Método Iterativo de Equalização, Desespalhamento e Decodificação Conjunta para Codificação Espaço-Temporal em Bloco no Nível de Chip em Canais Seletivos em Freqüência

I. R. S. Casella e P. J. E. Jeszensky

Resumo— Neste artigo, é apresentada um nova estrutura espaço-temporal iterativa de recepção para sistemas WCDMA (*Wideband Code Division Multiple Access*) empregando codificação espaço-temporal em bloco aplicada no nível de chip (CSTBC) para canais seletivos em freqüência. A estrutura proposta desempenha conjuntamente os processos de equalização, desespalhamento espectral e decodificação espaço-temporal em bloco. Os resultados de simulação mostram que a estrutura iterativa proposta oferece um ganho significativo de desempenho após poucas iterações.

Palavras-Chave-Receptores iterativos, STBC, WCDMA.

Abstract—In this paper, we present a new iterative spatialtemporal receive structure for WCDMA (Wideband Code Division Multiple Access) systems employing chip-level space-time block coding (CSTBC) for frequency selective fading channels. The proposed structure performs jointly equalization, spectral despreading and space-time block decoding. Simulation results show that the proposed iterative structure offers significant improvement after few iterations.

Keywords-Iterative receivers, STBC, WCDMA.

I. INTRODUÇÃO

Os novos sistemas de comunicação sem fio oferecem diferentes serviços de alta taxa para atender a crescente demanda por aplicações multimídia. Em função das características assimétricas dos novos serviços, torna-se necessário um aumento adicional da capacidade do *Downlink*, motivando a utilização de técnicas de diversidade de transmissão como a codificação espaço-temporal em bloco (STBC) [1].

Na busca por sistemas de comunicação sem fio mais robustos às variações do canal de propagação e que disponibilizem acessos sem fio mais velozes, justifica-se combinar as técnicas de STBC aos sistemas WCDMA. Entretanto, a aplicação da STBC em sistemas WCDMA de alta taxa em ambientes de propagação com desvanecimento seletivo em freqüência, é bastante desafiadora devido à presença da interferência de múltiplo acesso (MAI), da interferência inter-antena (IAI), além da interferência intersimbólica (ISI).

Neste artigo, com o intuito de aumentar a robustez do sistema às variações e aos efeitos de seletividade do canal de propagação, a codificação espaço-temporal é realizada pela técnica apresentada em [2] aplicada, entretanto, após o

processo de espalhamento espectral, no nível de chip (CSTBC) [3]. A aplicação da CSTBC para canais com desvanecimento seletivo em freqüência normalmente requer a utilização de alguma forma de equalização no receptor para suprimir os vários tipos de interferência (ISI, IAI e MAI) que reduzem o desempenho do sistema. Deste modo, é proposta uma nova estrutura espaço-temporal iterativa de recepção para sistemas WCDMA, empregando métodos de correção de erros direta (FEC) e de CSTBC.

A nova estrutura, denominada de estrutura iterativa de equalização por decisão realimentada e decodificação de FEC conjunta para a CSTBC (CSTBC-IJDFEC), é baseada no método de equalização após combinação com estimativa de canal (EPCCE) proposto em [4], sendo assim, denominada aqui de CSTBC-IJDFEC-EPCCE. A estrutura CSTBC-IJDFEC-EPCCE permite realizar conjuntamente os processos de equalização e decodificação de canal e melhorar significativamente o desempenho do sistema quando associada à CSTBC e apresenta uma baixa complexidade computacional, quando comparada às estruturas espaço-temporais de recepção baseadas no princípio turbo [5].

Nas aplicações em sistemas WCDMA com códigos de canalização e embaralhamento curtos, a estrutura de recepção proposta pode realizar adicionalmente os processos de equalização e desespalhamento espectral conjuntamente, ou seja, realizar o processo de equalização no nível de símbolo (SimbEq), como mostra a figura 1.

Fig. 1. CSTBC-IJDFEC (SimbEq)

O artigo é organizado como se mostra a seguir: na seção II, é introduzido o modelo do sistema e o método de CSTBC-IJDFEC; na seção III, são apresentados os resultados de simulação e na seção IV, são apresentadas as conclusões finais.

