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A New Method for Blind Identification and
Equalization of Nonminimum Phase Channels

Carlos E. R. Fernandes, Gérard Favier and João C. M. Mota

Resumo— Este artigo apresenta um novo algoritmo de
identificação cega de canais de fase não-mı́nima baseados em
cumulantes de ordem 4, buscando um melhor compromisso
entre qualidade de estimação paramétrica e complexidade
computacional. Propõe-se um método que permite a escolha
sistemática dos valores mais bem estimados das estatı́sticas
de 4a ordem do sinal de saı́da. Com base nesta escolha, um
novo estimador paramétrico é desenvolvido a partir de uma
técnica muito simples de identificação cega, o clássico algoritmo
C(q, k) [1]. Esta proposição é avaliada em termos do erro médio
quadrático de estimação contra algoritmos bem mais complexos e
robustos que utilizam todos os cumulantes de 4a ordem possı́veis.
Através de simulações computacionais verifica-se um significativo
ganho de desempenho para sinais complexos do tipo QAM e PSK.
Por fim, considera-se uma aplicação em equalização linear cega
através do uso dos coeficientes de canal estimados pelo algoritmo
proposto.

Palavras-Chave— Identificação, equalização, fatias de
cumulantes de ordem 4, estatı́sticas de ordem superior.

Abstract— In this paper we are interested in improving
the performance of blind parametric estimation methods for
identification of nonminimum phase channels based on 4th order
cumulants, keeping a low level of computational complexity. We
present a method for systematically choosing the best estimated
4th order statistics. A new parameter estimator is then proposed
based on a very simple blind identification technique, the classical
C(q, k) algorithm [1]. The new method is evaluated in terms of
mean squared error (MSE) of estimation and compared with
more complex and robust algorithms which make use of all
possible 4th order cumulant information. Computer simulations
indicate great performance gains when using complex signals as
QAM and PSK. Finally, we consider an application to linear blind
equalization by using the estimated channel coefficients obtained
from the proposed estimator.

Keywords— Identification, equalization, 4th order cumulant
slices, higher-order statistics.

I. INTRODUCTION

Blind deconvolution of linear systems is of great importance
for several problems in different domains, such as mobile
communications, speech processing, image restoration, radar
and sonar applications and seismic signal processing. The
operation basically consists of retrieving unknown information
from the output signal only, which means (direct) system
identification and input signal estimation (inverse identification
or equalization). For more than forty years now, the estimation
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of the power spectral density of discrete-time deterministic
or stochastic Gaussian signals has been a very useful tool
in accomplishing this task. However, in such an approach,
accurate phase reconstruction can only be achieved if the
signal is minimum phase. For nonminimum phase signals,
phase relations between frequency components are suppressed
by second-order (correlation) statistics (SOS). On the other
hand, higher-order spectra have the ability to preserve both
magnitude and nonminimum phase information. Moreover, it
is well-known that for Gaussian signals only, all cumulant
spectra of order greater than 2 are identically zero and,
therefore, a transform to a higher-order cumulant domain will
automatically eliminate additive Gaussian noise corrupting
non-Gaussian signals.

For these reasons, the efforts for implementing blind
system identification (BSI) have been concentrated in part
on higher-order statistics (HOS)-based algorithms. This
family of blind deconvolution algorithms includes Bussgang
algorithms, which exploit the HOS of the received signal
in an implicit sense, and higher-order cumulants-based
algorithms (polyspectra methods, in the frequency domain),
which explicitly exploit the higher-order spectra to first
determine a channel transfer function estimate and then the
input signal sequence. These latter ones are particularly
interesting due to theoretical insensitiveness to additive
Gaussian noise, phase-preserving feature when dealing
with nonminimum-phase signals and ability to process
non-gaussian input signals. A vast amount of literature
can be found on the subject and numerous methods have
been suggested as solutions for the task of identifying
linear autoregressive (AR), moving-average (MA) and ARMA
models, exploiting only the cumulants of input/output signals.
These earlier approaches include propositions by Giannakis
[1], Brillinger and Rosenblatt [2], Mendel and Giannakis
[3], Tugnait [4], Stogioglou and McLaughlin [5], Swami and
Mendel [6], and more recently, Abderrahim et al [7] and
[8] among others. General information on explicit HOS-based
methods can be found in tutorial articles, such as [9], [10].

