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Resumo—Novas wavelets contínuas de suporte compacto são 

construídas, as quais relacionam-se com a distribuição de 

probabilidade beta. Elas são construídas empregando o conceito 

de derivada “blur”. Estas novas wavelets são unicíclicas e elas 

podem ser vistas como um tipo de wavelets de Haar suavizadas. 

Sua relevância decorre do teorema do limite central aplicado para 

wavelets de suporte compacto. 

 
Palavras-Chave—Wavelets contínuas, wavelets unicíclicas, 

derivada Blur, distribuição beta, teorema do limite, wavelets de 

suporte compacto. 

Abstract— New continuous wavelets of compact support are 
introduced, which are related to beta distribution. Wavelets can be 

related to probability distributions using “blur” derivatives. These 

new wavelets have just one cyclic, so they are termed unicycle 

wavelets. They can be viewed as a soft variety of Haar wavelets. 

Their relevance is due to the central limit theory applied for 

supported compact signals. 

Index Terms—Continuous wavelet, one cycle-wavelets, blur 

derivative, beta distribution, central limit theory, compactly 

supported wavelets. 

I. PRELIMINARIES AND BACKGROUND 

avelets are strongly connected with probability 
distributions. Recently, a new insight into wavelets was 

presented, which applies Max Born reading for the wave-
function [1] and an information theory focus was achieved [2]. 
Many continuous wavelets are derived from a probability 
density (e.g. Sombrero). This approach also sets up a link 
between probability densities, wavelets and “blur derivatives” 
[3]. Let P(.) be a probability density, P∈C∞.  
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wavelet engendered by P(.). Given a mother wavelet ψ that 
holds the admissibility condition [4–6] then the continuous 
wavelet transform is defined by 
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Continuous wavelets have often unbounded support, such as 
Morlet, Meyer, Mathieu, de Oliveira wavelets [3,7–8]. In the 
case where the wavelet was generated by a density, it follows 
that  
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If the integral and derivative can be commuted, it follows that 

∫
∞+

∞−

−

∂

∂
= dt

a

bt
P

a
tf

b
baCWT

n

n

)(
||

1
)(),( . 

Defining the LPFed signal as the “blur” signal 
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interesting interpretation can be made: Set a scale a and take 
the average (smoothed) version of the original signal –the blur 

version ),(
~

baf . The “blur derivative” 
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 is the nth 

derivative regarding the shift b of the blur signal at the scale a. 
The blur derivative coincide with the wavelet transform 
CWT(a,b) at the corresponding scale. Details (high-frequency) 
are provided by the derivative of the low-pass (blur) version of 
the signal. 
 
Revisiting central limit theorems –  
There are essentially three kinds of central limit theorems: for 
unbounded distributions, for causal distributions and for 
compactly supported distributions [9]. The random variable 
corresponding to the sum of N independent and identically 
distributed (i.i.d.) variables converges to: a Gaussian 
distribution, a Chi-square distribution or a Beta distribution 
(see Table I). The Gaussian always plays a very important role 
and it is associated with Morlet’s wavelet, which is known to 
be of unbounded support. This is the only wavelet that meets 
the lower bound of Gabor uncertainty inequality [10]. The 
concept of wavelet entropy was recently introduced and 
Morlet wavelet also revealed a special wavelet [11]. Among 
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all wavelets of compact support, that one linked to the Beta 
distribution should also play an important practical and 
theoretical role.  
 
TABLE I. Different versions of the central limit theorem. 
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According to Gnedenko and Kolmogorov [9], if the 
probability densities have bounded support, then the 
corresponding theorem is: 

Theorem 2. (Central Limit Theorem for distributions of 
compact support). Let { })(tpi  be distributions such that 
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II. β-WAVELETS: NEW COMPACTLY SUPPORTED WAVELETS  

 
The Beta distribution is a continuous probability distribution 

defined in the interval 0≤t≤1 [13, 14]. It is characterised by 
two parameters, namely, α and β, according to: 
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the generalised factorial function of Euler and B(.,.) is the Beta 
function [13]. 
The following parameters can be derived: 
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characteristic function= ),,( νβαα jM + , where M(.,.,.) is the 
Kummer’s confluent hypergeometric function [14]. The Nth 
moment of P(.) can be found using 
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The derivative of the beta distribution can easily be found. 

)(
1

11
:)(' tP

tt
tP 








−

−
−

−
=

βα

. 
A random variable transform can be made by an afin 

transform in order to generate a new distribution with zero-
mean and unity variance [12], which implies a non-normalised 

support ),(
1
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σ

TT == .  

