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Abstract— This paper investigates the influence of data loss
in the performance of cooperative adaptive filters in distributed
networks. The algorithms analyzed are those with and without
data selection based on innovation. Our simulation results
indicate that set-membership adaptation algorithms, which
perform some form of innovation check prior to transmission
of data to the neighbors, have better performance than their
counterparts which flood the network with data at every itera-
tion. Therefore the space-time data selection of set-membership
adaptive filters reduces computational complexity and energy
consumption, and also improves convergence performance in
case of data loss during transmission.
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I. I NTRODUCTION

The use of sensors is very common in tracking, monitoring
and control applications. The disposition of a number of these
devices together with the connections that enable them to diffuse
data and parameters define a sensor network. Thead hoc mesh
wireless technology introduces new perspectives to sensor network
applications since they can auto-configure themselves in situations
without pre-existent communication infrastructure, enabling more
data portability in a larger range of places demanding lower
resources. Another benefit is the independence of a central device
for routing and diffusing the information gathered, so the nodes
can communicate with each other directly, enabling the estimation
of parameters to be done in a decentralized way.

In a centralized parameter estimation scenario, composed of a
great number of sensors, data processing can be very slow (which is
not suitable, for sensors are usually powered by batteries), or even
prohibitive, as the convergence of a considerable volume of data
on a single device might demand high performance hardware and
high cost. Moreover, the geographical location of the central node
with respect to the remote sensors is to be taken into consideration,
for long distance communications imply high energy consumption
and also high cost. An additional disadvantage of this approach
is the considerable raise of data traffic in the network, that could
bring congestion problems leading to information loss. A possible
solution for this particular problem is to employ mechanisms of
selective cooperation. A related work covered concepts of selective
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algorithms [1]. However, the advantages of these algorithms, when
compared with the ones without data selection in a scenario
inclined to data loss, were overlooked.

This paper proposes an analysis of the speed of convergence
of different approaches taken by cooperative algorithms in the
particular situation mentioned. For this purpose, a simple traffic
model was implemented and simulated along with the algorithms.

II. D ISTRIBUTED ADAPTIVE FILTERING WITH

SELECTIVE COOPERATION

An adaptive filter changes its parameters according to an opti-
mization algorithm in order to approximate some desired behavior
by means of minimizing a established criterion. In centralized net-
works, parameter estimation may require high processing capacity
in the central unit node, not necessarily close to the sensors, which
may demand long-distance, expensive, and low-efficiency commu-
nication. On the other hand, estimation performed in decentralized
ways can generate high traffic of data between nodes, especially if
there is cooperation among them.

A. General Distributed Adaptive Filter Operation
In a spatially distributed network [2]– [7], we assume that

each node has a sensor with the ability to measure a data pair
{xm(k),dm(k)}, wherem denotes the node index, andxm(k) ∈ R

N

and dm(k) ∈ R are input and desired output signals of some
unknown system, respectively.

If each node executes its own adaptation algorithm without
exchanging information with any neighbor, we can say that the
nodes do not "cooperate" among themselves. On the other hand, if
cooperation exists, nodes can use information from their neighbors,
like data pairs and local estimates.

In that context, we define the neighborhoodNm of nodem as
the set of nodes directly connected to it, i.e., they are onehop
away in the network, including itself (see Fig.1). In a cooperation
algorithm, there are basically four main steps in each iteration [1]:
transmission(data pair spreading),estimation (production of a
local estimateupdate), diffusion(exchange of local estimates), and
consensus(production of a final estimate for the iteration). After
data pair spreading, the second step for our reference nodem is to
use the data spread by its neighbors in some functionf in order
to generate alocal estimate. The node can also use its previous
local information about the parameters, that is, functionf performs
a space-time update

φm(k) = f [wm(k−1), xl (k), dl (k); l ∈ Nm] (1)
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Fig. 1. Ad-Hoc network and neighborhoodNm of m.

where φm(k) is the computed local estimate,wm(k− 1) is the
consensus calculated in the previous iteration, andl ∈ Nm refers
to each node in the neighborhood ofm. After the diffusion of all
estimates, the following step is the consensus, i.e., the computation
of vectorwm(k) based on a defined criterion about how to use all
the exchanged local estimates. Thus there is a functiong, evaluated
at nodem, which uses all the exchanged information with the
neighbors, i.e.,

wm(k) = g[φl (k); l ∈ Nm] (2)

wherewm(k) is the consensus estimate at iterationk.