Higher-order cumulants information can be naturally
arranged in a multi-dimensional array format. Depending on
the order of cumulants involved, these arrays may have big
dimensions (3rd- or higher order tensors). For the sake of
simplicity, explicit HOS methods generally make use of just
a few of the possible higher-order cumulant information,
i.e. some slices of cumulants of possibly different orders.
Nevertheless, the use of more information about the system
should lead to more precise results. Even if closed-form
expressions were not established to relate all cumulant slices of
all orders, this idea gave rise to a couple of blind identification
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methods which, inspired by blind source separation (BSS)
techniques, make use of joint decomposition tools in order
to take into account all the higher-order statistical information
simultaneously [11], [12]. Another related approach is reported
in [13] based on linear combinations of higher-order cumulant
slices.

Generally, higher-order cumulants of output signals are not
available in BSI. Hence, they need to be estimated from output
data and this estimation is more precise for some cumulant
than for others. Joint-decomposition based methods as well
as linear-combination based ones require the estimation of
all the possible higher-order cumulant information, including
possibly different orders. Enormous amounts of information
may be required to estimate all this statistical information
satisfactorily. As a result, despite their good performances,
their computational complexity and convergence speed may
be a drawback. In this paper we are concerned with this
problem and we look for a good trade-off between complexity,
performance and robustness. Our main contribution lies on
methodizing the choice for the most precisily estimated
cumulants. We then propose a novel 4th order cumulant
selection criterion for the blind identification of nonminimum
phase MA models which, despite its simplicity, performs very
close to more complex and robust algorithms, sometimes
outperforming them.

The rest of the article is organized as follows: section II
presents the parametric system model and briefly discusses
the idea behind the use of higher-order cumulants in blind
identification algorithms; section III describes two well-known
identification algorithms that make use of all the possible 4th
order cumulants; in section IV we introduce our proposition,
based on the choice of the best estimated slice of cumulants;
simulation results using complex constellation signals are
presented in section V, where we evaluate the proposed
estimator in terms of MSE as well as performance in channel
equalization in terms of bit error rate (BER); conclusions and
some perspectives are drawn in section VI.

II. SYSTEM MODEL AND CUMULANT SLICES

Let us consider the baseband representation of a digital
single-input single-output (SISO) communication system as
depicted in fig. 1. The output signal y(n) after sampling at
the symbol rate is described by a MA process as follows:

y(n) =

q∑

l=0

h(l)s(n− l) + w(n), h(0) = 1, (1)

where h(l) represents the equivalent channel impulse response
(i.r.) coefficients, including the pulse shaping filter, the channel
itself and the receiving filters; q is the finite channel memory
(order), i.e. h(l) = 0∀ l > q; the input symbol s(n) is taken
from a complex and finite alphabet A = {a0, . . . , aM−1} and
it composes a non-measurable, centered, stationary, discrete
sequence which is supposed independent and identically
distributed (iid) and has non-Gaussian distribution; the noise
w(n) is white, complex, Gaussian and independent from s(n).

Since all odd-order statistics are zero for symmetric
input sequences, most of methods to be applied in digital

h(t)-s - h× -
6

{s(n)} x(n) y(n)

w(n)

+

+

Fig. 1. Baseband representation of a digital communication system.

communication systems make use of 4th order cumulants,
which is the simplest non-zero higher-order cumulant in this
case. From the Brillinger and Rosenblatt relationship [2]
between cumulants and system coefficients, we know that the
4th order cumulant of the output sequence y(n) can be written
as

C4,y(τ1, τ2, τ3) = γ4,s

l2∑

l=l1

h(l)h(l+τ1)h(l+τ2)h(l+τ3), (2)

where l1 = max(0,−τ1,−τ2,−τ3), l2 = min(q, q − τ1, q −
τ2, q − τ3) and γ4,s is the kurtosis of the input signal
s(n). Based on this relationship, several methods have been
proposed for identifying linear AR, MA and ARMA models.
Most of them estimate certain cumulants C4,y(τ1, τ2, τ3) from
output data before performing parameter recovery. The classic
C(q, k) algorithm [1], for instance, uses a unidimensional
(1-D) cumulant slice to compute channel coefficients as
follows:

h(k) =
C4,y(q, 0, k)