I. R. S. Casella e P. J. E. Jeszensky, Laboratório de Comunicações e Sinais, Departamento de Engenharia de Telecomunicações e Controle, Escola Politécnica da Universidade de São Paulo, {casella, pjj}@lcs.poli.usp.br

II. MODELO DE SISTEMA

Considera-se o *Downlink* de um sistema WCDMA de múltiplas antenas, composto por N_w canais físicos dedicados (DPCH), cada um codificado pelos métodos convencionais de FEC (codificação de bloco ou convolucional). Os DPCH são associados a M usuários distintos, cada um empregando modulação QPSK. O processo de espalhamento espectral é composto por duas etapas, a primeira utiliza códigos de canalização curtos ortogonais e a segunda emprega códigos de embaralhamento curtos ou longos.

Assume-se, sem perda de generalidade, que a estação rádiobase (ERB) emprega duas antenas de transmissão ($A_t = 2$) e que cada estação móvel (EM) usa uma ou duas antenas de recepção ($A_r = 1$ ou 2), ambas utilizando antenas suficientemente afastadas para garantir que os sinais transmitidos sofrem desvanecimentos independentes.

No processo de transmissão, o stream de bits de informação de cada DPCH a ser transmitido $q_{b,w}$ $[q_{b,w}(1), \cdots, q_{b,w}(N_b)]^T$, onde N_b é a quantidade total de bits de informação transmitida, é primeiramente codificado por um método convencional de FEC, resultando num stream de bits codificados $\mathbf{q}_{c,w} = [q_{c,w}(1), \cdots, q_{c,w}(N_c)]^T$, onde N_c é a quantidade de bits codificados. Em seguida, o stream codificado é aplicado a um entrelaçador em bloco [6] de dimensão $\pi_l \times \pi_c$, resultando no stream $\mathbf{q}_{e,w} = \Pi(\mathbf{q}_{c,w})$, onde Π representa a operação de entrelaçamento em bloco. Após o entrelaçamento, os bits codificados e entrelaçados são mapeados em QPSK, resultando no stream $\mathbf{b}_w = [b_w(1), \cdots, b_w(N_s)]^T$, onde N_s é a quantidade de símbolos de informação codificada transmitida. Após o mapeamento, os símbolos são divididos em dois substreams $\mathbf{b}_{1,w}$ e $\mathbf{b}_{2,w}$ e cada substream é espalhado espectralmente, resultando nos substreams d_1 e d_2 . Os substreams d_1 e d_2 são, então, submetidos ao processo de CSTBC, modulados, filtrados e transmitidos pelas antenas de transmissão 1 e 2, respectivamente.

Os elementos que compõem o substream $\mathbf{d}_i = [d_i(1), \cdots, d_i(N_{cb})]^T$ (i = 1, 2), podem ser representados por:

$$d_i(n) = \sum_{w=0}^{N_w - 1} \sum_{k=0}^{N_{sb} - 1} b_{i,w}(k) \sum_{g=0}^{G-1} W_w(g)c(g)\delta(n - g - kG)$$
(1)

Onde,

G é o ganho de processamento

 $W_w(g)$ é o g-ésimo chip da seqüência de espalhamento ortogonal de canalização do w-ésimo canal de transmissão c(g) é o g-ésimo chip da seqüência de espalhamento complexa de embaralhamento

 N_w é o número de canais ortogonais de transmissão N_{sb} é o número de símbolos transmitidos por bloco que compõem um *substream*

 N_{cb} é o número de chips por bloco $b_{i,w}(k)$ é o k-ésimo símbolo proveniente do *i*-ésimo substream do w-ésimo canal ortogonal de transmissão $\delta(n)$ é a função delta de Kronecker Aplicando o método proposto em [2] para canais com desvanecimento seletivo em freqüência, após o processo de espalhamento espectral, é possível obter uma representação em tempo-discreto dos sinais em banda-base recebidos nos intervalos de bloco 1 e 2, para o caso de um receptor empregando uma antena de recepção ($A_r = 1$), através da seguinte notação vetorial:

$$\begin{bmatrix} \mathbf{r}_1^1 \\ \mathbf{r}_1^2 \end{bmatrix} = \begin{bmatrix} \mathbf{d}_1 & \mathbf{d}_2 \\ -\mathbf{\Gamma}_{N_{cb}} \cdot \mathbf{d}_2^* \mathbf{\Gamma}_{N_{cb}} \cdot \mathbf{d}_1^* \end{bmatrix} * \begin{bmatrix} \mathbf{p}_{1,1} \\ \mathbf{p}_{2,1} \end{bmatrix} + \begin{bmatrix} \mathbf{v}_1^1 \\ \mathbf{v}_1^2 \end{bmatrix}$$
(2)

