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Resumo— Express̃oesexatas, fechadas, e gerais dos momentos
conjunto e marginal e do coeficiente de correlaç̃ao das pot̂encias
instantâneas de dois sinais Ricianos são deduzidas. Todas as
estatı́sticas s̃ao expressas como somasfinitas de funçõessimples
dos parâmetros do modelo. O modelo inclui ambientes onde o
fator de Rice e a pot̂encia média do sinal s̃ao diferentes de
suas contrapartidas do outro sinal. Alguns gŕaficos ilustram o
coeficiente de correlaç̃ao de pot̂encia fornecido neste trabalho.
Parâmetros de coer̂encia s̃ao deduzidos, e valores pŕaticos para
projetos de sistemas s̃ao sugeridos.

Palavras-Chave— Canal de desvanescimento, coeficiente de
correlação, distribuição de Rice, pot̂encia do sinal.

Abstract— Exact, closed-form, and general expressions of the
marginal and joint moments as well as of the correlation coeffici-
ent of the instantaneous powers of two Ricean signals are derived.
All statistics are expressed asfinite sums of simple functions of
the model parameters. The model includes environments where
the Ricean factor and the signal mean power of one signal are
different from their counterparts of the other signal. Someplots
illustrate the generalized power correlation coefficient provided
in this work. Coherence parameters are derived, and practical
values for system design are suggested.

Keywords— Correlation coefficient, fading channel, Rice dis-
tribution, signal power.

I. I NTRODUCTION

In wireless communications, the signal envelope fluctuates
randomly throughout the propagation environment in a fast
fading condition. This fluctuation is caused essentially by
the multipath phenomenon, in which the signal reaching the
receiver is composed of a large number of scattered waves.
The classical distribution used to describe the envelope ofthe
multipath signal is the Rayleigh one [1]. For some physical
configurations, besides the scattered waves, the signal envelope
is also influenced by a line-of-sight (or direct) wave. In these
cases, the Rice distribution [2] constitutes the appropriate
model [1].

Different statistics concerning the Ricean model have al-
ready been reported in the literature. In particular, [3] and
[4] present the correlation coefficient of two instantaneous
powers (or squared envelopes). In [4], both wide-band and
narrow-band signals are analyzed, and it is observed that
the narrow-band model is sufficient for computing the space
correlation coefficient within the range of20% of the carrier
frequency. We note that this is the most common situation
found in wireless communication scenario. In this work, we
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provide the space-frequency correlation coefficient of two
generalizedinstantaneous powers of narrow-band signals. We
consider both stationary1 and nonstationary environments. As
an intermediate step, marginal and joint moments of arbitrary
positive integer orders of the instantaneous powers are derived.

As is widely known, the envelope correlation coefficient
plays a crucial role in attaining the coherence distance (or
time) and the coherence bandwidth of the signal envelope.
These coherence parameters are used as reference, respecti-
vely, for the space (or time) separation and for the frequency
separation in diversity systems. For Ricean signals, these
parameters will be evaluated through the power correlation
coefficient, which constitutes an accurate approximation to the
envelope correlation coefficient [3].

This work is structured as follows. In Section II, the Ricean
model is introduced. In Section III, the generalized power
statistics of two signals are derived. In Section IV, some
applications of the results provided in this work are carried
out. In Section V, the main conclusions are summarized.

II. SIGNAL MODEL

Consider two narrow-band signals,S1 and S2, transmitted
at different frequencies and detected at distinct points. The
complex representation of each signalSi is

Zi = Ri exp (IΨi) = Xi + IYi i = 1, 2 (1)

whereI is the imaginary unit,Ri is the signal envelope,Ψi

is the signal phase, andXi and Yi are, respectively, the in-
phase and quadrature signal components. In the Ricean model,
Xi and Yi, i = 1, 2, are uncorrelated variates with identical
variances (σ2

i ), X1, Y1, X2, andY2 are jointly Gaussian, and
the mean ofZi is

mZi
= mi exp (Iϕi) = mXi

+ ImYi
i = 1, 2 (2)

The parameterσ2
i stem from the multipath waves ofSi,

whereasmZi
, from the direct wave ofSi. Finally, we define

µ1 =
Cov{X1, X2}

σ1σ2
=

Cov{Y1, Y2}

σ1σ2
(3a)

µ2 =
Cov{X1, Y2}

σ1σ2
= −

Cov{Y1, X2}

σ1σ2
(3b)

whereCov{·, ·} is the covariance operator. The coefficientsµ1

andµ2 usually depend on the distance between the reception
points, on the frequency difference between the transmitted

1In this work, the termstationary environmentdesignates the environment
where the Ricean factor and the signal mean power of a signal are equal to
their counterpart of the other signal.