B. Set-Membership Concept

It is usual in cooperative adaptive filtering that all the nodes
spread their information. Before estimation takes place, there is
feedforward trafficduring data pair transmission, whereas after
diffusion takes place, nodes exchange their estimates with their
neighbors, which we call herefeedback traffic. The concept of
Set-Membership (SM) applied to time as well to spatial updating
yields substantial savings in computation per node and in traffic
among nodes [1].

SM adaptation algorithms use an upper boundγ for the output
error to accessinnovation brought by new data. Innovation is
an important concept, which SM algorithms use to indicate if
updates are needed. The strategy has been applied to adaptive
filters for selective updating in time, whereby data brought at
every iteration is checked for innovation. In [1], this strategy
was extended for selective updating in space, whereby data to
be sent to neighbors is checked for innovation. If there is not
enough innovation in the data, they do not need to be shared with
neighbors. Therefore the evaluation of a local estimate and the
transmission of data pairs or estimates are not performed if deemed
unnecessary. As a consequence, there is a drastic reduction of traffic
in the network. In this work, we use different implementations
of NLMS (Normalized Least-Mean Squares) algorithms with Set-
Membership and evaluate their behavior when network traffic can
cause package loss.

C. Diffusion SM-NLMS

This is the most simple variation of the SM-NLMS algorithm
used in this work. The algorithm performs spatial and time inno-
vation at nodem upon reception of data pairs and local estimates
from the neighbors.

Let us define the constraint setHl (k) as

Hl (k) = {φ ∈ R
N : |dl (k)−φTxl (k)| ≤ γ}. (3)

In the NLMS algorithm, no data selection is used, and all the
nodes in the neighborhood ofm have to share data pairs, which are
sequentially used to perform update in the current estimateφm(k).
In the SM-NLMS algorithm, data selection means that a data pair
{dl (k), xl (k)} is considered to bring innovation, therefore used
in the local estimate, if the available local estimateφm(k) does
not belong to the constraint set associated with{dl (k), xl (k)}.
The differential strategy of the Diffusion SM-NLMS algorithm
when compared to the NLMS algorithm is to verify this condition
for every data pair received from neighbors. Every node in the
neighborhood ofm has to share its data pair with it, but nodem
attempts to discard data from those for whichφm(k) ∈ Hl (k), l ∈
Nm(k). With this data selection, the algorithm checks, at every
time, innovation provided by all data pairs available. The result
of this method is the reduction of computational cost at each
node, since the amount of information in estimation is reduced.
We can imagine a situation where none of the collected data pairs
implies innovation, hence no update is performed and diffusion
is not needed. In that specific case, there is also a reduction in
feedback traffic.

D. SM-NLMS (NFF) - Non-Feedforward Traffic

This is an alternative to the previous algorithm, whereby nodes
exchange only their local estimatesφl (k), but not data pairs [1].
Because of this restriction, there is a total reduction of feedforward
traffic at the expense of less spatial diversity information used.

E. SM-NLMS (SIC) - Transmission with Spatial Innovation
Check

The two previous algorithms propose different ways of com-
municating data pairs. The first one suggests innovation selection
upon reception of data pairs, whereas the second one provides
feedforward traffic reduction by not transmitting data pairs. An
alternative idea is to implement a spatial innovation check before
data pair transmission, i.e., each nodel ∈ Nm decides whether or
not its data pair will benefit its neighbors. Aspatial innovation set
N

′
m(k) is defined as [1]

N
′

m(k) = {l ∈ Nm : φl (k−1) /∈ Hl (k)} (4)

where N
′

m(k) is the restricted neighborhood of nodem, that is,
N

′
m(k) contains only the nodes that have broadcast data pairs.

Naturally, update is performed using only data pairs from nodes
within this set. The estimation is computed as follows [1]:

At each nodem:

φm(k) = wm(k−1)

For eachl ∈ N
′

m(k):

el (k) = dl (k)−φT
m(k)xl (k)

φm(k) ← φm(k)+
αl (k)el (k)

‖xl (k)‖2 xl (k).
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whereαl (k) is called the data-dependent step size, i.e.,

αl (k) =

{

1− γ/|el (k)| if |el (k)| > γ
0 otherwise.

(5)

Note that the loop involving each nodel is restricted to the spatial
innovation setN

′
m(k), which can change in subsequent iterations.

The parameterαl (k) allows nodem to check if the received data
pair from each neighbor actually brings innovation if compared
to the current estimateφm(k). Thus, if αl (k) is equal to zero, it
means no innovation. For the particular case where all parameters
αl (k) from every l are equal to zero, no data pair is used, hence
no update is performed and the diffusion ofφm(k) is unnecessary.