Onde,

 $\mathbf{r}_{j}^{\beta} = \left[r_{j}^{\beta}(1), \cdots, r_{j}^{\beta}(N_{cb} + L_{c} - 1)\right]^{T}$ é o vetor de sinais recebido pela *j*-ésima antena de recepção no intervalo de bloco β

 $\mathbf{p}_{i,j} = [p_{i,j}(0), \cdots, p_{i,j}(L_c - 1)]^T$ representa o vetor de canal, incluindo os efeitos da filtragem de transmissão e de recepção, correspondente a *i*-ésima antena de transmissão e a *j*-ésima antena de recepção

 \mathbf{v}_{j}^{β} é o sinal de ruído na j-ésima antena de recepção durante o intervalo de bloco β

 L_c é a dimensão em chips do vetor de canal de propagação $\Gamma_{N_{cb}}$ é a matriz de permutação antidiagonal $(N_{cb} \times N_{cb})$ * representa a operação de convolução

 $(\cdot)^*$ representa a operação de conjugado complexo

Enquanto que, para um receptor empregando duas antenas de recepção ($A_r = 2$), os sinais recebidos nos intervalos de bloco 1 e 2 podem ser representados por:

$$\begin{bmatrix} \mathbf{r}_{1}^{1} \\ \mathbf{r}_{2}^{1} \\ \mathbf{r}_{2}^{2} \\ \mathbf{r}_{2}^{2} \end{bmatrix} = \begin{bmatrix} \mathbf{d}_{1} & \mathbf{d}_{2} & \mathbf{0} \\ -\mathbf{\Gamma}_{N_{cb}} \cdot \mathbf{d}_{2}^{*} & \mathbf{\Gamma}_{N_{cb}} \cdot \mathbf{d}_{1}^{*} & \\ \mathbf{0} & -\mathbf{\Gamma}_{N_{cb}} \cdot \mathbf{d}_{2}^{*} & \mathbf{\Gamma}_{N_{cb}} \cdot \mathbf{d}_{1}^{*} \end{bmatrix} \\ * \begin{bmatrix} \mathbf{p}_{1,1} \\ \mathbf{p}_{2,1} \\ \mathbf{p}_{1,2} \\ \mathbf{p}_{2,2} \end{bmatrix} + \begin{bmatrix} \mathbf{v}_{1}^{1} \\ \mathbf{v}_{2}^{1} \\ \mathbf{v}_{2}^{1} \\ \mathbf{v}_{2}^{2} \end{bmatrix}$$
(3)

Sejam $\tilde{\mathbf{r}}_1^1 \triangleq \mathbf{r}_1^1$ e $\tilde{\mathbf{r}}_1^2 \triangleq \Gamma_{N_{cb}+L_c-1} \cdot \mathbf{r}_1^{2^*}$. O método CSTBC-IJDFEC-EPCCE consiste em, primeiramente, combinar $\tilde{\mathbf{r}}_1^1$ e $\tilde{\mathbf{r}}_1^2$ através da estimativa dos canais de desvanecimento para obter as versões desacopladas $\mathbf{y}_1 \in \mathbf{y}_2$ dos *substreams* $\mathbf{d}_1 \in \mathbf{d}_2$. Assim, pode-se obter o *substream* \mathbf{y}_1 , através da combinação dos *substreams* modificados $\tilde{\mathbf{r}}_1^1 \in \tilde{\mathbf{r}}_1^2$ recebidos nos blocos 1 e 2, respectivamente, como apresentado a seguir:

$$\mathbf{y}_1 = \boldsymbol{\Gamma}_{L_c} \cdot \hat{\mathbf{p}}_{1,1}^* * \tilde{\mathbf{r}}_1^1 + \hat{\mathbf{p}}_{2,1} * \tilde{\mathbf{r}}_1^2 \tag{4}$$

De maneira similar, pode-se obter o substream y_2 por:

$$\mathbf{y}_2 = \mathbf{\Gamma}_{L_c} \cdot \hat{\mathbf{p}}_{2,1}^* * \tilde{\mathbf{r}}_1^1 - \hat{\mathbf{p}}_{1,1} * \tilde{\mathbf{r}}_1^2$$
(5)

