZANLY routine. The results in Figures 6, Re(neff), and 7, 
losses, indicate clearly that both modes are outside the photonic 
band, due to the large losses. Reference [9] does not show 
results for theses modes, only mentioning that both have large 
losses. 

 

Fig. 6. Re (neff) of the TM01 and TM02 modes. 
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Fig. 7. Imag (neff) of the TM01 and TM02 modes. 

Figure 7 makes it clear that the TM01 and TM02 modes are 
outside the photonic band of the Bragg fiber, as this figure does 
not show a deep minimum loss at  = 0.825 m. At this 
wavelength, the curves in Figure 6 exhibit a rapid variation. 

The normalized field components (Hz, E) are shown in Figures 
8 (TE mode,  = 1 m), 9 (TE mode,  = 1 m), and 10 
(TM mode,  = 0.825 m). These figures indicate clearly that 
the TE01 mode is well confined in the Bragg cells, due to the 
strong reflections by the cells. The hybrid modes exhibit large 
losses, and we conclude that, at  = 1 m, this Bragg fiber is a 
single-mode structure. 

 

 

 

Fig. 10. TM01 mode, λ = 0,825µm, neff = 0,8462-j2,24110-6 

 

∎ 

V. CONCLUSION 

The results obtained with the model developed in this work 
were validated by comparison with results obtained by other 
methods [9], [11]. For the Bragg fiber considered, the results 
obtained with the DZANLY routine and the regula falsi 
method were more accurate for the TE01mode (discrepancy 
smaller than 2%) than for the TE02 mode, for which the 
difference between the results was of the order of 12%. 
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