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The Fourier-like and Hartley-like Wavelet 
Analysis Based on Hilbert Transforms 
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Abstract—In continuous-time wavelet analysis, most wavelet 

present some kind of symmetry. Based on the Fourier and 
Hartley transform kernels, a new wavelet multiresolution 
analysis is proposed. This approach is based on a pair of 
orthogonal wavelet functions and is named as the Fourier-like 
and Hartley-like wavelet analysis. A Hilbert transform analysis 
on the wavelet theory is also included. 
 

Index Terms—Wavelet design, Hilbert transform, Fourier 
transform kernel, Hartley transform kernel, Fourier-like 
wavelets, Analytic wavelets, Hartley-like wavelets, Continuous-
time, Wavelet transform. 
 

I. INTRODUCTION 
The idea of comparing Fourier analysis with wavelet 

decompositions is the starting point for introducing an 
analysis based on a couple of orthogonal wavelet functions, 
one with even symmetry and other with odd symmetry. This 
approach is here presented and named as the Fourier-like and 
Hartley-like wavelet analysis. 

In the standard Fourier analysis, a signal x(t) is 
simultaneously analyzed by even and odd functions, being 
represented by: 

 
x(t) = d.c. term + cosine terms + sine terms.   (1) 

 
In the standard wavelet multiresolution analysis (WMRA) 

[1], x(t) may be represented by: 
 

x(t) = ϕ term + ψ terms,       (2) 
 

where “ϕ term” account for the analysis of x(t) with a scaling 
function ϕ(t), and “ψ terms” represent those ones derived 
from scaled versions of a mother wavelet function ψ(t). 

Comparing the WMRA and the Fourier analysis equations, 
the scaling coefficients, “ϕ term”, play a role that corresponds 
to the d.c. term of the Fourier series; the wavelet coefficients, 
“ψ terms”, can be viewed as the harmonic components of the 
Fourier series, since the harmonics are scaled versions of the 
infinite Fourier kernel. 

 

In a continuous-time wavelet analysis, most available 
wavelet functions present some kind of symmetry [2]. Thus, 
when an even wavelet is used to analyze an asymmetric 
signal, its odd part may not be properly analyzed. Therefore, 
it is expected that the signal analysis may be improved by 
including a new term on the WMRA. 

Hence, it seems natural to associate to each wavelet with 
even symmetry another one of odd symmetry, and vice-versa. 
The Hilbert transform can naturally be invoked to derive the 
in quadrature version of a symmetric (or an anti-symmetric) 
wavelet. Hence, x(t) may be represented on a new 
continuous-time WMRA by: 

 
x(t) = ϕ term + ψ terms + orthogonal of ψ terms.  (3) 

 
Accordingly, new wavelet functions that look like the 

Fourier and Hartley transform kernels are invoked. So, by 
analogy to Fourier and Hartley transforms, the “cosine and 
sine” kernel is replaced by “ψ and Hilbert transform of ψ” in 
this new concept of wavelet analysis. 

In order to allow further investigation on the Fourier-like 
and Hartley-like wavelet analysis, a brief review of the 
Hilbert transform is presented, as well the results of applying 
some wavelet properties to the Hilbert transform of wavelets. 

 

II. THE HILBERT TRANSFORM 
The Hilbert transform of a function g(t) is defined by [3]: 
 

( ){ } ( )
∫ ⋅

−
⋅= ∞+

∞− dt
tx

tgvptgHb
π
1.. ,     (4) 

 
where p.v. is the Cauchy principal value of the integral. After 
a change of variable, the Hilbert transform can be written as a 
convolution: 

 

( ){ } ( )tg
t

tgHb ∗
⋅

=
π

1 .       (5) 

 
By taking the Fourier transform of (5), we have: 
 

( ){ }{ } ( ) ( ){ }tgFjtgHbF ⋅⋅−= ωsgn ,   (6) 
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where F is the Fourier transform operator and sgn(.) is the 
signum function, which is defined by: 
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It follows from (6)-(7) that the Hilbert transform of a 

function imposes a null at ω = 0 and a -π/2 phase delay on the 
frequency response of that function. Other interesting 
properties of the Hilbert transform are [3]: 
 A function and its Hilbert transform are orthogonal over 

the infinite interval; 
 The Hilbert transform of a real function is a real function; 
 The Hilbert transform of an even function is an odd 

function, and vice-versa. 
 