1050
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signals, and on the statistical behavior of the angles of arrival
and the times of arrival of the scattered waves [5]–[7].

In the present model,Xi and Yi, i = 1, 2, have arbitrary
means, namelymXi

andmYi
. However, in calculating the joint

moment of the instantaneous powers, it is more appropriate to
define new Gaussian random variables, namelyX̂i and Ŷi,
i = 1, 2, such thatŶi has zero mean. To this end, we define
X̂i and Ŷi as

X̂i = Xi cos (ϕi) + Yi sin (ϕi) i = 1, 2 (4a)

Ŷi = Yi cos (ϕi) − Xi sin (ϕi) i = 1, 2 (4b)

whereϕi is the phase of the direct wave ofSi (equation (2)).
BecauseX̂i and Ŷi are linear combinations ofXi and Yi,

also the variatesX̂1, Ŷ1, X̂2, and Ŷ2 are jointly Gaussian.
Moreover, using (4) and the statistics of the original Gaussians,
the means, variances, and covariances of the new Gaussians
are

E{X̂i} = mi i = 1, 2 (5a)

E{Ŷi} = 0 i = 1, 2 (5b)

V ar{X̂i} = V ar{Ŷi} = σ2
i i = 1, 2 (5c)

Cov{X̂i, Ŷi} = 0 i = 1, 2 (5d)

Cov{X̂1, X̂2} = Cov{Ŷ1, Ŷ2} = µcσ1σ2 (5e)

Cov{X̂1, Ŷ2} = −Cov{Ŷ1, X̂2} = µsσ1σ2 (5f)

whereE{·} is the expectation operator,V ar{·} is the variance
operator, and2

µc = ρ cos (φ + ϕ1 − ϕ2) (5g)

µs = ρ sin (φ + ϕ1 − ϕ2) (5h)

ρ =
√

µ2
1 + µ2

2 (5i)

φ = arg {µ1 + Iµ2} (5j)

Thus, the joint probability density function (JPDF) of̂X1,
Ŷ1, X̂2, and Ŷ2 is

f
X̂1,2Ŷ1,2

(x̂1, ŷ1, x̂2, ŷ2) =
1

4π2(1 − ρ2)σ2
1σ2

2

· exp

{

−
1

2(1 − ρ2)

[
(x̂1 − m1)

2 + ŷ2
1

σ2
1

+
(x̂2 − m2)

2 + ŷ2
2

σ2
2

− 2µc

(x̂1 − m1)(x̂2 − m2) + ŷ1ŷ2

σ1σ2

−2µs

(x̂1 − m1)ŷ2 − ŷ1(x̂2 − m2)

σ1σ2

]}

(6)

The present model is general and encompasses as special
cases: stationary environments, for whichm1 = m2 andσ1 =
σ2; and the Rayleigh distribution, for whichmi = 0, i = 1, 2.

III. G ENERALIZED POWER STATISTICS

In this section, the marginal and joint moments of arbi-
trary positive integer orders of the instantaneous powers are
provided. With the purpose of expressing these statistics in
more compact forms, we shall present them in terms of the

2In this work,arg{·} denotes the argument of the complex number enclosed
within.

normalized instantaneous powerŝWi (or normalized squared
envelopesR̂2

i ), which are given by

Ŵi = R̂2
i =

R2
i

E {R2
i }

=
X2

i + Y 2
i

m2
i + 2σ2

i

i = 1, 2 (7)

A. Marginal Power Moment

The marginal momentE{Ŵ ν
i } of the Ricean model, as

well-known in the literature, is given by

E{Ŵ ν
i } =

exp (−ki)Γ(ν + 1)1F1(ν + 1, 1, ki)

(1 + ki)ν
(8)

where Γ(·) is the gamma function [8, Eq. 8.310.1],1F1(·)
is the Kummer confluent hypergeometric function [8, Eq.
9.14.1], andki =

m2
i

2σ2
i

is the Ricean factor.
In this work, as our interest are the cases in whichν is

an integern, we provide an alternative expression for that
statistic, such that

E{Ŵn
i } =

1

(1 + ki)n

n∑

j=0

j
∑

l=0

[
(−1)j−l(n + l)!

