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Resumo—Wavelets generalizadas de suporte pontual são 

definidas com base em impulsos de Dirac, doublet e outras 

derivadas de δδδδ(t). Uma análise biortogonal lato sensu conduz às 

séries clássicas de Taylor e novas séries duais interpretadas 

como distribuições de Laurent Schwartz. Uma identidade 

isométrica do tipo Parseval é deduzida a partir de séries de 

Taylor, mostrando que as séries de Taylor também possuem um 

teorema de energia. Novas representações de sinais 

denominadas de ‘derivagramas’, similares aos 

‘espectrogramas’, são introduzidas. Esta abordagem corrobora 

o impacto da teoria de wavelets na moderna análise de sinais. 

Palavras-Chave—wavelets de suporte pontual, análise 

biortogonal, Teoremas de Parseval, derivagramas. 

Abstract—Pointwise-supported generalised wavelets are 

introduced, based on Dirac, doublet and further derivatives of 

δδδδ(t). A generalised biorthogonal analysis leads to standard 
Taylor series and new Dual-Taylor series that may be 

interpreted as Laurent Schwartz distributions. A Parseval-like 

identity is also derived for Taylor series, showing that Taylor 

series support an energy theorem. New representations for 

signals called ‘derivagrams’ are introduced, which are similar to 

‘spectrograms’. This approach corroborates the impact of 

wavelets in modern signal analysis.  

Index Terms—Pointwise-supported wavelets, wide-sense 

biorthogonal analysis, Parseval theorems, derivagrams. 

I. INTRODUCTION 

 

ontinuous and discrete wavelet transforms have 
emerged as a widely used tool in signal analysis, which 

has been proved to be valuable for scientists and engineers 
[1-2]. Today, they are applied extensively in applications in 
an amazing number of areas [3-5], including seismic 
geology, image processing (e.g., video data compression, 
‘denoising’), target recognition and radar, spectrometry, 
metallurgy, turbulence, computer graphics, transient analysis 
in power lines, computer and human vision, optics and 
electromagnetism, telecommunications, DNA sequence 
analysis, fractals, acoustic signal characterisation, quantum 
physics, biomedical signal analysis (mammography, 
electrocardiogram, etc.), earthquake forecast, statistics, 
solution of partial and ordinary differential equations, 
amongst many others. Orthogonality has long been assumed 
as a key property in virtually all standard approaches when 
analysing or synthesising signals [1,3]. A higher-level signal 
processing technique involves the concept of biorthogonality 
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in which two (cross-orthogonal) sets are used – one in the 
analysis and the other in the synthesis of signals [2]. In the 
late 1990’s, biorthogonal Wavelets brought a major 
breakthrough into image compression, thanks to their natural 
feature of concentrating energy in a few transform 
coefficients. It has been adopted in international standards 
such as JPEG 2000 [6,7] and the FBI standard for 
fingerprint storage [8,9]. A recent comparative analysis of 
the file formats and algorithms for still image compression 
shows the unbeatable superiority of JPEG 2000 [23] for 
image storage and network transmission. The aim of this 
paper is to investigate new wide-sense biorthogonal 
decompositions. 
The paper is organised as follows. This Section briefly 
overviews wavelets and some relevant aspects of the Laurent 
Schwartz theory of distributions [10-12], as well as their 
relationship with wavelets. Section II addresses standard 
Taylor series viewed as Tukey-tapers [13]. The new wide-
sense wavelets derived from Dirac derivatives are 
introduced in Section III, showing that Taylor series can be 
interpreted as some sort of biorthogonal analysis based on 
impulsive wavelets. A Parseval-like identity for infinite 
Taylor series is then derived and a few examples are 
presented. Section IV introduces the Taylor-energy density 
and a new signal analysis tool called ‘derivagram’. Final 
remarks are presented in the last Section, which emphasizes 
the power and applicability of wavelet theory in modern 
signal analysis. 
Here, the symbol “:=” denotes “equal by definition”. N, R 
and C are the set of Natural, Real and Complex numbers, 
respectively. Wavelets are denoted by ψ(t) and scaling 
functions by φ(t), with corresponding spectra )(wΦ  and 

)w(Ψ , respectively. 