Let the new random variable is defined by t’:=T.(t-m). This 
variable has zero-mean and unity variance. Its corresponding 
probability density is given by 
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The β-wavelets can now be derived from these adjusted 
distributions by using the concept of “blur” derivative. 
Parameters of the beta-wavelets of parameters α and β are: 
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The parameter αβ /||/: == abR  is referred to as “cyclic 

balance”, and is referred to as “cyclic balance”, and is defined 
as the ratio between the lengths of the causal and non-causal 
piece of the wavelet. The instant of transition tzero between the 
first and second half cycle is given by 
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The (unimodal) scale function associated with the wavelets is 
given by 
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wavelet function (one-cycle wave), bta ≤≤ , is 
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Although scale and wavelets can be found for any α,β>1, the 
behaviour of the wavelet in the extreme points of the support 
can be discontinuous. However, it is a simple matter to 
guarantee the continuity of the wavelet according to: 
Proposition 1. Beta one-cycle wavelets of parameters α>2 and 
β>2 are smooth continuous wavelets of compact support. 
Proof. Clearly, ( ) 0,| =βαψ tbeta ∀t<a, and ∀t>b. The only 

concerns are therefore the extreme points of the support, but 
( ) ( ) 0,|,| == βαψβαψ ba betabeta provided that α>2 and 

β>2.  � 

 
TABLE II. Unicycle-beta scale function and wavelet for 
different parameters: a) α=2, β=3  b) α=β=3  c) α=3, β=4  d) 
α=4, β=3  e) α=β=5  f) α=3, β=7 g) α=5, β=17. 
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(g) 

 

The beta wavelet spectrum can be derived in terms of the 
Kummer hypergeometric function [14]. Let the Fourier 
transform pair ),|(),|( βαβαψ wt BETAbeta Ψ↔ . The 

spectrum is also denoted by )(wBETAΨ for short. It can be 

shown that 
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The spectrum of a number of unicyclic beta wavelets is 
presented in Figure 1. Only symmetrical (α=β) cases have 
zeroes in the spectrum. The evaluation was carried out using 
the relationship: 
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Figure 1. Magnitude of the spectrum )(wBETAΨ  of a few beta 

wavelets, wwBETA ×Ψ |),|(| βα for: a) symmetric beta 

wavelets α=β=3; b) asymmetric beta wavelets α=3, β=4; c) 
α=β=4. 

III. HIGH-ORDER WAVELETS  

Since the beta distribution is unimodal, the first derivative 
has just one cycle. Higher derivatives may also generate beta 
wavelets.  Higher order beta wavelets are defined by 
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This is henceforth referred to as an N-order beta wavelet. They 
exist for order ( ) 1, −≤ βαMINN . After some algebraic 

handling, their close expression can be found: 
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A couple of high beta wavelets are shown in Figure 2. 
 

2 0 2 4
2

1

0

1

2
1.478

1.084−

ψNbeta t N, α, β,( )

b α β,( )a α β,( ) t

0 5
20

10

0

10

20
14.061

11.469−

ψNbeta t N, α, β,( )

b α β,( )a α β,( ) t  
Figure 2. High–order beta wavelets for different parameters: 
a) N=3, α=5, β=7; b) N=5, α=8, β=11.   
 
With the aim of allowing the investigation of potential 

applications of such wavelets, software to compute them 
should be written. Nowadays one of the most powerful 
software supporting wavelet analysis is the MatlabTM [16], 
especially when the wavelet graphic interface is available. In 
the MatlabTM wavelet toolbox, there exist five kinds of 
wavelets (type the command waveinfo on the prompt): (i) 
crude wavelets (ii) Infinitely regular wavelets (iii) Orthogonal 
and compactly supported wavelets (iv) biorthogonal and 
compactly supported wavelet pairs. (v) complex wavelets. 
Figure 3 illustrates the beta implementation over Matlab. The 
m-files to allow the computation of beta wavelet transform are 
currently (freeware) available at the URL: 
http://www2.ee.ufpe.br/codec/WEBLET.html (new wavelets).  
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Figure 3. Beta wavelets displayed over MatlabTM using the 
wavemenu command. 

IV. CONCLUDING REMARKS  

  Compactly supported wavelets are among the most 
functional and useful wavelets. This correspondence 
introduces a new family of wavelets of this class. These 
wavelets can be viewed as some kind of soft Haar wavelets. It 
remains to be investigated how beta wavelets can be 
approximated using FIR or IIR filters. In comparison with 
other wavelets of compact support (e.g. dBN, coiflets etc.), the 
beta wavelets derived in this work have some idiosyncrasies 
and advantages: i) They are regular and smooth, ii) have only 
one cycle, iii) have an analytical formulation (close formulae), 
iv) They importance relay on the Central Limit Theorem. This 
behaviour can be useful for analysing signals from certain 
modulation schemes or from power systems disturbances. 
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Lemma 1. The square of a normalised beta density 

( ) 11 1.
),(

1
),|()( −− −== βα

βα
βαφ tt

B
ttP  is proportional to 

another beta density. 
Proof. A straightforward algebraic handling yields 

)12,12|(.),|( 0
2 −−= βαφλβαφ tt , where 

),(

)12,12(
:),(

200
βα

βα
βαλλ

B

B −−
== . � 

Corollary. eta
D
β  is a close class regarding the rising to a 

power (pair exponent) and repeated convolution (a number 

pair of times), i.e. ),|( βαφ tbeta  ∈ eta
D
β  ⇒ ( )βαφ ,|2 tbeta ∈ 

eta
D
β  and ),|(),|( * βαβα φφ tbetatbeta  ∈ eta

D
β . � 

 
A similar property is shared with the other densities 

concerning the Central Limit Theorem.   

Lemma 2. ∫
+∞
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djM . 

Proof. Parseval’s identity furnishes 
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π
 and the proof 

follows by applying lemma 1 � 
It can be also proved the following proposition: 
 
Proposition 2. Let 1>α  and 1>β . The admissibility constant 

ψc of a unicyclic beta wavelet is  
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