(j − l)!(l!)2
kj

i

]

(9)

The main advantage of (9) with respect to (8) is the absence
of the hypergeometric function, which is generically expressed
as an infinite sum of terms. Indeed, (9) is computationally
more efficient.

B. Joint Power Moment

Using (7), the joint moment of the instantaneous powers
can be expressed as

E{Ŵn1
1 Ŵn2

2 } =
1

2n1+n2(1 + k1)n1(1 + k2)n2

n1∑

j1=0

n2∑

j2=0

[(
n1

j1

) (
n2

j2

)

CR

]

(10a)

wheren1 andn2 are positive integers, and the coefficientCR

is conveniently defined as

CR =
E{X̂2j1

1 Ŷ 2n1−2j1
1 X̂2j2

2 Ŷ 2n2−2j2
2 }

σ2n1
1 σ2n2

2

(10b)

From (10b) and the definition of joint moment

CR =
1

σ2n1
1 σ2n2

2

∫
∞

−∞

∫
∞

−∞

∫
∞

−∞

∫
∞

−∞

x̂2j1
1 ŷ2n1−2j1

1

x̂2j2
2 ŷ2n2−2j2

2 f
X̂1,2Ŷ1,2

(x̂1, ŷ1, x̂2, ŷ2)dx̂1dŷ1dx̂2dŷ2 (11)

The JPDFf
X̂1,2Ŷ1,2

(x̂1, ŷ1, x̂2, ŷ2) is given in (6) and can
be substituted into (11). Forn1, n2, j1 andj2 positive integers
satisfyingji ≤ ni, i = 1, 2, the authors have solved such an
integral in an exact manner, so that

CR =2j1+j2kj1
1 kj2

2

2j1∑

j3=0

2j2∑

j4=0

[(
2j1
j3

) (
2j2
j4

)

(

2j3+j4kj3
1 kj4

2

)
−1/2

CG

]

(12a)
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where3

CG =
1 + (−1)j3+j4

2

·

⌊j3/2⌋
∑

l1=0

j3−2l1∑

l2=0

n1−j1∑

l3=0

n1−j1−l3+⌊(j4+l2)/2⌋
∑

l4=⌈(j4+l2)/2⌉

[(
j3
2l1

)

·

(
j3 − 2l1

l2

) (
2n1 − 2j1

2l3

) (
2n1 − 2j1 − 2l3
2l4 − j4 − l2

)

· [2(n1 + n2 − j1 − j2 − l1 − l3 − l4) + j3 + j4 − 1]!!

· (−1)j4+l2(2l1 − 1)!!(2l3 − 1)!!(2l4 − 1)!!
(
1 − ρ2

)l1+l3

·µj4+2(n1−j1+l2−l3−l4)
c µj3−j4+2(l4−l1−l2)

s

]

(12b)

C. Power Correlation Coefficient

By definition, the correlation coefficient of̂Wn1
1 andŴn2

2

is

δn1,n2 =
E{Ŵn1

1 Ŵn2
2 } − E{Ŵn1

1 }E{Ŵn2
2 }

√

V ar{Ŵn1
1 }V ar{Ŵn2

2 }
(13a)

where

V ar{Ŵni

i } = E{Ŵ 2ni

i } − E2{Ŵni

i } i = 1, 2 (13b)

In (13), the joint momentE{Ŵn1
1 Ŵn2

2 } is found through
(10) and (12), whereas the marginal moments are obtained
directly from (9). Sincen1 and n2 are arbitrary positive
integers, the power correlation coefficient provided here is
rather general. For the particular case in whichn1 = n2 = 1,
(13) simplifies to

δ1,1 =
ρ2 + 2µc

√
k1k2

√

(1 + 2k1)(1 + 2k2)
(14)

IV. A PPLICATIONS

In this section, we first provide expressions forµc andµs.
Next, we investigate, in both space domain and frequency
domain, the power correlation coefficient of the Ricean model
for k1 = k2 = k (stationary environments) andn1 = n2 = n.
Then, we analyze the coherence parameters of the Ricean
model. Finally, we propose approximations for the correlation
coefficient of two power signals with non-integer orders.