Definition 1 (C∞ space). The space of infinitely 
differentiable complex signals f:R→C is denoted by C∞(R), 
i.e. the vector space such that  

∀f∈C∞ ⇒ (∀n∈N) f(n) ∈C∞, 
where f(n) denotes the nth derivative of f. � 
 

Definition 2 (Support of a signal). The support of a given 
signal f:R→C, supp f, is the closed union of the set  

t∈R | f(t)≠0. Rigorously, { }0R: supp ≠∈= |f(t)tf . � 

The set of interest for distributions is the set D. 
Definition 3 (D space). Let D be the vector space of signals 
φ:R →C with infinitely derivatives of bounded support. � 
A distribution is a continuous linear functional over D, 
defined by an assignment rule 
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Notation: Let D’ be the space of all distributions. 
Dirac Distribution (δ). ∀φ∈D, 

 )0(:)()(: ϕδϕδϕ ==>,< ∫
+∞

∞−
dttt . � 

A Dirac distribution evaluated on a point t0∈R is defined by 

 ∀φ∈D, )(:)()(: 0)0()0(
tdttt tt ϕδϕδϕ ==>,< ∫

+∞

∞−
. 

Usually >=< TT ,)( ϕϕ  is defined via an inner product, thus 

being a linear operator. 

Derivative of Distributions. ><−=>< TT ,':, ' ϕϕ . 

Higher-order derivatives (order n). By recurrence, the kth 
derivative (k>0) of T∈D’, denoted by T(k), is given by:  

∀φ∈D   ><−>=< TT
kkk ,)1(, )()( ϕϕ . � 

This definition supply the following corollary:  
Corollary 1. Every distribution is infinitely derivable.  
 
Definition 4 (The support of a distribution). The support of 
a distribution T, denoted supp T, is the smallest closed set in 
which T is not vanishing, that is, ∃ φ∈D | <φ,T>≠0. � 
 
Compacted supported distributions. Let T be a distribution 
of bounded support, thus compact. One can prove [10] that T 
can be extended to the space D:=C∞(R). The set of 
compactly supported distributions is denoted by D’. � 
Continuous wavelet transforms [1,4] can also be interpreted 
as distributions [10,11]. If ψ(t) is a mother wavelet, then: 

∀ϕ∈D, ∫
+∞

∞−
>=< dtttCWT )()(, ψϕϕ . 

The homothetic and translation relationships of distributions 
[10] correspond to usual scaling and translation in wavelets. 

i) ∫
+∞

∞−
−>=< dtbttb )()(, ψϕψτϕ . 

ii) a≠0 ∫
+∞

∞−
>=< dt

a

t

a
ta )(

||

1
)(, ψϕψϕ . 

Therefore, in the general case, a wavelet transform 
corresponds to a distribution: 

∫
+∞

∞−

−
>=< dt

a

bt

a
tab )(

||

1
)(, ψϕψτϕ . 

 

II. TAYLOR DATA WINDOW 

 
 The standard Taylor series [14], truncated with N+1 
terms, can be interpreted as a linear functional over the 
function. If f possesses N derivatives at the origin, then let us 
define the Taylor kernel as, 

∑
=

−
=

N

n

n
n

N t
n

t
ttK

0

)( )'(.
!

)(
:)';( δ . 

Clearly, ∫
+∞

∞−
=1')';( dtttK N . The truncated Taylor series 

fN(t) can be obtained by the observation of f(t) thought the 
Taylor taper [13]: 

∫
+∞

∞−
= ')';()'(:)( dtttKtftf NN . 

The use of tapers is currently being investigated to devise 
new multiplex systems (private communication). It is easy to 
show that  

∑
=

=
N

n

n
n

N t
n

f
tf

0

)(

!

)0(
)(

 
such that the limit, 

)()(lim tftf

N

N =

∞→  
provided that the Taylor series converges. The set of values 
of the independent variable t, for which the series converge, 
constitutes what is called the region of convergence of the 
series. 