C4,y(q, 0, 0)
, k = 0, . . . , q. (3)

Thus, the condition h(0) = 1 from (1) is naturally matched.
This very simple method, despite its moderate performance

and weak robustness to cumulant estimation errors, has
become a reference and sometimes is used to benchmark other
approaches. One main drawback is the need for exact a priori
knowledge about channel memory q.

III. MA PARAMETER ESTIMATION ALGORITHMS USING

ALL CUMULANT STATISTICS

A. FOSI algorithm

The Fourth-Order System Identification (FOSI) [11]
algorithm proposes a solution based on joint diagonalization
using Jacobi techniques. Firstly, a set of 4th order cumulant
matrices is orthonormalized. Then, an unitary matrix factor
Q is used to diagonalise the orthonormalized set M, up to
permutation and phase shifts. The orthonormalizing matrix
along with the unitary factor Q identify a channel matrix
composed from channel coefficients. This approach, strongly
motivated by BSS works, finds its solution in the optimization
of the following criterion:

ψ(Q,M)
def
=

K∑

k=1

| diag(QHM(k)Q) |2 (4)
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where M(k) are the orthonormalized cumulant matrices. This
algorithm makes use of

∑q+1
i=1 (i + 1)i/2 sample 4th order

statistics.

B. W-Slice algorithm

The W-Slice algorithm [13] proposes an approach based
on the linear combination of 1-D slices of second- and/or
higher-order cumulants, providing a general framework to
combine all the statistics. The weights of this linear
combination are the solution of an underdetermined linear
system which is always well conditioned if singular value
decomposition (SVD) techniques are used. Besides the use of
cumulants of different orders, no a priori knowledge about
the channel memory q is required (filter order estimation is
not necessary). In this work, the use of the W-Slice algorithm
will be limited to the 4th order cumulants in such a manner
that the amount of sample 4th order statistics used is the same
as for FOSI algorithm.

IV. THE BEST 1-D SLICE ALGORITHM

Although very sensitive to cumulant estimation errors,
Giannakis’ C(q, k) algorithm requires very few statistics
estimations and it is very robust to additive Gaussian noise.
We will rewrite (3) in a vector notation as follows:

h(0) =
c0

c0(0)
, (5)

where h(0) = [h(0) . . . h(k) . . . h(q)]T is the vector containing
channel coefficients and c0 = [c0(0) . . . c0(k) . . . c0(q)]

T is
a 1-D slice of 4th order cumulants, defined entrywise as
c0(k) = C4,y(q, 0, k), where the delay τ2 was fixed to zero.

In practice, as aforementioned in this paper, 4th order
cumulants of the output signal are not available and need
to be estimated from output data. These estimations are
more precise for some cumulants than for others, since their
values may differ in some orders of magnitude. Hence,
even small signal perturbations play an important role in the
estimation of weak cumulant components. On the other hand,
strong cumulant components estimates are quite insensitive
to small signal perturbations since these perturbations can
be considered (almost) negligible compared to cumulant
magnitude. For this reason, we have indexed the coefficient
vector in (5) according to the respective cumulant slice c0.
The goal is to reformulate the C(q, k) algorithm in order
to provide different indexed coefficient vectors h(j), each
one associated to a 1-D slice of 4th order cumulants of the
form cj = [cj(0) . . . cj(k) . . . cj(q)]

T , j = 0, . . . , q, defined
entrywise as cj(k) = C4,y(q, j, k), thus assuming τ1 = q,
τ2 = j and τ3 = k with 0 ≤ j, k ≤ q.