A. Correlation Parametersµc and µs

For the multipath phenomenon, we shall assume the physi-
cal model described by Jakes [5], which provides

µ1 =
E{D(Θ) cos (βd cos (Θ) − ∆ωT )}

E{D(Θ)}
(15a)

µ2 =
E{D(Θ) sin (βd cos (Θ) − ∆ωT )}

E{D(Θ)}
(15b)

whereD(·) is the horizontal directivity pattern of the receiving
antenna,β is the phase constant,d is the distance between
the reception points,∆ω is the frequency difference between
the transmitted signals, andΘ and T are random variables

3In this work, ⌊ν⌋ is the greatest integer less than or equal toν, and⌈ν⌉
is the smallest integer greater than or equal toν.

that designate, respectively, the angles of arrival and the
propagation delay times of the multipath waves. For a mobile
receiver,d = vτ , wherev is the mobile velocity, andτ is the
time.

In the Jakes’ model [5], the variateβd cos (Θ) − ∆ωT
represents the phase difference between each multipath wave
of S1 and its counterpart ofS2. Similarly, we express the phase
difference between the direct waves ofS1 andS2 as

ϕ2 − ϕ1 = βd cos (θd) − ∆ωtd (16)

whereθd is the angle of arrival of the direct wave, andtd is
the propagation delay time of the direct wave. Bothθd andtd
are assumed deterministic.

From (5g)-(5j), (15), and (16)

µc =
E{D(Θ) cos [βd (cos (Θ) − cos (θd)) − ∆ωT]}

E{D(Θ)}
(17a)

µs =
E{D(Θ) sin [βd (cos (Θ) − cos (θd)) − ∆ωT]}

E{D(Θ)}
(17b)

where T= T − td. Taking the instant of arrival of the direct
wave as time reference, T is the time of arrival of the scattered
waves. As the direct wave travels through the shortest path
between the transmitter and the receiver,T ≥ td, and hence
T ≥ 0. The expressions in (17) can be applied to anyD(·)
and any JPDF ofΘ and T.

B. Numerical Results

In this subsection, we shall investigate the space correlation
coefficient δn,n(d) and the frequency correlation coefficient
δn,n(∆ω) for stationary environments (k1 = k2 = k). With the
intention of maintaining compatibility with the results already
available for the Rayleigh case [5], we shall consider

D(θ) = 1 (18a)

pΘ,T(θ, t) = pΘ(θ)pT(t) (18b)

pΘ(θ) =
1

2π
0 < θ ≤ 2π (18c)

pT(t) =
1

T
exp

(

−
t

T

)

t > 0 (18d)

whereT is the time delay spread.
Replacing (18) into (17) yields

µc =
J0(βd)

[
cos [βd cos (θd)] − ∆ωT sin [βd cos (θd)]

]

1 + (∆ωT)2

(19a)

µs = −
J0(βd)

[
∆ωT cos [βd cos (θd)] + sin [βd cos (θd)]

]

1 + (∆ωT)2

(19b)

Throughout the following analysis, we shall denote
• δn,n(d) (∆ω = 0): generalized space correlation coeffi-

cient of the instantaneous powers (or squared envelopes);
• δn,n(∆ω) (d = 0): generalized frequency correlation

coefficient of the instantaneous powers (or squared en-
velopes).

Fig. 1 illustrates the influence ofk on δ1,1(d) for θd = 90◦.
It can be noted that, in general, the values of the modulus
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Fig. 1. Influence ofk on the space correlation coefficient forn = 1 and
θd = 90◦.
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Fig. 2. Influence ofθd on the space correlation coefficient forn = 1 and
k = 1.

of δ1,1(d) increases withk. This shows that the line-of-sight
wave strengthens the space dependency of the two signals.
Fig. 2 presents the influence ofθd on δ1,1(d) for k = 1.
As it can be seen,θd affects significantly the behavior of the
space correlation coefficient. In both Fig. 1 and Fig. 2,δ1,1(d)
assumes null values at the same points.

