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Resumo— Esse artigo fornece uma expressão generalizada e
em forma fechada para a taxa de cruzamento de fase em canais
de desvanecimento Nakagami-m condicionada ao fato que a
envoltória de desvanecimento está dentro de um intervalo ar-
bitr ário. A taxa de cruzamento de fase usual (ñao-condicionada)
é ent̃ao obtida como um caso especial da expressão geral. É
verificado que, exceto param = 1, que reduz para o caso
Rayleigh, a taxa de cruzamento de fase ñao é uniforme. Curvas
de simulaç̃ao e f́ormulas exatas s̃ao comparadas umas as outras
e uma perfeita concord̂ancia entre elasé atingida.

Palavras-Chave— Taxa de cruzamento de fase, distribuiç̃ao
Nakagami-m, canais de desvanecimento

Abstract— This paper provides a closed-form generalized ex-
pression for the phase crossing rate of Nakagami-m fading
channels conditioned on the fact that the fading envelope is within
an arbitrary range. The usual (unconditioned) phase crossing rate
is then obtained as a special case of the general expression. It is
verified that, except for m = 1, which specialize to the Rayleigh
case, the phase crossing rate is not uniform. Simulation curves
and the exact formulas are checked against each other and a
very good agreement between them is attained.

Keywords— Phase crossing rate, Nakagami-m distribution, fad-
ing channels

I. I NTRODUCTION

In wireless communications, envelope and phase of a re-
ceived signal vary in a random manner because of multipath
fading. The behavior of the envelope in a fading channel
has been extensively explored in the literature. On the other
hand, although the knowledge of the phase variation of the
received signal plays an important role in the design of any
communication technique, little attention has been paid toits
characterization. The characterization of the phase may be
useful, for instance, in the design of optimal carrier recovery
schemes needed in the synchronization subsystem of coherent
receivers [1]. A pioneering work in this matter was carried
out by Rice in his classical paper [2], in which the aim was to
evaluate the click noise in FM systems, assuming the noise
spectrum to be symmetric about the sine wave frequency.
In this sense, Rice obtained the phase crossing rate at the
particular phase levelsθ = 0 and θ = π for the envelope
lying within an arbitrary range. In [3], the work by Rice was
extended to consider asymmetrical noise spectrum as well as
arbitrary phase levels, i.e.,−π ≤ θ ≤ π. More recently, [4] and
[5] investigated the phase crossing statistics, respectively, for
the Hoyt (Nakagami-q) and Weibull processes. In this work,
we define PCR as the usual phase crossing rate and GPCR
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as the phase crossing rate conditioned on the envelope lying
within an arbitrary range.

This Letter providessimple, exact, new closed-form ex-
pressions for the GPCR of Nakagami-m fading channels.
Clearly, the PCR is also attained as a special case. Exhaustive
simulations fully validate the formulation proposed here.Our
formulation makes use of the fading model recently presented
in [6], in which a phase-envelope joint probability distribution
for the Nakagami-m fading has been proposed.

This paper is organized as follows. Section II revisits the
phase-envelope joint fading model of [6]. Section III derives
the joint statistics of the envelope, phase, and their time
derivatives. Section IV derives the GPCR. Section V presents
sample numerical results. Finally, Section VI draws some
conclusions.

II. T HE NAKAGAMI -m PHASE-ENVELOPE JOINT MODEL

REVISITED

Let R andΘ be random variables representing, respectively,
the envelope and phase of the Nakagami-m signal. The
Nakagami-m phase-envelope joint probability density function
(JPDF)fR,Θ(r, θ) is given by [6]

fR,Θ(r, θ) =
mm| sin(2θ)|m−1 r2m−1

2m−1Ωm Γ2(m
2

)
exp

(
−mr2

Ω

)
(1)

where Ω = E[R2], m = E2[R2]/(E[R4] − E2[R2]), Γ(·)
is the Gamma function [7, Eq. 6.1.1], and E[·] denotes the
expectation operator. According to this model [6], assuming
X and Y as, respectively, the independent in-phase and
quadrature components of the Nakagami-m signal, their PDF
fZ(z), Z = X or Z = Y , is given by

fZ(z) =
m

m

2 |z|m−1

Ω
m

2 Γ(m
2

)
exp

(
−mz2

Ω

)
,−∞ < z < ∞ (2)

From [6], Z = S |Z|, whereS stands forsgn (Z) (sign ofZ)
and |Z| is Nakagami-m distributed. Then, for mathematical
simplicity, we writeZ = SN , whereN denotes a Nakagami-
m variate.