In the framework of wavelets, the Hilbert transform of a 

real symmetric (or anti-symmetric) wavelet is a real anti-
symmetric (or symmetric) function. However, it is necessary 
to verify whether the resulting function is also a wavelet 
function or not. 

 

III. THE HILBERT TRANSFORM ON THE WAVELET ANALYSIS 
A function ψ(t) is a mother-wavelet, if and only if, (i) ψ(t) 

is in the space of finite energy functions L2(R), and (ii) ψ(t) 
satisfies the admissibility condition [1]. 

Some properties are explored in the following propositions 
in view of applying Hilbert transform to wavelets. Consider 
Ψ(ω) as the Fourier transform of ψ(t), Hb{ψ(t)} as the 
Hilbert transform of ψ(t), E[ψ(t)] as the energy of ψ(t), and 
C[ψ(t)] as the admissibility coefficient of ψ(t). 

 
Proposition 1: If ψ(t) is a real wavelet, then Hb{ψ(t)} is also 
a real wavelet with same energy and admissibility coefficient 
of its generating wavelet, ψ(t). 

 
Proof: If ψ(t) is a real wavelet, then ψ(t) belongs to L2(R) and 
satisfies the admissibility condition. Invoking Parseval’s 
theorem, the energy and admissibility coefficient of Hb{ψ(t)} 
are given by: 

( ){ }[ ] ( ) ( )∫
∞+

∞−
⋅Ψ⋅⋅−⋅

⋅
= ωωω

π
ψ djtHbE 2sgn

2
1 , and 

( ){ }[ ] ( ) ( )
∫

∞+

∞−
⋅

Ψ⋅⋅−
= ω

ω
ωω

ψ d
j

tHbC
2sgn

. 

A simple manipulation yields to 

( ){ }[ ] ( )∫
∞+

∞−
⋅Ψ⋅

⋅
= ωω

π
ψ dtHbE 2

2
1 , and 

( ){ }[ ] ( )
∫

∞+

∞−
⋅

Ψ
= ω

ω
ω

ψ dtHbC
2

. 

Applying Parseval's theorem on the right-side of the energy 
equation, it is straightforward to conclude that Hb{ψ(t)} is 
also in L2(R). Moreover, ψ(t) and Hb{ψ(t)} have the same 

energy. As ψ(t) ∈ L2(R) and ( ) 00 =Ψ , it promptly follows 

that Hb{ψ(t)} also satisfies the admissibility condition: 
( ){ }[ ] +∞<tHbC ψ . Furthermore, ψ(t) and Hb{ψ(t)} have 

same admissibility coefficient.            ■ 
 

Proposition 2: Let ψ(t) be a wavelet with N vanishing 
moments, then Hb{ψ(t)} has at least N vanishing moments. 

 
Proof: The nth moment of ψ(t) is defined by [1]: 

. As ψ(t) has N vanishing 

moments, then 

( )[ ] ( )∫
+∞

∞−
⋅⋅= dttttM n

n ψψ

( )[ ] 0=tM n ψ , from n = 0 to N-1. In the 
frequency domain, the moments of ψ(t) are expressed by [3]: 

( )[ ]
( )( )

( )n

n

n j
tM

⋅⋅−

Ψ
=

π
ψ

2
0 , where the superscript (n) denotes the 

nth derivative of Ψ(ω). Hence, the nth moment of Hb{ψ(t)} 

is given by ( ){ }[ ] ( ) ( )( )( )

( ) 02
sgn

=
⋅⋅−

Ψ⋅⋅−
=

ωπ
ωωψ n

n

n j
jtHbM .  

Consequently, it follows that Hb{ψ(t)} has at least N 
vanishing moments.                ■ 

 
In view of Propositions 1 and 2, it follows that Hb{ψ(t)} is 

a wavelet with same energy, admissibility coefficient and at 
least same number of null moments than its generating 
wavelet, ψ(t). 