Onde,

 $\hat{\mathbf{p}}_{i,j}$ é a estimativa do canal a partir da *i*-ésima antena de transmissão para a *j*-ésima antena de recepção

Para um receptor empregando duas antenas de recepção, pode-se obter o *substream* y_1 por:

$$\mathbf{y}_{1} = \boldsymbol{\Gamma}_{L_{c}} \cdot \hat{\mathbf{p}}_{1,1}^{*} * \tilde{\mathbf{r}}_{1}^{1} + \hat{\mathbf{p}}_{2,1} * \tilde{\mathbf{r}}_{1}^{2} + \boldsymbol{\Gamma}_{L_{c}} \cdot \hat{\mathbf{p}}_{1,2}^{*} * \tilde{\mathbf{r}}_{2}^{1} + \hat{\mathbf{p}}_{2,2} * \tilde{\mathbf{r}}_{2}^{2}$$
(6)

e pode-se obter o substream y_2 por:

$$\mathbf{y}_{2} = \mathbf{\Gamma}_{L_{c}} \cdot \hat{\mathbf{p}}_{2,1}^{*} * \tilde{\mathbf{r}}_{1}^{1} - \hat{\mathbf{p}}_{1,1} * \tilde{\mathbf{r}}_{1}^{2} + \mathbf{\Gamma}_{L_{c}} \cdot \hat{\mathbf{p}}_{2,2}^{*} * \tilde{\mathbf{r}}_{2}^{1} - \hat{\mathbf{p}}_{1,2} * \tilde{\mathbf{r}}_{2}^{2}$$
(7)
Onde,
$$\tilde{\mathbf{r}}_{2}^{1} \triangleq \mathbf{r}_{2}^{1}$$
$$\tilde{\mathbf{r}}_{2}^{2} \triangleq \mathbf{\Gamma}_{N_{cb}+L_{c}-1} \cdot \mathbf{r}_{2}^{2^{*}}$$

Após a determinação dos *substreams* $y_1 e y_2$, o método CSTBC-IJDFEC-EPCCE inicia um processo iterativo de equalização e decodificação conjunta, associado ao desespalhamento espectral. Para sistemas WCDMA empregando códigos de canalização e embaralhamento curtos, pode-se aplicar um processo de equalização por decisão realimentada (DFE) [7] no nível de símbolo (SimbEq), ou seja, processar $y_1 e y_2$ símbolo a símbolo, permitindo a unificação dos processos de equalização e desespalhamento espectral. Deste modo, representando o vetor de entrada do processo de DFE do *substream* y_i como:

$$\mathbf{\check{y}}_{i}(k) = \left[\mathbf{\check{y}}_{ff,i}^{T}(k) \mid \mathbf{\check{y}}_{fb,i}^{T}(k)\right]^{T}, \ i = 1, 2$$
(8)

Onde,

$$\begin{split} \tilde{\mathbf{y}}_{ff,i}(k) &= \left[y_i(kG), \cdots, y_i(kG - N_{ff} + 1)\right]^T \text{ \'e o vetor de} \\ \text{entrada do subfiltro de alimentação direta } (N_{ff} \times 1) \\ \tilde{\mathbf{y}}_{fb,i}(k) &= \left[\hat{b}_{i,w}(k - \Delta - 1), \cdots, \hat{b}_{i,w}(k - \Delta - N_{fb})\right]^T \text{ \'e o vetor de entrada do subfiltro de realimentação } (N_{fb} \times 1) \\ N_{ff,i} \text{ \'e a dimensão do subfiltro de alimentação direta } \\ N_{fb,i} \text{ \'e a dimensão do subfiltro de realimentação } \\ \hat{b}_{i,w}(k) \text{ \'e a estimativa do k-\'esimo símbolo transmitido pelo } \\ w-\'esimo canal do i-\'esimo substream \\ \Delta \text{ \'e o atraso aplicado ao sinal realimentado} \end{split}$$

Dado o vetor de coeficientes do filtro de equalização, otimizado para o *w*-ésimo canal do *i*-ésimo *substream*:

$$\mathbf{z}_{i,w} = \left[\mathbf{z}_{i,w}^{ff^{T}} \mid \mathbf{z}_{i,w}^{fb^{T}}\right]^{T}$$
(9)