F. SM-NLMS (SIC-RFB) - Transmission with Spatial Inno-
vation Check and Reduced Feedback Traffic

As mentioned before, data pairs can yield updates or not, accord-
ing to the values ofαl (k). The reference node does not diffuse its
estimate only if allαl (k), l ∈N ′

m(k) are zero. However, the strategy
of SM-NLMS SIC-RFB is to introduce alocal innovation check.
A local estimate will not be performed if the local data pair does
not bring innovation, regardless of possible innovation brought by
the neighbors. If no innovation is brought by{dm(k),xm(k)}, then
this node does not even compute an update inφm(k), so that both
feedback traffic and computational cost are reduced. The algorithm
is [1]:

e
′
m(k) = dm(k)−wT

m(k−1)xm(k)

If |e′
m(k)| > γ

φm(k) = wm(k−1)

For eachl ∈ N
′

m(k)

el (k) = dl (k)−φT
m(k)xl (k)

φm(k) ← φm(k)+
αl (k)el (k)

‖xl (k)‖2 xl (k).

whereαl (k) is calculated according to Equation (5).

G. Diffusion and Consensus
After the local estimate evaluation, the next step for all the nodes

at the present iteration is the diffusion of their local updatesφl (k).
In other words, in the diffusion phase, every estimate which offers
update with respect to the past has to be communicated to all the
neighbors. After diffusion, a consensus is necessary.

There are many different methods for consensus. In [1] an
algorithm of sphere combinations is proposed, in which all the
estimates are considered to be centers of spheres with a previously
calculated radius. In a pair-wise sequential update, the new consen-
sus update is the center of the sphere that tightly outer bounds the
intersection of two of these spheres. In contrast, a simple method
is the weighted average, in which the consensus is calculated as

wm(k) = ∑
l∈Nm

al (k)φl (k) (6)

whereal (k) is the weight factor for each local estimateφl (k). If all
of them are equally important, we can use an arithmetic average,
where all theal (k) have the same value. The focus of this work
is to analyze the influence of package loss due to traffic in the
performance of the algorithms, not to compare different consensus
strategies. We chose to use the strategy given in Equation (6) in
all simulations.

III. T RAFFIC MODELLING AND ERLANG B
DISTRIBUTION

When using the decentralized parameter estimation approach
instead of the centralized one, the volume of data flowing in the
network raises a discussion about the relevance of traffic issues
in the convergence process of the previously referred algorithms.
Data loss is likely in situations where the amount of information
to be exchanged exceeds the capacity of the channels or devices
involved. As adaptive filters are very sensitive to their input signals,
package loss may have a deleterious influence in performance.
In order to simulate this scenario, network traffic was modeled
according to theErlang B model (orErlang’s Loss Model) which
was chosen due to its simplicity and lack of queuing support.
In this particular model, blocked connections, which might have
been consequence of congestion, cause data to be discarded and
information to be lost. There is also the assumption that data arrive
randomly [5], are independent from each other forming a Poisson
Process, and are treated in the incoming order. The equation of
Erlang B provides us with the probabilityP of blocked connections,
given a numberN of available channels among nodes, and the
traffic T in Erlang units:

P =
TN

N!

∑N
i=0

T i

i!

(7)

whereT = CaCh, Ca is the data arrival rate, andCh is the average
connection holding time.

IV. SIMULATIONS

In this section, we display the results of experiments where
the algorithms are tested when there is inter-node traffic, and
consequently data loss. Their behavior is compared with the ideal
situation when there is no traffic.

The network topology is the same for all experiments, withM =
10 nodes, all of them connected. Therefore the neighborhood sets
are all equal and include all nodes. The unknown system to be
identified has 10 coefficients, randomly generated. The input signal
and additive noise at each node are white Gaussian signals with
zero mean and variance calculated such that the SNR was 30 dB.
For the MSE calculation, we averaged 1000 independent runs.

In order to highlight the effects of traffic, we assumed a very
high blocking probability for the full traffic situation, i.e., when the
algorithm generates either feedforward or feedback traffic in every
iteration. We used the traffic model described in Section III with
each node being served by 9 independent connections and receiving
a total traffic of 80 Erlangs. This gives a blocking probability for
a full traffic situation approximately equal to 89%.

Figure 2 shows the simulation results for the NLMS algorithm
with µ = 0.2. We can clearly see that data loss causes the algorithm
to slow down considerably. When traffic is taken into account, the
algorithm behaves as if nodes did not cooperate and had to act
upon the local information only.