Figure 1 shows a few continuous-time real wavelets and 
their corresponding Hilbert transforms. 
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Figure 1: Continuous-time wavelets and their Hilbert transforms: (a) Morlet; 
(b) Meyer; (c) Mexican Hat; (d) Gaussian-1; (e) Gaussian-2; (f) Gaussian-3. 
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IV. THE FOURIER KERNEL ON THE WAVELET ANALYSIS 
It is time to define a new wavelet function that looks like 

the Fourier transform kernel, which can analyze both 
symmetries of an asymmetric signal. 

The Fourier transform kernel, or Fourier kernel, is defined 
by . ( ) ( )tjte tj sincos ⋅+=⋅

Evoking that , then the Fourier kernel 
can also be written as 

( ){ } (tsintHb −=cos )
( ) ({ }tHbjte tj coscos ⋅−=⋅ ) . 

This naive observation motivates the definition of Fourier-
like wavelets based on a real wavelet and its Hilbert 
transform. Let us define the Fourier-like wavelet, Ft{ψ(t)}, 
by: 

 

( ){ } ( ) ( ){ }( tHbjttFt ψψψ ⋅−⋅=
2

1 ) .    (8) 

 
Proposition 3 proves that Ft{ψ(t)} is also a wavelet and 

that the factor 21  is imposed so as to guarantee that the 
Fourier kernel holds the same energy and admissibility 
coefficient of its generating wavelet. Additionally, 
Proposition 4 shows that Ft{ψ(t)} has same vanishing 
moments than its generating wavelet, ψ(t). 

 
Proposition 3: If ψ(t) is a real wavelet and Hb{ψ(t)} its 
Hilbert transform, then Ft{ψ(t)} is a complex wavelet with 
same energy and admissibility coefficient of its generating 
wavelet, ψ(t). 

 
Proof: If ψ(t) is a real wavelet and Hb{ψ(t)} its Hilbert 
transform, then ψ(t) and Hb{ψ(t)} belong to L2(R) and satisfy 
the admissibility condition. The energy and admissibility 
coefficient of Ft{ψ(t)} are given by: 

( ){ }[ ] ( ) ( ){ }
∫

∞+

∞−
⋅

⋅−
= dt

tHbjt
tFtE

2

2ψψ
ψ , and 

( ){ }[ ] ( ) ( ) ( )
∫

∞+

∞−
⋅

⋅
Ψ⋅−Ψ

= ω
ω

ωωω
ψ dtFtC

2
sgn 2

. 

A simple handling gives 

( ){ }[ ] ( ) ( ){ }
∫

∞+

∞−
⋅

+
= dt

tHbt
tFtE

2

22 ψψ
ψ , and 

( ){ }[ ] ( )
⎪
⎩

⎪
⎨

⎧

<⋅
Ψ⋅

≥
=

∫
∞+

∞−
0.,

2
0,0

2

ωω
ω

ω
ω

ψ dtFtC  

From Proposition 1, it follows that Ft{ψ(t)} also belongs to 
L2(R) and it has the same energy as ψ(t). Once ψ(t) ∈ L2(R) 
and ( ) 00 =Ψ , it follows that Ft{ψ(t)} has also the same 

admissibility coefficient of ψ(t).            ■ 
 

Proposition 4: Let ψ(t) be a wavelet with N vanishing 
moments, then Ft{ψ(t)} has also N vanishing moments. 
 

Proof: From Proposition 2, it follows that the nth moment of 
Ft{ψ(t)} is given by:  

( ){ }[ ] ( ) ( ) ( )( ( ))
( ) ( ) 022

sgn

=⋅⋅−⋅

Ψ⋅−Ψ
=

ωπ

ωωωψ
nn

n

n
j

tFtM , which can also 

be written as ( ){ }[ ] ( )[ ] ( ){ }[ ]tHbM
j

tMtFtM nnn ψψψ ⋅+=
1 . 