Onde, $\mathbf{z}_{i,w}^{ff} = \left[z_{i,w}^{ff,1}, \cdots, z_{i,w}^{ff,N_{ff}}\right]^T$ é o subfiltro de alimentação direta $(N_{ff} \times 1)$ $\mathbf{z}_{i,w}^{fb} = \left[z_{i,w}^{fb,1}, \cdots, z_{i,w}^{fb,N_{fb}}\right]^T$ é o subfiltro de realimentação $(N_{fb} \times 1)$

Pode-se obter uma estimativa de $\hat{\mathbf{b}}_{1,w}$ e $\hat{\mathbf{b}}_{2,w}$ através de:

$$\hat{b}_{i,w}(k) = \mathbf{z}_{i,w}^T \cdot \check{\mathbf{y}}_i(k) \tag{10}$$

Em seguida, os símbolos $\hat{b}_{1,w}(k)$ e $\hat{b}_{2,w}(k)$ pertencentes aos substreams $\hat{\mathbf{b}}_{1,w}$ e $\hat{\mathbf{b}}_{2,w}$, respectivamente, são multiplexados

num único *stream* $\hat{\mathbf{b}}_w$, mapeados em bits, através de um conversor abrupto ou suave (dependendo do decodificador), que são desentrelaçados e decodificados, resultando no *stream* de bits $\hat{\mathbf{q}}_{b,w}$. Como mostrado na figura 1, o *stream* $\hat{\mathbf{q}}_{b,w}$ ou sua versão codificada $\hat{\mathbf{q}}_{c,w}$, quando fornecida pelo decodificador, podem ser aplicados, após serem devidamente processados, ao filtro de realimentação do DFE iterativamente, substituindo o sinal fornecido pelo detector de decisão abrupta e permitindo uma melhora significativa do desempenho a cada iteração.

III. RESULTADOS DE SIMULAÇÃO

Nesta seção, é investigado o desempenho do *Downlink* de um sistema WCDMA de múltiplas antenas com codificação de FEC, sujeito a canais com desvanecimento seletivo em freqüência, empregando o método de CSTBC-IJDFEC-EPCCE. As simulações são desenvolvidas em função da SNRpara um número diferente de antenas de recepção (A_r) , de iterações (N_{itt}) utilizadas no processo iterativo de equalização e decodificação conjunta, e para diferentes códigos de FEC (Convolucional e BCH).

Os métodos de CSTBC-IJDFEC-EPCCE (ideal), baseado na realimentação ideal dos símbolos detectados no processo de DFE; CSTBC-IJDFEC-EPC, baseado na estimativa perfeita dos canais de propagação (utilizada na decodificação espaço-temporal em bloco) e CSTBC-IJDFEC-EPC (ideal), baseado na estimativa perfeita dos canais de propagação e na realimentação ideal dos símbolos detectados no processo de DFE, são usados como referência de desempenho.

A ERB é dotada de um arranjo de antenas composto por duas antenas de transmissão $(A_t = 2)$ e são analisados os casos em que cada EM emprega uma $(A_r = 1)$ e duas antenas de recepção $(A_r = 2)$. Considera-se que tanto as antenas da ERB como das EM estão suficientemente espaçadas para garantir que os sinais recebidos pelas antenas de recepção sejam nãocorrelacionados.

O sistema analisado utiliza 4 DPCH ($N_w = 4$), cada um associado a um usuário específico. Os streams de bits transmitidos em cada DPCH são compostos por aproximadamente 1000 bits ($N_b \approx 1000$). O número exato de bits é determinado automaticamente no ambiente de simulação em função dos processos de codificação de FEC, de entrelaçamento e de codificação espaço-temporal, já que o número de bits codificados deve ser múltiplo do número de antenas de transmissão (A_t) e do número de símbolos da constelação de sinais (N_{Ω}) para permitir o perfeito ajuste do número de símbolos num quadro. O processo de FEC analisado se restringe aos códigos convolucionais com polinômios geradores (2,1,3) e BCH (63,30) e (63,18) [8]. O processo de entrelaçamento emprega um entrelaçador em bloco $N_l \times N_c$ (324 \times 7 e 504×7 para códigos BCH (63,30) e (63,18), respectivamente, e 251×12 para códigos convolucionais). Os bits codificados e entrelaçados são então divididos em dois substreams de aproximadamente 250 símbolos mapeados em QPSK ($N_{sb} \approx$ 250). Os resultados apresentados são obtidos avaliando 2000 quadros ($N_{fr} = 2000$) para o caso de uma antena de recepção $(A_r = 1)$ e 2500 quadros $(N_{fr} = 2500)$ para o caso de duas antenas de recepção ($A_r = 2$).

