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Compactly Supported One-cyclic Wavelets
Derived from Beta Distributions

G. A. A. de Aragjo, H. M. de Oliveira

Resumo—Novas wavelets continuas de suporte compacto siao
construidas, as quais relacionam-se com a distribuicio de
probabilidade beta. Elas sdo construidas empregando o conceito
de derivada “blur”. Estas novas wavelets sdo uniciclicas e elas
podem ser vistas como um tipo de wavelets de Haar suavizadas.
Sua relevancia decorre do teorema do limite central aplicado para
wavelets de suporte compacto.

Palavras-Chave—Wavelets continuas, wavelets uniciclicas,
derivada Blur, distribuicio beta, teorema do limite, wavelets de
suporte compacto.

Abstract— New continuous wavelets of compact support are
introduced, which are related to beta distribution. Wavelets can be
related to probability distributions using “blur” derivatives. These
new wavelets have just one cyclic, so they are termed unicycle
wavelets. They can be viewed as a soft variety of Haar wavelets.
Their relevance is due to the central limit theory applied for
supported compact signals.

Index Terms—Continuous wavelet, one cycle-wavelets, blur
derivative, beta distribution, central limit theory, compactly
supported wavelets.

[. PRELIMINARIES AND BACKGROUND

avelets are strongly connected with probability

distributions. Recently, a new insight into wavelets was
presented, which applies Max Born reading for the wave-
function [1] and an information theory focus was achieved [2].
Many continuous wavelets are derived from a probability
density (e.g. Sombrero). This approach also sets up a link
between probability densities, wavelets and “blur derivatives”
[3]. Let P(.) be a probability density, PeC”.

[ lim d"P@
foso  di™

=0 then w, () =(D"

d" P(t)
wavelet engendered by P(.). Given a mother wavelet  that
holds the admissibility condition [4—6] then the continuous
wavelet transform is defined by

Federal University of Pernambuco, Signal Processing Group,
C.P. 7.800, 50.711-970, Recife — PE. This work was partially supported by
the Brazilian National Council for Scientific and Technological Development
(CNPq) under research grant #306180.

(e-mail: Giovanna.Angelis@ibest.com.br, hmo@ ufpe.br )

985

CWT(a,b) _j f(t) — \/ﬁ y/(—)dt VaeR-{0},beR.

Continuous wavelets have often unbounded support, such as
Morlet, Meyer, Mathieu, de Oliveira wavelets [3,7-8]. In the
case where the wavelet was generated by a density, it follows

that

1 t—b 1 0" t—b
o [22)a L 2 f10),

la| [aj Jlal ot" a

Now 0 P(ﬂj = (—1)"P(")(ﬂji,so that
ob” a a )a"

0"

J_ ab"

If the integral and derivative can be commuted, it follows that

1
Vlal
Defining the LPFed signal as the “blur” signal

faby=[" f(t)ﬁP(—)dt [“f@P,,(0dr,  an
interesting interpretation can be made: Set a scale a and take
the average (smoothed) version of the original signal —the blur

f(a b .

CWT(a,b) = j F(t)— P(—)dt

CWT(a.b) =2 (W10 =y

version f(a,b). The “blur derivative” s the n™

derivative regarding the shift b of the blur s1gna1 at the scale a.
The blur derivative coincide with the wavelet transform
CWT(a,b) at the corresponding scale. Details (high-frequency)
are provided by the derivative of the low-pass (blur) version of
the signal.

Revisiting central limit theorems —

There are essentially three kinds of central limit theorems: for
unbounded distributions, for causal distributions and for
compactly supported distributions [9]. The random variable
corresponding to the sum of N independent and identically
distributed (i.i.d.) variables converges to: a Gaussian
distribution, a Chi-square distribution or a Beta distribution
(see Table I). The Gaussian always plays a very important role
and it is associated with Morlet’s wavelet, which is known to
be of unbounded support. This is the only wavelet that meets
the lower bound of Gabor uncertainty inequality [10]. The
concept of wavelet entropy was recently introduced and
Morlet wavelet also revealed a special wavelet [11]. Among
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all wavelets of compact support, that one linked to the Beta
distribution should also play an important practical and
theoretical role.

TABLE I. Different versions of the central limit theorem.