Replacing these values in (2) we will always have
l1 = l2 = 0 and, consequently, each element of the cumulant
slice cj will be written as an ordinary product (no summations)
of channel coefficients: cj(k) = γ4,sh(0)h(q)h(j)h(k). This
explains why (5) holds even when we replace c0 by any cj .
So, we can generalize (5) rewriting it as follows:

h(j) =
cj

cj(0)
, j = 0, . . . , q. (6)

The above equation allows us to computate the squared error
of parametric estimation, defined as

εj = ‖h− ĥ(j)‖2, (7)

and leads us to a very important question: which cumulant
slice among all cj , j = 0, . . . , q, gives the smaller
parametric estimation error? Following our previous reasoning,
an intuitive answer to this question lies on the fact that strong
cumulant components are more robust to signal perturbations
since these perturbations should be considerably smaller than
cumulants magnitude. As a result, one may suppose that
“strongest” cumulants are the most precisely estimated and
consequently they lead to smaller parametric estimation errors.
Indeed, this idea can be verified by means of the following
claim along with theorem 1 bellow:

Claim 1: Considering the channel estimates ĥ(j), computed
as in (6) using estimated cumulants ĉj , the lowest parametric
estimation error is given by (7) with j = j0, where j0 gives
|h(j0)| ≥ |h(j)|, ∀ 0 ≤ j ≤ q.

In order to justify this claim, we consider that estimated
cumulant slices ĉj can be written as:

ĉj =





Ĉ4,y(q, j, 0)

Ĉ4,y(q, j, 1)
...

Ĉ4,y(q, j, q)



 =





γ4,sh(0)h(q)h(j)h(0) + e0,j

γ4,sh(0)h(q)h(j)h(1) + e1,j

...
γ4,sh(0)h(q)h(j)h(q) + eq,j



 ,

(8)
where ek,j are the cumulant estimation errors. From (8) and
(6) we have

ĥ(j) =





1
γ4,sh(0)h(q)h(j)h(1)+e1,j

γ4,sh(0)h(q)h(j)h(0)+e0,j

...
γ4,sh(0)h(q)h(j)h(q)+eq,j

γ4,sh(0)h(q)h(j)h(0)+e0,j




, (9)

The above equation leads to the following expression for the
estimated channel coefficients:

ĥ(j)(k) =
κh(k)

κ+ e0,j/h(j)
+

ek,j/h(j)

κ+ e0,j/h(j)
, (10)

where 1 ≤ k ≤ q, h(0) = 1 as in (1) and we assumed κ =
γ4,sh(q). From (10), it is evident that, the larger the magnitude
of h(j), the closer ĥ(j)(k) will be to h(k).

Theorem 1: Consider the integer j0 associated with the
largest channel coefficient, i.e. |h(j0)| ≥ |h(j)|, ∀ 0 ≤ j ≤ q.
The 1-D slice denoted by cj0 is the one with maximum norm
amongst all cj , 0 ≤ j ≤ q
Proof:

(
cT

j cj

)1/2
= γ4,s

(
q∑

i=0

|h(0)h(q)h(j)h(i)|2

)1/2

= γ4,s|h(j)h(q)|

(
q∑

i=0

|h(i)|2

)1/2

,

where we assumed h(0) = 1 as in (1). Note that the
left-hand side of the above equation is constant for a fixed
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j. Furthermore, we observe that ‖cj‖ is proportional to |h(j)|
and it is straightforward to conclude that

arg max(|h(j)|) = arg max(‖cj‖).

�

From Theorem 1, we conclude that the cumulant slice cj

with maximum norm indicates the channel coefficient h(j) that
has maximum magnitude (actually its index j0). Furthermore,
Claim 1 shows that cj0 is the one that provides the lowest
parametric estimation error. Choosing this slice and using
it in (6) for identifying channel coefficients constitutes our
proposal, the so-called Best 1-D Slice algorithm, which can
be briefly resumed by the following steps:

1) Using the output data sequence y(n), compute estimates
of cj = [cj(0) . . . cj(k) . . . cj(q)]

T , for j = 0, . . . , q,
where cj(k) = Ĉ4,y(q, j, k).