O processo de espalhamento espectral é realizado pela aplicação dos códigos ortogonais de canalização, específicos de cada DPCH (W_w), e do código de embaralhamento complexo, específico da ERB (c). O processo de canalização utiliza códigos de Walsh (G = 8), enquanto que o processo de embaralhamento emprega códigos de Gold (G = 7), onde um chip é adicionado ao final do código (G = 8).

O processo de equalização é realizado no nível de símbolo (SimbEq), possibilitando desempenhar a equalização e o desespalhamento espectral conjuntamente, e emprega subfiltros de alimentação direta com dimensão *G* e subfiltros de realimentação com dimensão unitária (para reduzir os efeitos de propagação de erros). Os coeficientes dos subfiltros são determinados através do algoritmo DFE-RLS [7]. O processo de estimativa dos canais de propagação, obtido pelo algoritmo RLS [7], é feito no nível de chip e considera que a dimensão dos filtros empregados é igual à dimensão máxima dos canais de propagação. Os fatores de esquecimento dos algoritmos DFE-RLS e RLS são iguais a 1 ($\lambda_{dfe-rls} = 1$ e $\lambda_{rls} = 1$).

Assume-se durante as simulações, que o canal de propagação é fixo durante a duração de um quadro (abordagem quase estática) e pode ser representado por um filtro de FIR de dimensão 7 ($L_c = 7$). A cada quadro transmitido, é gerado um novo canal de propagação, composto por 3 componentes de multipercurso independentes, cujas envoltórias e fases apresentam distribuições de Rayleigh e uniforme, respectivamente.

Nas figuras 2 e 3, são apresentados os desempenhos do método de CSTBC-IJDFEC-EPCCE e dos métodos de referência, para o caso de duas antenas de transmissão ($A_t = 2$) e uma antena de recepção ($A_r = 1$), utilizando 25 e 50 símbolos de treinamento por antena de transmissão (aproximadamente 10% e 20% do total de símbolos transmitidos por quadro de dados), respectivamente. Os métodos empregam codificação convolucional com polinômios geradores (2,1,3) e o processo de decodificação é realizado por um decodificador de Viterbi de decisão suave [8].

Na figura 2, pode-se verificar que após 1 iteração ($N_{itt} = 1$), o método CSTBC-IJDFEC-EPCCE oferece um ganho de desempenho de aproximadamente 2.5 dB para uma $BER = 5 \cdot 10^{-5}$ em relação ao método convencional, baseado em equalização e decodificação separadas ($N_{itt} = 0$). Após 3 iterações ($N_{itt} = 3$), o método de CSTBC-IJDFEC-EPCCE atinge o limite de desempenho estabelecido pelo método de CSTBC-IJDFEC-EPCCE (ideal), que emprega um DFE com realimentação ideal. Entretanto, ele apresenta uma perda de desempenho de aproximadamente 1.5 dB para uma $BER = 1 \cdot 10^{-5}$, em relação ao método de CSTBC-IJDFEC-EPCC, que emprega estimativas perfeitas dos canais de propagação. Notase ainda que o ganho de desempenho obtido após uma iteração ($N_{itt} = 1$) é bastante reduzido.

Na figura 3, pode-se verificar que após 1 iteração (N_{itt} = 1), o método de CSTBC-IJDFEC-EPC oferece aproximadamente um ganho de 2 dB para uma $BER = 2 \cdot 10^{-5}$, em relação ao método convencional, empregando equalização e decodificação separadamente (N_{itt} = 0). Após 3 iterações (N_{itt} = 3), o desempenho obtido atinge o limite estabelecido pelo método de CSTBC-IJDFEC-EPCCE (ideal). Comparando os resultados obtidos com os apresentados na figura 2, podese verificar que o aumento da quantidade de símbolos de treinamento resulta num ganho significativo de desempenho (4 dB para uma $BER = 1 \cdot 10^{-5}$ para CSTBC-IJDFEC-EPCCE).