III. JOINT STATISTICS OF THEENVELOPE, PHASE, AND

THEIR DERIVATIVES

Let Ż be the time derivative ofZ. From the above,Ż =
ṠN +SṄ . BecauseS assumes the constant values±1, except
for the transition instants (−1 → +1 and+1 → −1), its time
derivative Ṡ is nil. In addition, becauseZ is continuous, the
transition instants occur exactly and only at the zero crossing
instants ofZ, when N = |Z| is nil. Therefore,ṠN = 0
always andŻ = SṄ . It has been shown in [8] thaṫN is
independent ofN and Gaussian distributed with zero mean
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and standard deviatioṅσ = πfd

√
Ω/m (fd is the maximum

Doppler shift in Hz). Knowing thatŻ = SṄ , Ż is also
Gaussian distributed conditioned onZ = SN , having the same
distribution parameters oḟN . Consequently,Ż is independent
of Z. More specifically,X is independent ofẊ, and Y is
independent ofẎ . From the proposed model [6],X and Y
are independent processes. Thus,X is independent oḟY and
Y is independent ofẊ. Using (2) forZ and knowing thatŻ is
Gaussian distributed with the cited parameters, then the JPDF
fX,Ẋ,Y,Ẏ (x, ẋ, y, ẏ) is given by

fX,Ẋ,Y,Ẏ (x, ẋ, y, ẏ) = fX (x) fẊ (ẋ) fY (y) fẎ (ẏ) =

=
mm+1 |x|m−1|y|m−1

Ωm+1 Γ2(m
2

) 2π3 f2
d

× exp

(
−m

Ω

(
x2 + y2 +

1

2π2f2
d

ẋ2 +
1

2π2f2
d

ẏ2

))

(3)

From [6], X = R cos Θ and Y = R sin Θ. Therefore,
Ẋ = Ṙ cos Θ − RΘ̇ sin Θ and Ẏ = Ṙ sinΘ + RΘ̇ cos Θ.
Following the standard statistical procedure for the trans-
formation of variates and after algebraic manipulations, the
JPDFfR,Ṙ,Θ,Θ̇(r, ṙ, θ, θ̇) of the envelope, the phase, and their
respective time derivatives, is obtained as

fR,Ṙ,Θ,Θ̇(r, ṙ, θ, θ̇) =
mm+1 r2m | sin(2θ)|m−1

Ωm+1 Γ2(m
2

) 2mπ3f2
d

× exp

(
−m

Ω

(
r2 +

ṙ2 + r2 θ̇2

2π2 f2
d

))
(4)

For m = 1, (4) reduces to the Rayleigh fading case given
in [9, Eq. 1.3-33]. Note also thatfR,Ṙ,Θ,Θ̇(r, ṙ, θ, θ̇) =

fṘ(ṙ)fΘ(θ)fR,Θ̇(r, θ̇). Some important densities are obtained
by performing the appropriate integration in (4) and they are
shown as follows:

fR,Θ,Θ̇(r, θ, θ̇) =
mm+ 1
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2m− 1
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The distributionFΘ̇(θ̇) of Θ̇ is obtained as

FΘ̇(θ̇) =
1

2
+

θ̇ Γ(m + 1
2
) 2F1

(
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2
+ m; 3
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(8)

where 2F1(·, ·; ·; ·) is the hypergeometric function [7, Eq.
15.1.1]. Next, we derive the GPCR of Nakagami-m fading
channels.

