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On the Weibull Autocorrelation and Power Spectrum Functions: Field

Trials and Validation
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Resumo— Medidas de campo indoor e outdoor são utilizadas
para validar a função de autocorrelação derivada de maneira
exata para o desvanecimento de Weibull. Além disso, uma
aproximação precisa e fechada para o espectro de potência da
envoltória de Weibull é obtida e também validada. Comparações
são realizadas e uma excelente concordância às medidas de campo
é encontrada.
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Abstract— Indoor and outdoor field trial measurements are
used to validate the autocorrelation function derived in an
exact manner for the Weibull fading signal. In addition, an
accurate closed-form approximation to the power spectrum of the
Weibull envelope is obtained and also validated. Comparisons are
performed and an excellent fitting to the field measurements is
found.
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I. INTRODUCTION

The performance of the wireless channel is strongly affected
by the multipath fading phenomena. In order to mitigate
this effect, a deep knowledge of the characteristics and
correct modeling of fading channels is imperative. Many
statistical models have been used to describe the multipath
fading phenomenon [1]. Some of these models produce very
accurate results, especially Rice and Nakagami-m [2]. Another
useful model is Weibull, which was first used in problems
dealing with reliability. Indeed, the Weibull distribution is a
simple and flexible statistical model for describing multipath
fading phenomena, for both indoor and outdoor propagation
environments.

Experimental data supporting the Weibull fading model have
been reported in [3]. Indoor and outdoor applications of the
Weibull model were considered in [4] and [5], respectively. In
[6], the Weibull and Nakagami-m models were recommended
for theoretical studies since it introduces slope changes in
the distribution tail, which compensates for shortcomings of
the Rayleigh model. In [7], measurements revealed that the
Weibull distribution had the best fit to path-loss models of
the narrow-band digital enhanced cordless telecommunications
(DECT) system at reference frequency 1.89 GHz.

A substantial portion of the literature dealing with field
measurements in Weibull fading channels has been devoted to

The authors are with the Wireless Technology Laboratory
(WissTek), Department of Communications, School of Electrical
and Computation Engineering, State University of Campinas,
DECOM/FEEC/UNICAMP, PO Box 6101, 13083-852, Campinas, SP,
Brazil, E-mails: [ugo,michel,gf,candido,daniel]@wisstek.org. This work was
supported in part by CAPES.

the study of the first order statistics. Few works investigate the
higher order statistics of the Weibull channel model. In [8], the
level crossing rate (LCR) and the average fade duration (AFD)
of the Weibull channel have been obtained, whereas in [9]
these statistics have been attained for the diversity-combined
case. Very recently [10], a simple closed-form expression
for the generalized cross-moments of the Weibull distribution
has been derived. From this expression, the derivation of the
autocorrelation function follows directly.

In this paper, the autocorrelation function derived in [10] is
validated through field measurements. In addition, an accurate
closed-form approximation to the power spectrum of the
Weibull envelope is also obtained and validated.

II. THE AUTOCORRELATION FUNCTION

The temporal autocorrelation function AR(τ) of the Weibull
envelope R has been recently obtained in [10] as

AR(τ) ,E[R(t)R(t + τ)] =
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where r̂ = α
√

E[Rα] is the α-root mean value of Rα, E [¢]
denotes the expectation operator, α is the Weibull parameter,
Γ(.) is the Gamma function [11, Eq. 8.310.1], 2F1(.) is the
hypergeometric function [11, Eq. 9.14.1], J0(.) is the Bessel
function of the first kind and zeroth order [11, Eq. 8.401], and
ωD is the maximum Doppler shift given in rad/s.

Using the space-time duality of the wireless channel [12], it
is readily known that ωDτ = 2¼d/¸, where d is the travelled
distance, and ¸ is the carrier wavelength. Then, the spatial
autocorrelation function AR(d) of R is

AR(d) = r̂2 Γ2
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A. The moment-based α-estimator

The moments of the Weibull envelope are given as [10]

E[Rk] = r̂kΓ(1 + k/α) (3)

From (3), it follows that

Ei[Rj ]

Ej [Ri]
=

Γi (1 + j/α)

Γj (1 + i/α)
(4)
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For a particular case in which i = 2 and j = 1, (4) yields

E2[R]

E[R2]
=

Γ2 (1 + 1/α)

Γ (1 + 2/α)
(5)

Note that the estimator presented in (5) is given in terms of
the ratio of the squared first and second moments. Of course,
from (4) there are other moment-based estimators, however,
the one presented in (5) is given by the lowest integer order.

Given a set of measured data for the fading envelope R,
the practical procedure in order to determine the distribution
parameter α is to find the root of the transcendental equation
(5). In fact, this method provides a simple and low-complexity
parameter estimator.

III. THE ENVELOPE POWER SPECTRUM

The power spectrum SR(¯) of the Weibull fading envelope
R is the Fourier transform1 of its autocorrelation function
AR(d) given by (1). Although this leads to an exact
calculation, it seems that no closed-form expression can be
found. In this section, an accurate closed-form approximation
to SR(¯) is derived. To this end, the following expansion of
the hypergeometric function 2F1(.) is used [12]
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In (6), dropping the terms beyond the second degree, the
exact Weibull autocorrelation function AR(d) (1) can be
approximated by ÃR(d) as

AR(d) ≈ ÃR(d) = r̂2Γ2
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The maximum deviation between the exact (1) and the
approximate (7) solutions occurs for d = 0. Fig. 1 plots this
deviation as a functions of α. Indeed, the deviation is null for
α = 1 and less then 1.8% for α > 1. It can be seen that,
for α < 1, the approximation departs steadily from the exact
value as α approaches zero. However, α < 1, corresponding
to a Nakagami-m parameter m < 0.2, is rarely found in real
situations. Thus, for practical purposes (α ¸ 1), the proposed
approximation is indeed excellent.