Fig. 2. BER para um sistema WCDMA com 2 antenas de transmissão e 1 antena de recepção empregando o método CSTBC-IJDFEC-EPC (SimbEq) e os métodos de referência com codificação convolucional (2,1,3), em função da SNR ($A_t = 2$, $A_r = 1$, G = 8, $N_w = 4$, $N_{fb} = 1$, $N_t = 25$ e $L_c = 7$)

Fig. 3. BER para um sistema WCDMA com 2 antenas de transmissão e 1 antena de recepção empregando o método CSTBC-IJDFEC-EPC (SimbEq) e os métodos de referência com codificação convolucional (2,1,3), em função da SNR ($A_t = 2$, $A_r = 1$, G = 8, $N_w = 4$, $N_{fb} = 1$, $N_t = 50$ e $L_c = 7$)

Nas figuras 4 e 5, são apresentados os desempenhos do método de CSTBC-IJDFEC-EPCCE e dos métodos de referência, para o caso de duas antenas de transmissão ($A_t = 2$) e uma antena de recepção ($A_r = 1$), quando são utilizados os métodos de codificação BCH (63,30) e BCH (63,18), respectivamente. O processo de decodificação é realizado pelo método de síndrome descrito em [9], [8]. Considera-se que são empregados 50 símbolos de treinamento por antena de transmissão.

Na figura 4, pode-se verificar que após 5 iterações ($N_{itt} = 5$), o método CSTBC-IJDFEC-EPCCE oferece um ganho de desempenho de aproximadamente 4.5 dB para uma $BER = 5 \cdot 10^{-4}$ em relação ao método convencional, baseado em equalização e decodificação separadas ($N_{itt} = 0$).

Em função da capacidade limitada de correção de erros do esquema BCH (63,30), o método de CSTBC-IJDFEC-EPCCE oferece um ganho significativo de desempenho a cada iteração, embora os ganhos proporcionados reduzam a cada iteração. Nota-se ainda que são necessários mais que 5 iterações ($N_{itt} = 5$) para atingir o limite de desempenho estabelecido pelo método de CSTBC-IJDFEC-EPCCE (ideal).

Fig. 4. BER para um sistema WCDMA com 2 antenas de transmissão e 1 antena de recepção empregando os métodos CSTBC-IJDFEC-EPC (SimbEq) e os métodos de referência com codificação BCH (63,30), em função da SNR ($A_t = 2, A_r = 1, G = 8, N_w = 4, N_{fb} = 1, N_t = 50$ e $L_c = 7$)

Fig. 5. BER para um sistema WCDMA com 2 antenas de transmissão e 1 antena de recepção empregando os métodos CSTBC-IJDFEC-EPC (SimbEq) e os métodos de referência com codificação BCH (63,18), em função da SNR ($A_t = 2, A_r = 1, G = 8, N_w = 4, N_{fb} = 1, N_t = 50$ e $L_c = 7$)

Na figura 5, pode-se verificar que após 5 iterações ($N_{itt} = 5$), o ganho de desempenho obtido pelo método CSTBC-IJDFEC-EPCCE, em relação ao método convencional ($N_{itt} = 0$) é de aproximadamente 1.5 dB para uma $BER = 1 \cdot 10^{-4}$. Devido a melhor capacidade de correção de erros do esquema BCH (63,18), em relação ao esquema BCH (63,30), o ganho de desempenho oferecido pelo método de CSTBC-IJDFEC-EPCCE a cada iteração é menor (para uma dada figura de desempenho).

Nas figuras 6 e 7, são apresentados os desempenhos do método de CSTBC-IJDFEC-EPCCE e dos métodos de referência, para o caso de duas antenas de transmissão ($A_t = 2$) e duas antenas de recepção ($A_r = 2$), utilizando 25 e 50 símbolos de treinamento por antena de transmissão, respectivamente. Os métodos empregam codificação convolucional com polinômios geradores (2,1,3) e o processo de decodificação é realizado por um decodificador de Viterbi de decisão suave.