2) Determine the number j0 as the argument that
maximizes the norm of cj , i.e.

j0 = arg max{(cT
j cj)

1/2}, j = 0, . . . , q. (11)

3) Compute channel coefficients using τ2 = j0 in (3). The
result is as follows:

h(k) =
cj0(k)

cj0(0)
=
Ĉ4,y(q, j0, k)

Ĉ4,y(q, j0, 0)
, k = 1, . . . , q. (12)

With this new method we need to compute just
(q + 1)(q + 2)/2 sample 4th order statistics, although only
(q + 1) are really employed in the estimation of channel
parameters. Comparing these numbers to W-Slice and FOSI
algorithms we observe a reduction of

∑q

i=1(i+ 1)i/2 in
the number of sample 4th order statistics estimations,
thus providing a reduction rate of (q/3) + 1 (this means,
for instance, that for a channel of memory q = 3,
W-Slice and FOSI algorithms require twice the amount of
cumulant estimations required by Best 1-D Slice). Moreover,
implementation of Best 1-D Slice requires only q + 1
operations while for W-Slice and FOSI algorithms the
computational cost is roughly of the order of O[(2q + 1)5]
for the former and O[(2q + 1)4] for the latter. Further
investigations are needed on the influence of estimating
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Fig. 2. NMSE versus SNR for a 2nd order model (channel a) with a 4-QAM
signal.

channel memory q and how its precision affects performance
results, though we expect Best 1-D Slice algorithm to be as
sensitive to estimation errors on this parameter as C(q, k)
algorithm, as long as both make the same use of it.

V. SIMULATION RESULTS

In this section we present computer simulations results
aiming to compare FOSI, W-Slice and Best 1-D Slice
algorithms both in terms of estimation and equalization
performance. We start by BSI applications and then we show
some results in blind equalization.

A. Blind system identification

The performance of blind identification methods is
evaluated by means of the normalized mean squared error
(NMSE) of the estimatior, which is given by:

NMSE =
1

R

R∑

r=1

‖ĥ(r) − h‖2

‖h‖2
, (13)

where R is the number of Monte Carlo runs. The results were
obtained using R = 100. In all cases the input sequence was
centered, with variance σs = 1. Fourth order cumulants were
estimated from an output data sequence of length N = 10000
for 2nd order models and N = 40000 for 4th order models.
Assuming perfect knoledge about channel memory q, data
blocks of length N are first used to estimate second- and
fourth-order moments of the output sequence at different lags
on the range [−q, q]. Afterwards, these moments are used
to compute fourth-order cumulant estimates associated to the
same lags. For each Monte Carlo run, a new data sequence is
acquired, cumulant estimates are obtained and then the channel
coefficients are computed.

TABLE I

NONMINIMUM PHASE CHANNELS CONFIGURATION.

Channel Order Coefficients

a q=2 h = [1 − 2, 3333 0, 6667]T

b q=4 h = [1 2.4 − 0, 3 − 1, 45 1, 15]T
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Fig. 3. NMSE versus SNR for a 4th order model (channel b) with a 4-QAM
signal.
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Fig. 4. NMSE versus SNR for a 2nd order model (channel a) with an 8-PSK
signal.

The following two types of input signals were considered:
a) 4-QAM input signal: The input sequence s(n) was

extracted from a 4-QAM constellation, with equiprobable
symbols. Nonminimum phase channels are used,
described by second (q = 2) and fourth (q = 4) order
MA models, as indicated in the table I. Besides FOSI,
W-Slice and Best 1-D Slice algorithms, the curves include
the conventional C(q, k) algorithm (j0 = 0). Figure 2
shows the NMSE in dB obtained in estimating channel
a for signal-to-noise ratio (SNR) ranging from −10 to
30 dB. The results shown in fig. 3 are for channel b.
For both models, we observe that C(q, k) algorithm is
considerably boosted by the use of the proposed criterion
for the selection of the best 1-D cumulant slice. Moreover,
the Best 1-D Slice algorithm outperforms FOSI and
W-Slice algorithms, despite the huge difference in the
amount of statistical information used.

b) 8-PSK input signal: For the next results, the input
sequence s(n) was extracted from a 8-PSK constellation,
with equiprobable symbols. Channels are described as in
table I. Figure 4 shows the NMSE in dB versus SNR
obtained in estimating channel a from a 8-PSK signal.
The plots concerning channel b are depicted in fig. 5.
Here again, Best 1-D Slice algorithm provides the best
estimation results. On the other hand, from figures 2 to
5 we observe that W-Slice and FOSI algorithms have
problems in estimating longer channels. This limitation
comes from the fact that they take into account all 4th
order cumulants, including the least precise ones.