III. GENERALISED IMPULSIVE WAVELETS 

 
Definition 5 (Generalised wavelets of Dirac). We define the 
“impulsive wavelets” at a scale a∈N-{0} and a translation 
b∈R as,  

)()1(:)( )(
, btt aa
ba −−= δψ , +∞<<−∞ t  � 

The scale parameter a plays here a role somewhat different 
of the one  it stands for  in conventional wavelet theory. 
These “wavelets” have compact support and their narrow 
support is given by }.{)(  Supp , btba =ψ Thus, they are 

pointwise-supported generalised wavelets. Let 
)()( ,, wt baba Ψ↔ψ  be a pair formed by a wavelet and its 

Fourier transform. Since their generalised spectra 

are ( ) jwba
ba ejww −−=Ψ )(, , these are neither signals of 

finite energy nor hold the admissibility condition [1,2].  
Nevertheless, one can remark that  

∫
+∞

∞−
= 0)(, dttbaψ , ∀ a∈ N-{0}, b∈R. 

These generalized-wavelets are associated with a Dirac scale 

function )()( tt δφ = . Clearly, ∫
+∞

∞−
=1)( dttφ , as expected. An 

“extensive” multiresolution analysis [2,15] can as a result be 
implemented using the following analysing sets: 

{ })(tδφ = ; generalised scale function, 

{ }),...('''),(''),(' ttt δδδψ −−= ; generalised wavelets at 

                                                   different scales. 
If f(t) has derivatives of all orders throughout a 
neighbourhood of a point t0=b, then for any continuous 
signal 

 f(t)∈C∞, 
the wavelet coefficients are given by 

∀ a∈ N-{0}, b∈ R 

  

[ ]

),(

)()1)((

)()1(),(:)(

)(

)(

)(
,,

bf

dtbttf

bttftfWTc

a

aa

aa

baba

=

−−=

>−−=<=

∫
∞+

∞−
δ

δ

 

that is, they correspond to the ath derivative of the analysing 
signal f(t) at the point t=b. 
The reconstruction guidelines can be derived through the 
following biorthogonal property of the set { }ψ : 

Let the reconstruction functions be defined by: 

              { }1:)(
~~

== tφφ ; 












+Γ

−
==

)1(

)(
:)(~~

,
a

bt
t

a

baψψ .  

Since a is constrained to be an integer, the set of interest is 
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These reconstruction functions are not wavelets, but hold 
the biorthogonality property. 
Proposition 1 (biorthogonality). ∀n,m∈N-{0}, t0∈R  

mntmtn dttt ,0,0,
)(~).( δψψ =∫

+∞

∞−
, 

where mn,δ is the Kronecker symbol.  

Proof: 

      
( )

∫
∞+

∞−
−−

−
>=< dttt

m

tt nn

m

tntn )()1.(
!

~, 0
)(0

,, 00
δψψ    

                                 = ( )( ) mn

tt

m

n

n

tt
dt

d

m
,0

0

.
!

1
δ=−

=

. � 

The generalised reconstruction formula is therefore 

∑
+∞

=
+−≅

1
)(0,0,00,0

~)(
~

)(
n

ttntnt cttctf ψφ , 

which yields,  

n

n

n

tt
n

tf
tftf ).(

!

)(
)()( 0

1

0
)(

0 −+= ∑
+∞

=
, 

a standard Taylor series at a particular point t0 that 
corresponds exactly to the b parameter of the analysis. The 
equality holds within the interval of convergence of the 
Taylor series [14]. Besides consolidating wavelet 
representation as a most powerful tool, this approach 
suggests the development of a novel Taylor-like series, 
based on further biorthogonal analysis [15]. 
We may also set 

( )
∫

∞+

∞−

−
>==< dt

a

bt
tfttfc

a

baba !
).()(~),(:~

,, ψ . 

Therefore f can be approximated by 

∑
+∞

=

+−≅
1

)(0,0,00,0
~.)()(

n
ttntnt cttctf ψφ . 