Marginal Central limit distribution as N—oo
distribution
Unbounded s 2 2
support G(t|m,c°)= - exp(—(t—m) /20 )
2roc
Causal X (et P
distribution ¥~ (t] @, B) = —————u(r)
LT (a+])
Compact a B
Kt*(1-1) O0<t<l
beta(t|a, ) =
support eta(t|a, p) { 0 otherwise

Let p(f) be a probability density of the random variable #,
=123.N ie pi(20, (V) and [ pi(odi=1. If

pi(t) > P.(w), then P,(0)=1 and (Yw) |P,(w)|<1.
Suppose that all variables are independent. The density p(f)

of the random variable corresponding to the sum 7 := Z t, is
i=1

given by the iterate convolution [12]

PO = p1(O* pr()*..% py (0).

If  pj(0) <> P(w=|Rw)e/%™ |  i=123.N and
. N

p(t) & P(w) =|[P(w)|e’®™ | then |P(w)|=TT|P(w)| and
i=1

N

@(w)zZ@)i(w). The mean and the variance of a given
i=1

random variable ¢, are, respectively

m; —f p;(7)dr, o} _[ (t—m;)* p;()dr .

N
The mean and variance of ¢ are therefore m = Zmi and
i=1

N
= Z O'l~2 . The following theorems can be proved [9].
i=l1
Theorem 1. (Central Limit Theorem for distributions of
unbounded support). If {p,- (t)} are not a lattice (a Dirac

N
P, then =) 1,
i=1

o?w?/2- jmw)

3 lim 62 =
comb); E(#;) <+ and
N —

holds, as N —» o, P(w) ~ exp(—

pt) ~

! exp(—(t—m)z/Zaz).l:I
270

According to Gnedenko and Kolmogorov [9], if the
probability densities have bounded support, then the
corresponding theorem is:
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Theorem 2. (Central Limit Theorem for distributions of
compact support). Let {pi (t)} be distributions such that

N
supp p; () = (aiabi) (Vi) Let a=)a <o and
i=1

N
b= Zbi <oo. It is assumed without loss of generality that
i=1

a=0 and b=1. The random variable f:= ]Zv:tl- holds, as
N — o0, -
_ m(m—m? —c?) and fi= (-ma+D) o

0'2 m
II. B-WAVELETS: NEW COMPACTLY SUPPORTED WAVELETS

The Beta distribution is a continuous probability distribution
defined in the interval 0<¢<1 [13, 14]. It is characterised by
two parameters, namely, « and g, according to:

— a-1(1_\f-1 o
P(t) = e ﬂ)t (=17, 1<, fton,

The normalising factor is B(«, f) ==

I'(e).I'(p)
I'a+p)
the generalised factorial function of Euler and B(.,.) is the Beta

function [13].
The following parameters can be derived:

Supp (P)=(0, 1)

, where T'() is

a-1
mean=m=——— =,
(a+ ﬂ) (a+p-2)
variance= g% = o ,
(@+p)(a+p+1)

characteristic function=M (a,a + S, jv), where M(.,.,.) is the
Kummer’s confluent hypergeometric function [14]. The N™
moment of P(.) can be found using
B (a +p,N )

Bla,N)
The derivative of the beta distribution can easily be found.

P’(t)::[atl - le(z)

A random variable transform can be made by an afin
transform in order to generate a new distribution with zero-
mean and unity variance [12], which implies a non-normalised

—T(a B.

Let the new random variable is defined by #:=T.(¢-m). This
variable has zero-mean and unity variance. Its corresponding
probability density is given by

moment(N) = J; tN P(t)dt =

support 7' =
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1
P P)m=————.
D b e
(Hm(a, ﬂ).T(a,ﬂ)Ja_l {1_ t+m(a, ﬂ).T(a,mJﬁ h
T(@.p) T(@p)

The B-wavelets can now be derived from these adjusted
distributions by using the concept of “blur” derivative.
Parameters of the beta-wavelets of parameters « and f are:

T::(a+,6') ’—atzle
Suppl//:l:— /Lﬂ“,\/gwla+ﬂ+l:l =[a,b]
pla o
lengthSuppl//:T:(a+ﬂ) Lﬂﬂ.
\ op

The parameter R:=b/|al=f/a is referred to as “cyclic

balance”, and is referred to as “cyclic balance”, and is defined
as the ratio between the lengths of the causal and non-causal
piece of the wavelet. The instant of transition #,.,, between the
first and second half cycle is given by

(a-p) |a+p+1
(@+B-2)\ op
The (unimodal) scale function associated with the wavelets is
given by

¢beta (t ‘ a, ﬂ) =

t =

ZErocross

1 -1 -1

S S A

Ba, HT

a<t<b. Since P(.|a,f) is unimodal, the wavelet generated
dP(t| a, p)

by Wit )= () AL

negative half-cycle and a positive half-cycle).