Concerning the frequency correlation coefficient, fromd =
0, (5i), and (19), it follows thatµc = ρ2. In this case, subs-
tituting this relation andk1 = k2 = k into (14), δ1,1(∆ω) =
ρ2. Therefore, the frequency correlation coefficientδ1,1(∆ω)
is independent ofk. Furthermore, sinceθd appears in the
coefficientsµc andµs only when there is a space separation
(d 6= 0), θd has no effect onδn,n(∆ω) ∀n.

For different values ofn, Fig. 3 and Fig. 4 showδn,n(d)
(k = 1 and θd = 90◦) and δn,n(∆ω) (k = 1), respectively.
Clearly, the correlation coefficients increases with decreasing
the integern.
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Fig. 3. Influence ofn on the space correlation coefficient fork = 1 and
θd = 90
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Fig. 4. Influence ofn on the frequency correlation coefficient fork = 1.

C. Coherence Parameters

It has been shown in [3] that, for the Ricean model, the
power correlation coefficientδ1,1 is an accurate approximation
to the envelope correlation coefficientδ0.5,0.5, statistic from
which the coherence distance (or time) and the coherence
bandwidth of the signal envelope are extracted. Based on this,
the coherence parameters of the Ricean model can be well-
evaluated directly fromδ1,1.

1) Coherence Distance (or Time):The coherence distance
dc (or time τc) is defined as the space (or time) separation
above which the envelope correlation coefficient is below a
certain value. For the Rayleigh model, a safe choice for the
coherence distance isdc = 0.5λ (λ is the wavelength) [5],
since∀d ≥ 0.5λ, δ0.5,0.5(d) < 0.2. Now, turning our attention
to Fig. 1, it can be seen that, for the Ricean case withk ≥ 1,
such a property no longer holds: aboved = 0.5λ (βd = π),
the correlation coefficient still assumes significant values. If
the0.2 threshold is used, then the safest assumption is to have
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βdc greater than several units ofπ, sayβdc = 6π. This is a
very interesting result, which shows that, in order to ensure
a reasonable decorrelation between two Ricean signals, the
distance between their reception points must exceed3λ (and
not 0.5λ as for the Rayleigh case).

2) Coherence Bandwidth:The coherence bandwidth∆ωc

is defined as the frequency separation above which the en-
velope correlation coefficient is below a certain value. For
the Rayleigh case,∆ωc is chosen so that∀∆ω ≥ ∆ωc,
δ0.5,0.5(∆ω) < 0.5 [5]. Since δ1,1(∆ω) ≈ δ0.5,0.5(∆ω) is
independent ofk, the coherence bandwidth of the Ricean
signal is identical to the coherence bandwidth of the Rayleigh
signal.

D. Non-integer Orders of the Instantaneous Powers

Next, we propose an approximation to the correlation co-
efficient of non-integer orders of the instantaneous power (or
squared envelope).

From Fig. 3 and Fig. 4, it can be seen thatδn,n is close to
δn+1,n+1. Thus, for a non-integerν satisfyingn < ν < n + 1
(n ≥ 1 integer), the correlation coefficient ofW ν

1 and W ν
2 ,

namelyδν,ν , can be well-approximated by the interpolation

δν,ν
.
= (ν − n)(δn+1,n+1 − δn,n) + δn,n ν > 1 (20)

V. CONCLUSION

In this work, we have derivedexact and closed-formex-
pressions for the marginal and joint moments and for the
correlation coefficient of arbitrary positive integer orders of
the instantaneous powers (or squared envelopes) of two Ricean
signals. All provided statistics have been expressed asfinite
sums ofsimplefunctions of the model parameters.

For fading environments, the correlation parameters of the
Ricean model have been expressed in terms of the distance
between the receptions points and of the frequency difference
between the transmitted signals. Then, the generalized power
correlation coefficient, as well as the coherence parameters,
has been investigated in both space domain and frequency
domain. It has been observed that the coherence distance
(or time) increases withk, and the coherence bandwidth is
independent ofk. Finally, approximations to the correlation
coefficient for non-integer orders of the instantaneous powers
have been proposed.
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