Fig. 6. BER para um sistema WCDMA com 2 antenas de transmissão e 2 antenas de recepção empregando o método CSTBC-IJDFEC-EPC (SimbEq) e os métodos de referência com codificação convolucional (2,1,3), em função da SNR ($A_t = 2$, $A_r = 2$, G = 8, $N_w = 4$, $N_{fb} = 1$, $N_t = 25$ e $L_c = 7$)

Fig. 7. BER para um sistema WCDMA com 2 antenas de transmissão e 2 antenas de recepção empregando o método CSTBC-IJDFEC-EPC (SimbEq) e os métodos de referência com codificação convolucional (2,1,3), em função da SNR ($A_t = 2$, $A_r = 2$, G = 8, $N_w = 4$, $N_{fb} = 1$, $N_t = 50$ e $L_c = 7$)

Pode-se verificar que com apenas 1 iteração ($N_{itt} = 1$), o desempenho obtido pelo método de CSTBC-IJDFEC-EPCCE atinge o limite de desempenho estabelecido pelo métodos de CSTBC-IJDFEC-EPCCE (ideal), tanto para 25 como para 50 símbolos de treinamento por antena de transmissão. Considerando a utilização de 25 símbolos de treinamento, o método de CSTBC-IJDFEC-EPC oferece um ganho de desempenho em relação ao método de CSTBC-IJDFEC-EPCCE de aproximadamente 1 dB para uma $BER = 1 \cdot 10^{-5}$.

Para 50 símbolos de treinamento, a diferença de desempenho entre os dois métodos se reduz a aproximadamente 0.2 dB para a mesma *BER*. O aumento da quantidade de símbolos de treinamento, de 25 símbolos para 50 símbolos, resulta num ganho significativo do desempenho do sistema. Pode-se verificar ainda que os ganhos de desempenho obtidos após a primeira iteração ($N_{itt} = 1$) são bastante reduzidos para as BER analisadas.

IV. CONCLUSÕES

Neste artigo, foi proposta uma estrutura espaço-temporal iterativa de equalização por decisão realimentada e decodificação de FEC conjunta de baixa complexidade, baseada no método de equalização após combinação com estimativa de canal, para aplicações em sistemas WCDMA empregando a CSTBC. A nova estrutura, denominada, CSTBC-IJDFEC-EPCCE, permite realizar conjuntamente os processos de equalização, desespalhamento espectral e decodificação de canal e melhorar significativamente o desempenho do sistema.

A CSTBC-IJDFEC-EPCCE pode ser associada a diferentes tipos de codificação de FEC, como a codificação convolucional e a codificação BCH. Os resultados de simulação mostram que a estrutura conjunta de CSTBC-IJDFEC-EPCCE, oferece um ganho adicional de desempenho em relação às estruturas que executam separadamente os processos de equalização e decodificação à medida que a SNR aumenta.

REFERÊNCIAS

- S. M. Alamouti, "A simple transmit diversity technique for wireless communications," *IEEE Journal on Selected Areas in Communications*, vol. 16, no. 8, pp. 1451–1458, October 1998.
- [2] E. Lindskog and A. Paulraj, "A transmit diversity scheme for channels with intersymbol interference," *IEEE International Conference on Communications*, pp. 307–311, 2000.
- [3] I. R. S. Casella, E. S. Sousa, and P. J. E. Jeszensky, "Evaluation of chip space-time block coding for ds-wcdma in time-varying channels," *IEEE International Symposium on Personal, Indoor, and Mobile Radio Communications*, pp. 1588–1592, 2003.
- [4] —, "Equalization pos-combining with channel estimation and mimo joint equalization combining receivers for space-time block coding in frequency selective channels," *IEEE International Symposium on Personal, Indoor, and Mobile Radio Communications*, pp. 1317–1321, 2003.
- [5] C. Berrou, A. Glavieux, and P. Thitimajshima, "Near shannon limit error-correction coding and decoding: Turbo codes," *IEEE International Conference on Communications*, pp. 1064–1070, 1993.
- [6] J. S. Lee and L. E. Miller, CDMA Systems Engineering Handbook, 1st ed. Artech House Publishers, 1998.
- [7] S. Haykin, Adaptive Filter Theory, 3rd ed. Prentice-Hall, 1996.
- [8] R. E. Ziemer and R. L. Peterson, *Introduction to Digital Communication*, 2nd ed. Prentice Hall, 2001.
- [9] S. Lin and D. J. Costello, *Error Control Coding*, 1st ed. Prentice Hall, 1983.