Then, Ft{ψ(t)} has also N null moments.        ■ 
 
In the frequency domain, Fourier-like wavelets are null for 

ω > 0. For ω < 0, they have the magnitude response of the 
generating wavelet multiplied by a scalar factor. This is a 
special behavior of analytical signals. 

 

A. Analytic Wavelets 
Based on the results obtained from Fourier-like wavelets it 

is actually simple to define analytic wavelets. An analytic 
function A{g(t)} is a complex signal designed by a real 
function g(t) and its Hilbert transform Hb{g(t)} [4]. In the 
framework of wavelets, an analytic wavelet, A{ψ(t)}, can be 
defined by: 

 

( ){ } ( ) ( ){ }( )tHbjttA ψψψ ⋅+⋅=
2

1 .    (9) 

 
Analytic wavelets have also same energy, admissibility 

coefficient and null moments than their generating 
wavelet, ψ(t). The proofs are similar to that of Propositions 3 
and 4. 

In the frequency domain, analytic wavelets are null for      
ω < 0. For ω > 0, they have the magnitude response of the 
generating wavelet multiplied by a scalar factor. 

 

B. Computing the Wavelet Analysis of Asymmetrical Real 
Signals 

It may be expected that using Fourier-like or analytic 
wavelets, even and odd parts of an asymmetric real signal can 
be better analyzed, respectively, by an even wavelet and its 
Hilbert transform, i.e., an odd wavelet. 

In both cases, it will be necessary to perform a complex 
wavelet analysis. It is also possible to analyze both 
symmetries of a real signal using a real wavelet. In that case, 
the Hartley kernel should be invoked. 

 

V. THE HARTLEY KERNEL ON THE WAVELET ANALYSIS 
The Hartley transform kernel, or Hartley kernel, is defined 

by the “cosine and sine” function: ( ) ( ) ( )tsinttcas += cos . 
Recalling that ( ){ } (ttsinHb cos )= , the Hartley kernel can also 
be written as ( ) ( ) ( ){ }tHbttcas coscos −=  or 

( ) ( ) ( ){ }tsinHbtsintcas += . 
This simple remark motivates the definition of Hartley-like 

wavelets by taking the sum or the difference of a given real 
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wavelet and its Hilbert transform. Let us define the Hartley 
kernel of a wavelet, or a Hartley-like wavelet, Ht{ψ(t)}, by: 

 

( ){ } ( ) ( ){ }( tHbttHt ψψψ m⋅=
2

1 ).    (10) 

 
Proposition 5 proves that Ht{ψ(t)} is also a wavelet and 

that the factor 21  makes the Hartley kernel and its 
generating wavelet to have same energy and admissibility 
coefficient. Additionally, Proposition 6 shows that Ht{ψ(t)} 
has same null moments than their generating wavelet, ψ(t). 

 
Proposition 5: If ψ(t) is a real wavelet and Hb{ψ(t)} its 
Hilbert transform, then Ht{ψ(t)} is also a real wavelet with 
same energy and admissibility coefficient of its generating 
wavelet, ψ(t). 

 
Proof: If ψ(t) is a real wavelet and Hb{ψ(t)} its Hilbert 
transform, then ψ(t) and Hb{ψ(t)} belong to L2(R) and hold 
the admissibility condition. The energy and admissibility 
coefficient of Ht{ψ(t)} are given by: 

( ){ }[ ] ( ) ( ){ }
∫

∞+

∞−
⋅

±
= dt

tHbt
tHtE

2

2ψψ
ψ , and 

( ){ }[ ] ( ) ( ) ( )
∫

∞+

∞−
⋅

⋅

Ψ⋅⋅±Ψ
= ω

ω
ωωω

ψ d
j

tHtC
2
sgn 2

. 

A simple manipulation yields to 

( ){ }[ ] ( ) ( ){ }
∫

∞+

∞−
⋅

+
= dt

tHbt
tHtE

2

22 ψψ
ψ , and 

( ){ }[ ] ( )
∫

∞+

∞−
⋅

Ψ
= ω

ω
ω

ψ dtHtC
2

. 