For the sake of simplicity, we denote 

( )∫
+∞

∞−
−= dttttftf

nn
00

)~( ).(:)( . 

When f(t) is a probability distribution, this parameter 
corresponds to the nth moment of the density f(t) [14].  
The dual of the Taylor series is the inhomogeneous 
representation [2] 

( ) ( )∑
+∞

=
−−+−=

1
0

)(0
)~(

00
)0

~
(

!
)1.(

!

)(
)()(

n

nn
n

tt
n

tf
tttftf δδ . 

The series above is quite unconventional and the equality 

“
!
= ” must be suitably interpreted. This is an extensional 

concept as identity of distributions. Under integration, the 
term at the right hand side provides the same result as the 
integration of f(t) itself. By no means it implies that the two 
members of the equation are identical (pointwise 
convergence). 
A new Parseval-Taylor identity can be finally established 
(proof omitted here): 
Proposition 2 (Parsevel-Taylor). If f∈L2 is a real signal and 
f∈C∞, then 

∑∫ ∑
+∞

=

∞+

∞−

+∞

=
==

0

)~()(

0
,,

2

!

)().(~.)(
n

nn

n
bnbn

n

bfbf
ccdttf . � 

∫
+∞

∞−
= dttfE )(: 2  is the signal energy. 

 

Corollary 2. If the region of convergence of the 
abovementioned series is RC ⊂ (-∞,+∞), then 

∑∫ ∑
+∞

=

+∞

=
==

0

)~()(

0
,,

2

!

)().(~.)(
n

nn

RC
n

bnbn
n

bfbf
ccdttf , 

where simply the moments are now  

( )∫ −=
RC

nn dttttftf 00
)~( ).(:)( . � 

Energy theorems are among the chief results of series 
decomposition and finite or infinite transforms [2,4-5]. 
Standard Taylor series has not got, to the best of our 
knowledge, a similar relationship. 

EXAMPLE 1.  Let 
2

)( tetf −= ∈ C∞(R) be the Gaussian 

pulse. Indeed, f∈L2(R), as  

∫
+∞

∞−
= πdttf )(2 . 

Evaluating the Taylor series at the origin, one obtains 

nR
ttt

tf ++−+−= ...
!3.2!2.22

1)(
3

6

2

42

. 

The derivatives of f(t) can easily be derived from the series 
above, ∀k∈N, 









−
=

=+

!.2

)!2()1(
)0(

0)0(

)2(

)12(

k

k
f

f

k

k
k

k

. 

Let Γ(.) be the Factorial (gamma) function or Euler’s 
integral of the second kind [16], 

∫
+∞ −−=Γ
0

1:)( dttex xt , t>0. 

The moments of the Gaussian pulse are given by [14,16], 
∀k∈N, 



















+Γ==

=

∫
∞+

∞−

+−

+

2

1
2)0(

~
0)0(

~

2

1
2/2)2(

)12(

2

kdtetf

f

k
tkk

k

. 

The dual Taylor series for the Gaussian pulse is therefore 

)(
2

1
k2)(2 )(

 

2

1
k!

2/2

tte
k

evenk

t δδπ ∑ 







+Γ+=

+− . 

The Parseval-Taylor identity can be applied to derive the 
following non-trivial numerical series: 

( ) 21

2

1

)1(
 

π
=

+Γ









+Γ

−∑
∞+

k

k

evenk

k . 

The convergence of the series is a bit slow as shown in 
Fig.1. Let 

converg1 N( )

0

N

k

1−( )
k Γ k 0.5+( )

Γ k 1+( )
⋅∑

=

:=
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Figure 1. The convergence of the numerical series 
corresponding to the Parseval-Taylor identity applied to the 
Gaussian pulse.  
Γ(.) is the generalized factorial function. The series 
converges (oscillatory behaviour) to 

=2/π 1.25331414… 
 
If f(t)↔F(w) denotes the Fourier pair, then 

( ) )0()()()0( )(

0

)~( nn

w

mmn FjtftFourierdttftf ===
=

+∞

∞−∫ . 