A close expression for first order beta-wavelets can easily be

derived. In the support of (//(t |, ,6’) ,a<t<h,

B -1

B(a, B)TF

{“ -1 _E}(t _a) (e

t—a b-t
wavelet function (one-cycle wave), a <t <b,is
-1

B(a, B)THP1

(B-D-a) o1/ ~(@-1e-a)* 2 (1)
Although scale and wavelets can be found for any o,>1, the
behaviour of the wavelet in the extreme points of the support
can be discontinuous. However, it is a simple matter to
guarantee the continuity of the wavelet according to:
Proposition 1. Beta one-cycle wavelets of parameters 22 and
>2 are smooth continuous wavelets of compact support.
Proof. Clearly, v, (t \ a,ﬂ)zOVKa, and V£>b. The only

concerns are therefore the extreme points of the support, but
Wera (@], )=V pera(b| @, B)=0provided that @>2 and

p>2. 0

has only one-cycle (a

l/’bela(”“»ﬂ):

Y beta (t |, ﬂ) =
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TABLE II. Unicycle-beta scale function and wavelet for
different parameters: a) o=2, /=3 b) a==3 c) =3, f~4 d)
o=4, =3 e) a=f=5 1) =3, /=7 g) o=5, [=17.

Scale function @(¢ |, ) Wavelet function /(¢ | &, 3)

0356, 4 016,

phibeta(t,2,3) 02 - psibeta(t,2,3)=0.2

-04

0,48,
0.6

a(2,3) t b(2.3)

02 1
psibeta(t,3,3) 0 J\
C02 A

- 0.206,
B 04
0 L L L -2 0 2 b
R 0 2

a(3,3) t b(3,3)

phibeta(1,3,3) 0.2~ B

0363, 4T T 0183,

phibeta(t,3,4) 02 4 psibeta(t,3,4)

02
- 0249, 1 1

0.4
O L L - 0 2
I , , ©

a(3.4) t b(3,4)

0363, T J T 0249,

02
phibeta(t,4,3) 02~ - psibeta(t,4,3)
0

~0.183,

0 . 02 ( )
O g
L L ! d
a(4,3) t b(4,3)
037, T I T o213,
02 b
phibeta(t,5,5) 02 - psibeta(1,5.5) 0 \/\
-02 b
o L L L 0213, 1
0 -2 0 2 04 -2 0
a(s.5) t b(5.5) a(5.5) t b(5.5) (e)
0387, 04T 0181
0
phibeta(t.3,7) 02 b psibett,3.7) (f)
02 i
0, 1 1 0346 4 L L L L
0= 0 2 4 04 0 2 4
a(3.7) t b3.7) a3.7) t H3.7)
04 ‘ 02 f T
0.
04[ b
phibetdt,5,17) psibet,5,17 0|
021 b
(®
90 : ; 027 4 ; !
0 s ’ 0 5
a5,17) t b(5,17) 5,17 t K517

The beta wavelet spectrum can be derived in terms of the
Kummer hypergeometric function [14]. Let the Fourier
transform pairy ., (|, B) > Ypera(wla, B). The

spectrum is also denoted by ¥ pgr,(w) for short. It can be
shown that
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Yppra (W) =

—Jjw. g(ntJrﬂJrl)
—jw.M(a,a+ﬂ,—jw(a+ﬂ) Lﬂﬂ“}e "V .
| «

The spectrum of a number of unicyclic beta wavelets is
presented in Figure 1. Only symmetrical (a=f) cases have
zeroes in the spectrum. The evaluation was carried out using
the relationship:

L(a+p) ljvtal(l t)ﬂldt

M(C{,(Z‘f‘ﬂ,jV)—
T(@)r(p) ™
6242, 10 ! !
Y(ww) 5 -
Qg L
0 20 40 60
0, WW 50, (a)
6775, 1° ! !
Y(ww) 5 —
LOJ 0 I
20 40 60
O, wWwW S0, (b)
21339, >° ' '
20 [ i
¥(ww)
10 ]
O '
0 20 40 60
0, WW 50, (©)
Figure 1. Magnitude of the spectrum ¥, (w) of a few beta
wavelets, | Wgpry (W|a, B)|xwfor: a) symmetric beta

wavelets a=£=3; b) asymmetric beta wavelets =3, =4, c)
o==4.