From Proposition 1, it follows that Ht{ψ(t)} also stays on 
L2(R) and it has same energy of ψ(t). Additionally, Ht{ψ(t)} 
has also same admissibility coefficient than its generating 
wavelet, ψ(t).                   ■ 

 
Proposition 6: Let ψ(t) be a wavelet with N vanishing 
moments, then Ht{ψ(t)} has also N vanishing moments. 

 
Proof: From Proposition 2, it follows that the nth moment of 
Ht{ψ(t)} is given by:  

( ){ }[ ] ( ) ( ) ( )( ( ))
( ) ( ) 022

sgn

=⋅⋅−⋅

Ψ⋅⋅±Ψ
=

ωπ

ωωω
ψ

nn

n

n
j

jtHtM , which can also 

be written as ( ){ }[ ] ( )[ ] ( ){ }[ tHbMtMtHtM nnn ψψψ ±= ] . Then, 

Ht{ψ(t)} has also N null moments.          ■ 
 
In the frequency domain, Hartley-like wavelets have the 

magnitude response of the generating wavelet multiplied by a 
scalar factor. Additionally, they impose a ±π/4-shift on the 
phase response of the generating wavelet. 

Figure 2 shows some continuous-time real wavelets and 

their corresponding Hartley kernels using the addition 
operator in (10). 

 

-4 -3 -2 -1 0 1 2 3 4

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

-8 -6 -4 -2 0 2 4 6 8

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Time

A
m

pl
itu

de

Morlet
its Hartley Kernel

1

Time

A
m

pl
itu

de

Meyer
its Hartley Kernel

 

-5 -4 -3 -2 -1 0 1 2 3 4 5
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-5 -4 -3 -2 -1 0 1 2 3 4 5
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Time

A
m

pl
itu

de

Mexican Hat
its Hartley Kernel 1

Time

A
m

pl
itu

de

Gaus-1
its Hartley Kernel

 

-5 -4 -3 -2 -1 0 1 2 3 4 5
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

-5 -4 -3 -2 -1 0 1 2 3 4 5
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Time

A
m

pl
itu

de

Gaus-3
its Hartley Kernel

 

Gaus-2
its Hartley Kernel1

(a)            (b) 
 
 
 
 
 
 
 
 
 
(c)            (d) 
 
 
 
 
 
 
 
 
 
(e)            (f) 

Time

A
m

pl
itu

de

Figure 2: Continuous-time wavelets and their Hartley kernels: (a) Morlet; (b) 
Meyer; (c) Mexican Hat; (d) Gaussian-1; (e) Gaussian-2; (f) Gaussian-3. 

 

VI. SOME EXAMPLE CASES OF SIGNAL ANALYSIS USING 
FOURIER-LIKE AND HARTLEY-LIKE WAVELETS 

The wavelets proposed in this paper were simulated using 
the MATLAB Wavelet Toolbox [2]. Standard sample signals 
were analyzed to illustrate the behavior of the proposed 
wavelets. 

Consider the wavelet transform, Ca,b coefficients, given by: 
 

( )∫
∞+

∞−
⎟
⎠
⎞

⎜
⎝
⎛ −

⋅⋅= dt
a

bttf
a

C ba ψ1
, ,     (11) 

 
where a (a > 0) and b are, respectively, real scale and 
translation scalars, and f(t) is the signal under analysis. 

 

A. Applying the Hartley-like Wavelet Analysis 
Figure 3 shows a signal composed by two unitary-

amplitude senoidal functions, 5 Hz and 9 Hz, and Figure 4 
shows an 8-level wavelet analysis (wavelet transform) of that 
signal using the Morlet wavelet; its Hilbert transform, and its 
Hartley kernel. 
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Figure 3: A signal composed by two unitary-amplitude senoidal tones of 5 Hz 
and 9 Hz. 
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Figure 4: An 8-level wavelet analysis of the signal plotted in Fig. 3 using: (a) 
the Morlet wavelet; (b) its Hilbert transform, and (c) its Hartley kernel. 

 
The scales where Hartley-like Morlet wavelet may perform 

better signal analysis than the simple Morlet wavelet can be 
observed through the scales × time charts. 