As a result, both terms )0()(nf and )0()
~(nf  of the analysis 

are related to derivatives of the signal, in the time and in the 
frequency domain, respectively. 
 
Proposition 3 (moment symmetry). Even (respectively odd) 
signals have only non-zero even (respectively odd) 
moments, i.e. If f∈C∞(-∞,∞) is even, then  

∀k, 0)0()0(
~

)12()12( == ++ kk Ff . 

Conversely, If  f∈C∞(-∞,∞) is odd, then  

∀k, 0)0()0(
~

)2()2( == kk Ff . 

Proof.  ∫∫
+∞

∞−

+∞

∞−
−−== dttftdttftf mmmn )()1()()0()

~(  and the 

proof follows. � 
 

Corollary 3. The above proposition also holds if  
∃ L<+∞ |    f∈C∞(-L,L). � 

 

Corollary 4. The Taylor-Parseval identity (proposition 2) 
can be rewritten as 

∫∑
∞+

∞−

+∞

=

= dttf
n

Ff
j

n

nn
n )(

!

)0()0(
. 2

0

)()(

. � 

Symmetric energy propositions.  

( )∫∑
∞+

∞−

+∞

=

=− dttf
n

Ff

n

nn
n 2

0

)2()2(

))((
!2

)0()0(
.)1( E  

and  

( )∫∑
∞+

∞−

+∞

=

++

=
+

− dttf
n

Ff
j

n

nn
n 2

0

)12()12(

))((
)!12(

)0()0(
..)1( O . 

 

EXAMPLE 2.  Let now ( )ttf −= 1ln)( ∈C∞(-1,1). The 

well-known Taylor series is [14,16] 

( ) 







++++−=− ...

4

1

3

1

2

1
1ln 432

ttttt ,  11 <≤− t . 

 Now, f(t)∈L2(-1,1) since  

( )[ ] { }∫− +−=−
1

1

2 422ln2ln21ln dtt . 

Indeed, f(t)∈L2(0,1) and ( )[ ]∫ =−
1

0

2 21ln dtt . 

The derivatives of f(t) at the origin are given by ∀n∈N-{0} 







=

+Γ
−=

.0)0(

)1(
)0(

)0(

)(

f

n

n
f
n

 

 Let us examine a sub-region of convergence (0,1) ⊂ (-1,1) 
as a particular case. The moments of f(t) can be computed in 
terms of Euler’s psi function (logarithmic factorial or 
digamma function [16]) 

)(ln:)( x
dx

d
x Γ=ψ . 

The value ...05772156649.0)1(: =−= ψC  is the Euler’s 

constant. Thus,  

( ) [ ]∫ −+
+

−=−=
1

0

)~( )1()2(
1

1
1ln)0( ψψ n

n
dtttf nn . 

A rational function related to the harmonic function 
is CxxF ++= )1(:)( ψ . 

If x is an integer, it follows then that  

∑
=

=++=
n

k k
CnnF

1

1
)1()( ψ , 

so F is closed-linked to the harmonic series. The moments of 
this logarithmic pulse can be written as 

1

)1(
)0()

~(

+

+
−=

n

nF
f n , 

and the Parseval-Taylor series yields the following non-
trivial identity: 

∑
+∞

=

=
+

+

1

2
)1(

)1(

n nn

nF
 or C

nn

n

n

−=
+

+
∑
+∞

=1

2
)2(

)2(ψ
, 

∑
+∞

=

+−=
+

+−

1

2 )12ln22(ln2
)1(

)1()1(

n

n

nn

nF
. 

 
The convergence of one amongst the series above is 
illustrated in Fig. 2. Let 

converg2 N( )

1

N

k

Psi k 2+( )

k k 1+( )⋅




∑

=

:=

. 

0 50 100 150
0

0.5

1

1.5

converg2 N( )

N  
Figure 2. The convergence of the numerical series 
corresponding to the Parseval-Taylor identity applied to the 
logarithmic pulse. Psi(.) is the Euler’s digamma function.  
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The series monotonically converges to 2-
C=1.42278434…, where C is the Euler’s constant. 