IV. GENERALIZED PCR

The PCR, denoted byNΘ(θ), is defined as the average
number of upward (or downward) crossings per second at a
specific phase levelθ. This definition can be extended to a
general case (GPCR), in which the crossing rate of the phase
is conditioned onr1 ≤ R ≤ r2, as performed by Rice [2] for
the click noise problem investigation in FM systems. Thus,
the GPCR of Nakagami-m channels can be formulated as

NΘ|R(θ; r1, r2) =

∫ ∞

0

θ̇fΘ,Θ̇;R(θ, θ̇|r1 ≤ R ≤ r2)dθ̇

=

∫ r2

r1

∫∞

0
θ̇fR,Θ,Θ̇(r, θ, θ̇)dθ̇dr

FR(r2) − FR(r1)
(9)

In (9), FR(·) is the distribution of R, which, for the
Nakagami-m case, is given byFR(r) = γ(m,mr2/Ω)/Γ(m),
whereγ(·, ·) is the incomplete Gamma function [7, Eq. 6.5.2].
By the appropriate substitutions and carrying out the necessary
algebraic manipulations

NΘ|R(θ; r1, r2) =

√
πfd | sin(2θ)|m−1

2m+ 1
2 Γ2(m

2
)

× Γ(− 1
2

+ m;mρ2
1,mρ2

2)Γ(m)

Γ(m,mρ2
2,mρ2

1)
(10)

where Γ(a; b, c) = γ(a, b) − γ(a, c) is the generalized
incomplete Gamma function andρ2

i = r2
i /Ω, i = 1, 2. In

particular, form = 1, we obtain the GPCR for Rayleigh fading
channels, which can be expressed as

NΘ|R(θ; r1, r2) =
fd Γ( 1

2
; ρ2

1, ρ
2
2)

2
√

2π (exp(−ρ2
1) − exp(−ρ2

2))
(11)

For the specific case in whichr1 = 0 andr2 = ∞

NΘ(θ) =

√
π fd | sin(2θ)|m−1 Γ(m − 1

2
)

2m+ 1
2 Γ2(m

2
)

(12)

For m = 1 (Rayleigh case), (12) yields

NΘ(θ) =
fd

2
√

2
(13)

Note that (13) is independent of the phase levelθ, which is
coherent with the result obtained by Rice [2].

V. NUMERICAL RESULTS

In this section, some plots illustrate the formulations ob-
tained. In addition, the validity of the proposed formulations
is checked by comparing the theoretical curves against the
simulation results. As will be observed, anexcellent agreement
has been achieved between the simulation results and the
formulation proposed here. In Figs. 1 and 2, the normalized
PCR is depicted for several fading conditions. Form = 1
(Rayleigh), this statistics is independent of the phase level, as-
suming a constant value equals to1/(2

√
2), which is coherent

with the result obtained by Rice [2]. Form = 1.5, 2, 2.5, 4, 4.5
the normalized PCR is periodic with periodπ/2 and nil
for integers multiples ofπ/2. Note the excellent agreement
between the theoretical and simulated curves.

For m = 2, Fig. 3 shows the normalized GPCR. For
ρ1 = 0 and varyingρ2, we note that the curves do not differ
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Fig. 1. Comparison between simulated and theoretical curves for the
normalized PCR.

Fig. 2. Comparison between simulated and theoretical curves for the
normalized PCR.

substantially one from another forρ2 = 2 andρ2 = 50. In fact,
it has been observed that the curve forρ2 = 2 is practically
coincident with that for whichρ2 → ∞.

Fig. 4 depicts the PCR for several fading parameters. For
values ofm higher than1, the maximum of the curves is
reached at odd multiples ofπ/4. For values ofm between0.5
and 1, the curves are convex with minima at odd multiples
of π/4, and tending to infinity at integers multiples ofπ/2,
which is coherent with [4, Eq. 10].

VI. CONCLUSIONS

In this paper,simple, exact, new closed-form expressions for
the GPCR was derived for Nakagami-m fading channels. Sam-
ple numerical results obtained by simulation were presented
that validate the formulations developed here.

Fig. 3. Normalized GPCR for a fading parameterm = 2.

Fig. 4. Normalized PCR for several fading parameters.
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