B. Blind channel equalization

Once the channel coefficients are satisfactorily estimated,
several equalization methods can be used to recover the input
data sequence. The classical Wiener solution is the optimal
solution in minimizing the mean squared error and it seems
to be the most suitable technique. A linear equalizer g(n) is
disposed at channel’s output followed by a decision device.
Then, after decision, the estimated input sequence {ŝ(n)} is
recovered. The equalizer’s weight vector g of length m is
given by:

g =
(
HT H + σ̂2

wI
)−1

HT sd, (14)

2 3 4 2 5 4 5 3 4 3 5 6 4 6 5 7 42 7 5
2 7 4
2 6 5
2 6 4
2 3 5
2 3 4
2 5
4
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3 5
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Fig. 5. NMSE versus SNR for a 4th order model (channel b) with an 8-PSK
signal.

where H is the (m + 1) × (m + q + 1) channel matrix built
from the channel coefficients as follows:

H =




hT 0 · · · 0

...
...

. . .
...

0 0 · · · hT



 , (15)

and sd = [0 . . . 0 1 0 . . . 0]T , where d indicates the position
of the non-zero entry and it is chosen as the communication
delay.

Next, in order to illustrate the application of the proposed
method in blind channel equalization we will consider channel
b (from table I) with both 8-PSK and 16-PSK constellations.
The equalizer weight vector is obtained from (14), where d
was chosen to be half of the length of the global impulse
response. We start by showing, in fig. 6, the constellations of
the equalized and the unequalized output signals for channel
b with 8-PSK using Best 1-D Slice algorithm for SNR=20dB.
Then, figures 7 and 9 show the bit error rate (BER) in
dB versus SNR for channel b with 8-PSK and 16-PSK,
respectively. These results highlight the superiority of Best
1-D Slice algorithm in equalizing a 4th order FIR channel.

Finally, as a last example, we varied the size N of the
input data sequence (number of data samples) for a SNR
fixed at 20dB. Figure 8 illustrates the BER against the sample
size for channels a and b with 8-PSK. The curves evidence
significant performance gains when increasing the number of

-4 -3 -2 -1 0 1 2 3 4
-4

-3

-2

-1

0

1

2

3

4

Fig. 6. Equalized and unequalized output constellations for channel b with
8-PSK using Best 1-D Slice algorithm (SNR=20dB).
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Fig. 7. BER versus SNR for channel b with 8-PSK (4th order model).

output measurements used for estimating 4th order cumulants.
In addition, note that Best 1-D Slice satisfactorily equalizes
(BER < 10−3) channel a with input data records as short as
10000 samples and channel b with about 15000 samples.

VI. CONCLUSIONS AND PERSPECTIVES

This paper proposes a criterion for the choice of the best
1-D 4th order cumulant slice in order to improve parametric
estimation quality for the identification of MA models. We
were concerned by the trade-off between estimation errors
(performance) and computational complexity. The proposed
method, though based on an well-known concept, is original
and very simple to implement. Furthermore, it provides very
advantageous results in identification and equalization of
nonminimum phase channels using complex signals, even
when compared to more complex and robust algorithms
such as FOSI and W-Slice algorithms, which combine all
the possible cumulant information together. One reason for
that is the fact that the suggested algorithm discard low
precision statistics while FOSI and W-Slice algorithms keep
them all, thus limiting their capacities and causing an
overhead in cumulant estimation computations. Nevertheless,
it is important to note that this work does not concern the
development of estimation procedures for HOS and, at a
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Fig. 8. BER versus sample size for channels a and b with 8-PSK
(SNR=20dB).
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Fig. 9. BER versus SNR for channel b with 16-PSK (4th order model).

more fundamental level, further investigation is needed on
this point. Finally, an extension of the proposed method to
the case of complex impulse response channels is under study
and higher-level modulations should be considered in the near
future in order to observe the robustness of the method.
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