III. HIGH-ORDER WAVELETS

Since the beta distribution is unimodal, the first derivative
has just one cycle. Higher derivatives may also generate beta
wavelets. Higher order beta wavelets are defined by

N
Vi 11,0 = (D £ PG| ).

This is henceforth referred to as an N-order beta wavelet. They
exist for order N < MIN(a, #)~1. After some algebraic

handling, their close expression can be found:

Clasp=—CL S an(on-N)
(//beta(N) a, - B( ﬂ) TUHﬂ 1 < OSg n-—
() .(t_a)aflf(an)' r'(B) '(b_t)ﬁ—l—n'
[(a—(N—-n)) L(g-n)

A couple of high beta wavelets are shown in Figure 2.

wNbeta(t,N,a,B) 0

1084, -, L1 ! ! !

14.061, I

wNbeta(t, N,a,f) 0

~10

o 11469, L L
0 5

a(o, B) t b(a,B)
Figure 2. High—order beta wavelets for different parameters:
a) N=3, o=5, =7, b) N=5, =8, p=11.

With the aim of allowing the investigation of potential
applications of such wavelets, software to compute them
should be written. Nowadays one of the most powerful
software supporting wavelet analysis is the Matlab™ [16],
especially when the wavelet graphic interface is available. In
the Matlab™ wavelet toolbox, there exist five kinds of
wavelets (type the command waveinfo on the prompt): (i)
crude wavelets (i) Infinitely regular wavelets (iii) Orthogonal
and compactly supported wavelets (iv) biorthogonal and
compactly supported wavelet pairs. (v) complex wavelets.
Figure 3 illustrates the beta implementation over Matlab. The
m-files to allow the computation of beta wavelet transform are
currently (freeware) available at the URL:
http://www2.ee.ufpe.br/codec/ WEBLET.html (new wavelets).
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Figure 3. Beta wavelets displayed over Matlab™

wavemenu command.

using the

IV. CONCLUDING REMARKS

Compactly supported wavelets are among the most
functional and useful wavelets. This correspondence
introduces a new family of wavelets of this class. These
wavelets can be viewed as some kind of soft Haar wavelets. It
remains to be investigated how beta wavelets can be
approximated using FIR or IIR filters. In comparison with
other wavelets of compact support (e.g. dBN, coiflets etc.), the
beta wavelets derived in this work have some idiosyncrasies
and advantages: i) They are regular and smooth, ii) have only
one cycle, iii) have an analytical formulation (close formulae),
iv) They importance relay on the Central Limit Theorem. This
behaviour can be useful for analysing signals from certain
modulation schemes or from power systems disturbances.
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APPENDIX

Let D — {Bpera (t | a’ﬂ)}aﬂeR be the set of all possible

signals of the kind beta probability density.
Lemma 1. The square of a normalised beta density

P(t) = §(¢ | &, ) =———

1! .(l—t)ﬂ ' is proportional to

B(a, p)
another beta density.
Proof. A straightforward algebraic handling yields

where

92 (tla. f) =29 9(t |20 -125-1),
Ay =Ao(a, )= —B(2a2— LD g
B (a, )
Corollary. D is a close class regarding the rising to a
power (pair exponent) and repeated convolution (a number
pair of times), i.e. $yeraa.p) € pree — g2 (t\a.pB)e
D and Preta(tla, B) * Preta(tlar,p) € pfe O

A similar property is shared with the other densities
concerning the Central Limit Theorem.

Lemma 2. zij+w|M(a,a+ﬂ,jv)|2dv = (a, B).
ﬂ —00

Proof. Parseval’s identity furnishes

%J.+OO|M((Z,(Z+,B,jV)|2dV :J;¢2(t |a, f)dt and the proof
T —00

follows by applying lemma 1 [J
It can be also proved the following proposition:

Proposition 2. Let @ >1 and f > 1. The admissibility constant

¢, of a unicyclic beta wavelet is

2rAy(a, p) "
¢y (@, p)= —T(a, ) <+