( )
( ) .4)2ln(42ln2

1

1
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1

2

2
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1

1

1

2
2

+−

=
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−
+








− ∫∫ −−

dt
t

t
dtt

 

IV.  ‘DERIVAGRAMS’ AND TAYLOR-ENERGY DENSITY 

 
  New tools for analysing signals can be derived under the 
present framework, namely the Taylor energy density of a 
signal and ‘derivagrams’. From Proposition 2, signals of 
finite energy hold 

+∞<= ∑
+∞

=0

)~()(

!

)().(

n

nn

n

bfbf
E . 

Consequently, the contribution at the nth-derivative level to 
the full energy of the signal can be defined according to 

!

)().(
:

)~()(

n

bfbf
DE

nn

n = ,  n∈ N. 

This quantity will be referred to as the (pseudo) Taylor 
energy density. Finally, we have the following energy 

decomposition: ∑
+∞

=

=
0n

nDEE . 

This is not precisely a density of energy because DEn may be 
negative. Since that f∈L2(RC), the series above is 
convergent so that  (∀n), |DEn|<+∞.  
The cumulative energy until the Nth-derivative level of the 
signal is defined by  

∑
=

=
N

n
nN DEE

0

: . 

0 50 100
2

0

2

4

DE N( )

E N( )

N

0 50 100
0

1

2

DE N( )

E N( )

N  
Figure 3. Taylor energy density of: (a) gaussian pulse RC 
=(∞,+∞) and (b) logarithmic pulse RC(-1,1). DE(N) denotes 
the Taylor energy density at the level N, and E(N) is the 
cumulated energy due to signal components until the Nth 
derivative.  

 

M  (a)

 M  (b) 
Figure 4. ‘Derivagrams’ with 10 levels (n=0,1,..,9) at t0=0 
for: (a) the gaussian pulse RC=(-∞,+∞) and (b) the 
logarithmic pulse RC(-1,1). The colour map adopted has 
1024-Gray-level. DE(N) denotes the Taylor energy density 
at the level N, and E(N) is the accumulated energy due to 
signal components until the Nth derivative. The total energies 

are ...77245385.1=π  and 2, respectively. 
 
Definition 6 (derivagrams). We can create new pictorial 
energy representations (in the same way as spectrograms, 
scalograms) referred to as ‘derivagrams’, according to the 
numerical values of  

!

)().(
:),( 0

)~(
0

)(

0
n

tftf
tnderivagram

nn

= , n∈N, t0∈R, 

that can be depicted as a bargraph or a piecewise curve. � 
Figures 3 and 4 show the ‘derivagrams’ for the pulses 
discussed in examples 1 and 2. 

V. CLOSING REMARKS  

 
 This paper introduces an original reading for the classical 
Taylor series, which is based on the wavelet theory. This 
approach corroborates the power of wavelet analysis, by 
interpreting Taylor series in the wavelet framework. The 
wavelet analysis already encompassed tools as Fourier, 
Gabor, ‘spectrograms’, ‘scalograms’ [17], pyramidal 
algorithm [18], Heisenberg inequalities for Wavelet [19-20], 
and even Gibbs phenomenon have been addressed [21-22].  

A dual version of the Taylor series based on distributions 
is also presented. A Parseval-Taylor energy theorem is also 
proposed for Taylor series. These new representations may 
be valuable for describing features embedded in signals. 
New signal processing tools were introduced, which support 
energy theorems based on Taylor series. The present 
analysis can derive the value of many infinite series in the 
same way as Fourier series does.  

The results presented go far beyond simple mathematical 
curiosity. They cast some light and generality on the 
mechanism of signal analysis. Similarly to the widespread 
idea of vanishing moments often adopted in the wavelet 

design [1-5], particular series for which 0)0()( =nf  

n=1,2...N (Butterworth) should carefully be investigated. 
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VI. APPENDIX 

Surprising, the celebrated Shannon/Nyquist/Kotel’nikov 
sampling theorem [24-25] can also be viewed as a 
generalised biorthogonal reconstruction.  
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