Now, taking the Fourier transform of (7), an accurate
approximation to SR(¯) can be calculated in a closed-form
formula as

SR(¯) ≈ r̂2Γ2
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for |¯| < 2/¸, where δ(.) is the Dirac delta function and
K (.) is the complete elliptic integral of the first kind [11,

1The Fourier transform F(β) of a function f(x) is defined here as F(β) =∫
∞

−∞

f(x) exp(−jβx)dx.
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Fig. 1. Deviation of the approximated and exact Weibull autocorrelation
functions for d = 0

Eq. 8.112.1]. As a check for the correctness of these results,
we note that, for α = 2 (Rayleigh condition), (7) and
(8) specialize into [12, Eq. 1.3-16] and [12, Eq. 1.3-27],
respectively.

IV. SAMPLE EXAMPLES

This section illustrates how the autocorrelation and power
spectrum functions of the Weibull envelope vary with
different values of the parameter α. Fig. 2 shows, for α =
0.5, 1, 1.5, 2, ..., 5, the exact and approximate autocorrelation
functions. As already mentioned, for α = 1, approximate and
exact expressions are coincident. As α → ∞, AR(d) →
r̂2, i.e., the Weibull process becomes actually a constant
function. The approximation (8) to the Weibull envelope power
spectrum is compared to the exact formulation (obtained by
numerical integration) in Fig. 3. Both exact and approximated
spectra are plotted for α = 0.5, 1, and 2. (The dc component
was omitted in the comparisons.) It can be shown that, for
α > 1, the differences are seen to be minimal and tend to
zero. The counterpart of the unity autocorrelation function as
α → ∞ is a purely dc spectrum, i.e., SR(¯) → r̂2δ(¯) for
α→∞.

V. FIELD TRIALS AND VALIDATION

A series of field trials was conducted at the University of
Campinas (Unicamp), Brazil, in order to validate the auto-
correlation function and the power spectrum of the Weibull
envelope. The transmitter was placed on the rooftop of one of
the buildings and the receiver travelled through the campus as
well as within the buildings. The mobile reception equipment
was especially assembled for this purpose. Basically, the setup
consisted of a vertically polarized omnidirectional receiving
antenna, a low noise amplifier, a spectrum analyzer, data
acquisition apparatus, a notebook computer, and a distance
transducer for carrying out the signal sampling. The trans-
mission consisted of a CW tone at 1.8 GHz. The spectrum
analyzer was set to zero span and centered at the desired
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Fig. 2. Weibull autocorrelation function (exact: solid; approximated: dashed)
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Fig. 3. Weibull envelope power spectrum (exact: solid; approximated: dashed)

frequency, and its video output used as the input of the data
acquisition equipment with a sampling rate of ¸/14. The local
mean was estimated by the moving average method, with the
average being conveniently taken over samples symmetrically
adjacent to every point. From the data collected, the long term
fading was filtered out and the Weibull parameter α, as defined
previously, was estimated.

The normalized empirical autocorrelation was computed
according to

ÂR (∆) =

∑N¡∆
i=1 riri+∆∑N

i=1 r2
i

(9)

where ri is the i-th sample of the amplitude sequence, N is
the total number of samples, ∆ is the discrete relative distance
difference, and ÂR (.) denotes an empirical average of AR (.).

The empirical autocorrelation function was compared
against the corresponding theoretical formula (2) and plotted
as a function of d/¸ with the same parameter α estimated from

the experimental data. Furthermore, a numerical measure of
the mean error deviation2, ², was computed for each case. Figs.
4, 5, and 6 show some sample plots comparing the experimen-
tal and theoretical autocorrelation data for different values of
α. Observe the excellent fitting and how the theoretical curve
tends to keep track of the changes of concavity of the empirical
data. As can be observed, in the three cases the error deviation
were smaller than 2%.

In order to check the validity of the Weibull envelope power
spectrum formulation (8), we compared it against the measu-
rement data. To this end, we used discrete Fourier transform
(DFT)3 to compute the Fourier transform of the empirical
autocorrelation. Thus, the empirical envelope power spectrum
SR was computed. Figs. 7, 8, and 9 show some sample plots
comparing the experimental and theoretical power spectrum
data for different values of α. Through our measurements, an
excellent fitting has been observed.

VI. CONCLUSIONS

In this paper, we have reported the results of field trials
aimed at investigating the second-order statistics of short
term fading signals. An excellent agreement between the
experimental and the theoretical data has been found. The me-
asurements validate the autocorrelation formula derived in an
exact manner in [10] for the Weibull fading signal. Moreover,
an accurate closed-form approximation to the power spectrum
of the Weibull envelope was also obtained and validated.
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Fig. 4. Empirical versus theoretical autocorrelation function
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Fig. 5. Empirical versus theoretical autocorrelation function
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Fig. 6. Empirical versus theoretical autocorrelation function
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Fig. 7. Empirical versus theoretical envelope power spectrum function
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Fig. 8. Empirical versus theoretical envelope power spectrum function
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Fig. 9. Empirical versus theoretical envelope power spectrum function
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