From Figure 4, significant differences on the wavelet 
transform at level 1 can be seen, when using an even, an odd 

or an asymmetrical wavelet. It follows that, despite the time 
shifting imposed by the wavelet transform, asymmetrical 
wavelets can retrieve more information from a signal 
regardless its symmetry. As the kind of symmetry of the 
analyzing signal is not a priori known, the use of Hartley-like 
wavelets on the continuous-time wavelet transform may 
achieve better results. 

Figure 5 shows the signal derived from the 1st-level 
wavelet transform of the later signal using this approach. 
Some improvements can be achieved when using an odd or 
an asymmetrical wavelet to analyze an odd signal, than using 
an even wavelet. 
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Figure 5: The 1st-level wavelet transform of signal (Fig. 3) using the Morlet 
wavelet, its Hilbert transform and its Hartley kernel. 

 

B. Applying the Analytic (or Fourier-like) Wavelet Analysis 
Hilbert transform has already been utilized in wavelet-

based signal analysis [5]. In this section we carry a 
preliminary investigation about analytic wavelet analysis.  

Figure 6 shows a standard frequency breakdown signal and 
Figure 7 presents a 32-level wavelet analysis, assessed by the 
analytic Mexican Hat wavelet. 

From Figure 7, it can be observed that the Mexican Hat 
wavelet can identify the presence of both frequencies as well 
the time when occurs the frequency changing, which can be 
better accurate at lowest scale values. The modulus of that 
analytic wavelet analysis shows that the high frequency 
signal can be viewed at lowest scale values and the low 
frequency signal at higher scale values. 
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Figure 6: A standard frequency breakdown signal. 
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Figure 7: A 32-level wavelet analysis of a standard frequency breakdown 
signal using the analytic Mexican Hat wavelet. 

 
As an example, Figures 8 and 9 show, respectively, the 5th 

and 25th-level wavelet transform, considering wavelets 
derived from the Mexican Hat wavelet. It can be seen the low 
and high frequency signals, when using real wavelets. 

 

0 100 200 300 400 500 600 700 800 900 1000
-4

-3

-2

-1

0

1

2

3

4

A
m

pl
itu

de

Mexican Hat
its Hilbert Transform
its Hartley Kernel
its Fourier Kernel

 
Figure 8: The continuous-time wavelet transform of a standard frequency 
breakdown signal using the Mexican Hat wavelet, its Hilbert transform, its 
Hartley kernel, and its Fourier kernel as mother wavelets and assuming 5 as 
the scale parameter. The modulus is used for the Fourier-like wavelet 
analysis. 
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Figure 9: The continuous-time wavelet transform of a standard frequency 
breakdown signal using the Mexican Hat wavelet, its Hilbert transform, its 
Hartley kernel, and its Fourier kernel as mother wavelets and assuming 25 as 
the scale parameter. The modulus is used for the Fourier-like wavelet 
analysis. 

 

Figure 10 shows the normalized modulus of the 5th and 
25th-level wavelet analysis, when using the analytic, or 
Fourier-like, Mexican Hat wavelet. This feature shows that 
when analyzing individually scales, the time interval when 
occurs different frequency contents can be estimated. 
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Figure 10: Normalized modulus of the 5th and 25th-level wavelet coefficients 
of a standard frequency breakdown when using the analytic, or Fourier-like, 
Mexican Hat wavelet. 

 

VII. CONCLUSIONS 
New wavelet functions have been introduced that might 

improve the continuous-time signal analysis. Anti-
symmetrical wavelets can be designed throughout the Hilbert 
transform of a symmetrical wavelet, and vice-versa. Together, 
they are called a Hilbert transform pair of wavelets. Fourier-
like and Hartley-like wavelets have been derived from the 
Fourier and Hartley transform kernels, which have been 
written on the basis of Hilbert transform. 

The example cases illustrate that, despite the time shift 
imposed by the wavelet transform, asymmetrical wavelets can 
grasp more features from a signal having any kind of 
symmetry. Additionally, Fourier-like and analytic wavelets 
have potential applications for disturbances and frequency 
detection. 
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