Traffic generated by set-membership algorithms is expected to
decrease as the algorithm approaches convergence. Therefore in
order to simulate traffic and package loss for these algorithms, we
divided the learning curves into five regions and calculated how
many data pair transmissions and how many parameter diffusions
were done, in average, per region. This gave us a relative measure
of generated traffic in comparison with an algorithm that always
shares data pairs and always diffuses parameter estimates (total
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Fig. 2. Effect of high traffic and high probability of data loss in the
behavior of the NLMS algorithm.

TABLE I
GENERATED TRAFFIC DUE TO DATA PAIR TRANSMISSION AND

PARAMETER DIFFUSION (PART I)

Diffusion SM-NLMS Algorithm SM-NLMS-NFF Algorithm

Region Feedforward Feedback Feedforward Feedback

1 (k=1 to 10) 100% 89.1% 0% 65%

2 (k=11 to 20) 100% 41.5% 0% 33.7%

3 (k=21 to 30) 100% 24.3% 0% 12.8%

4 (k=31 to 40) 100% 22.0% 0% 6.7%

5 (k=41 to 150) 100% 21.8% 0% 3.6%

traffic situation). For example, the Diffusion SM-NLMS algo-
rithm described in Section II-C generates 100% of feedforward
traffic, but a decreasing amount of feedback traffic, because as
it approaches convergence, parameter updates, and consequently
diffusion, become less frequent. On the other hand, the SM-
NLMS-NFF described in Section II-D generates zero feedforward
traffic. Tables I and II show the generated traffic due to data pair
transmission and parameter diffusion (feedforward and feedback
traffic, respectively) for the five regions considered for the four
SM algorithms discussed in Section II.

The algorithms with selective cooperation generate less traffic
and are expected to face a smaller blocking probability, and con-
sequently less data loss. Based on the average traffic generated for
each region, we calculated the corresponding blocking probability
faced by the Diffusion SM-NLMS, the SM-NLMS-NFF, the SM-
NLMS-SIC, and the SM-NLMS-SIC-RFB algorithms. For all of
them we usedγ =

√
5σ2, whereσ2 is the variance of the additive

noise.
Figures 3, 4, 5, and 6 show the comparisons for the Diffusion

SM-NLMS, the SM-NLMS-NFF, the SM-NLMS-SIC, and the SM-
NLMS-SIC-RFB algorithms with and without data loss due to
traffic. Notice that the blocking probabilities faced by each of
these algorithms are different, for they depend on the generated

TABLE II
GENERATED TRAFFIC DUE TO DATA PAIR TRANSMISSION AND

PARAMETER DIFFUSION (PART II)

SM-NLMS-SIC Algorithm SM-NLMS-SIC-RFB Algorithm

Region Feedforward Feedback Feedforward Feedback

1 (k=1 to 10) 30.3% 78.7% 40.7% 40.7%

2 (k=11 to 20) 10.1% 30.2% 19.7% 19.7%

3 (k=21 to 30) 6.8% 16.7% 13.8% 13.8%

4 (k=31 to 40) 5.5% 12.2% 11.0% 11.0%

5 (k=41 to 150) 3.6% 6.0% 6.9% 6.9%
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Fig. 3. Effect of high traffic and high probability of data loss in the
behavior of the Diffusion SM-NLMS algorithm.

traffic. Notice also that SM algorithms suffer less than the NLMS
algorithm from data loss, in addition to present faster convergence
and less complexity.

V. CONCLUSIONS

Distributed parameter estimation with selective cooperation is
known to offer reduced computational complexity and reduced
energy consumption per node. In set-membership algorithms, this
often prevents unnecessary transmission of data, either local mea-
surements or local estimates. As a consequence, such algorithms
also cause less traffic in the network, less congestion and collisions,
and ultimately less innovative data to be lost. This paper investi-
gated the impact of traffic on the performance of adaptive filters in
distributed parameter estimation applications. Using a simple traffic
model to take into account blocking probability, and consequent
data loss, we verified that data loss may cause severe degradation
of performance in cooperative adaptive filters if no data selection
is used. On the other hand, in such scenarios the advantages of
set-membership for data selection in space and in time may be
even more pronounced.
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Fig. 4. Effect of high traffic and high probability of data loss in the
behavior of the SM-NLMS-NFF algorithm.
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Fig. 5. Effect of high traffic and high probability of data loss in the
behavior of the SM-NLMS-SIC algorithm.
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