Receptores Espácio-Temporais Lineares Adaptativos de Posto Reduzido para DS-CDMA utilizando filtros FIR Interpolados

Rodrigo C. de Lamare, Tiago T. V. Vinhoza e Raimundo Sampaio-Neto

Resumo— Este artigo apresenta um processador espáciotemporal de posto reduzido para supressão adaptativa de interferência em sistemas DS-CDMA baseada em filtros FIR interpolados e onde os interpoladores são também feitos adaptativos. Um algoritmo de projeções afins (AP) e um algoritmo *recursive least squares* (RLS) são desenvolvidos para adaptar os parâmetros do receptor de posto reduzido e do interpolador. Um receptor linear utilizando a estrutura proposta para suprimir interferência de múltiplo acesso (MAI) e interferência intersimbólica (ISI) em um enlace reverso é investigado.

Palavras-Chave—DS-CDMA, Processamento espáciotemporal, detecção multiusuário, receptores de posto reduzido, algoritmos adaptativos.

Abstract—A space-time adaptive reduced-rank processor for interference suppression in DS-CDMA systems is proposed based on interpolated FIR filters. An adaptive solution is developed using an affine projection (AP) and a recursive least squares (RLS) algorithm is developed for estimating the parameters of both reduced-rank receiver and interpolator. A linear space-time receiver with the proposed structure is investigated for mitigating multi-access interference (MAI) and intersymbol interference (ISI) in an uplink scenario.

Keywords—DS-CDMA, space-time processing, multiuser detection, reduced-rank receivers, adaptive algorithms.

I. INTRODUÇÃO

Recentemente, as estruturas de recepção em sistemas celulares com tecnologia DS-CDMA têm sido implementadas com múltiplos elementos sensores nas antenas para suprimir a interferência de múltiplo acesso (MAI) e a interferência entre símbolos (ISI) [1], [2]. Estes esquemas de recepção são capazes de introduzir diversidade espacial, aumentando significativamente a capacidade e melhorando o desempenho dos receptores convencionais (ex. RAKE) e multiusuário [3]. Entretanto, quando o número de elementos para estimação no sistema é grande, aumenta a complexidade do receptor e este passa a apresentar um desempenho ruim em termos de convergência. Técnicas de posto reduzido [4], [5] são úteis quando o número de elementos a se estimar é grande ou quando o suporte para amostragem é pequeno, pois estas apresentam rápida convergência às custas de uma complexidade aceitável.

Filtros FIR adaptativos interpolados [6] são estruturas utilizadas na estimação de parâmetros. Estas estruturas possuem, além das vantagem dos filtros FIR, melhor taxa de

Rodrigo C. de Lamare, Tiago T. V. Vinhoza e Raimundo Sampaio-Neto, Centro de Estudos em Telecomunicações (CETUC), Pontifícia Universidade do Rio de Janeiro (PUC-Rio), Rio de Janeiro (RJ), Brasil, E-mails: delamare@infolink.com.br, vinhoza@cetuc.puc-rio.br, raimundo@cetuc.pucrio.br. Este trabalho foi parcialmente financiado pela CNPq. convergência e podem reduzir o número de coeficientes a serem adaptados no receptor. Neste trabalho é apresentado um processador espácio-temporal de posto reduzido utilizando o esquema de filtros interpolados e onde os interpoladores são também adaptativos (STAIR). Um algoritmo de projeções afins (AP) e um algoritmo *recursive least squares* (RLS) para adaptação do receptor e do interpolador são também apresentados. Uma estrutura linear é proposta e será usada para testar o receptor proposto, o receptor de posto completo (*full-rank*) [1] e o filtro de Wiener multi-estágio [5].

Esse artigo é organizado da seguinte forma. A Seção II apresenta o modelo de sinais DS-CDMA com múltiplos sensores na antena de recepção. A Seção III descreve os receptores espácio-temporais de posto reduzido utilizando filtros FIR interpolados. A Seção IV é dedicada aos algoritmos adaptativos. A Seção V mostra as simulações e discute os resultados, enquanto que a Seção VI apresenta as conclusões deste trabalho.

II. MODELO DO SISTEMA

Neste trabalho considera-se o enlace reverso (terminal móvel \rightarrow estação rádio-base) de um sistema DS-CDMA síncrono com K usuários. Cada usuário emprega uma seqüência de espalhamento $s_k(t)$ que contém N chips por símbolo. Cada usuário transmite em um canal multipercurso composto por L_p percursos resolvíveis. A resposta impusional do equivalente em banda básica do canal variante no tempo do k-ésimo usuário pode ser escrita como:

$$h_k(t,\tau) = \sum_{l=0}^{L_p-1} h_{k,l}(t)\delta(t-\tau-\tau_l).$$
 (1)

onde τ_l é o atraso associado ao *l*-ésimo percurso que neste trabalho vai ser aproximado como um múltiplo do intervalo de *chip* T_c . O receptor possui um arranjo de *J* antenas e supõe-se sincronizado com os usuários. No receptor o sinal recebido é filtrado por um filtro casado ao pulso de *chip* e amostrado a taxa de *N chips* por símbolo. Supondo que ao longo da duração de um símbolo a resposta impulsional do canal de cada usuário permaneça constante, isto é, $\mathbf{h}_k[i] =$ $[h_{k,0}[i] \ h_{k,1}[i] \ \dots \ h_{k,L_p-1}[i]]^T$, a expressão da observação, dada pelo vetor $\mathbf{r}[i]$ de dimensão $JM \times 1$, onde M = $N + L_p - 1$ pode ser escrita como:

$$\mathbf{r}[i] = \sum_{k=1}^{K} \left(A_k b_k \mathbf{h}_k * \mathbf{s}_k + \boldsymbol{\eta}_k[i] \right) \otimes \mathbf{a}(\boldsymbol{\Theta}_k) + \mathbf{n}[i].$$
(2)

onde:

- b_k[i] = ±1 e A_k são o símbolo transmitido e amplitude do k-ésimo usuário.
- $\mathbf{n}[i] = [n_1[i] \dots n_{JM}[i]]^T$ é um vetor Gaussiano complexo, composto pelas amostras do ruído Gaussiano, de média nula e matriz covariância $E[\mathbf{n}[i]\mathbf{n}^H[i]] = \sigma^2 \mathbf{I}$. (.)^T e (.)^H denotam transposta e transposta conjugada respectivamente e E[.] denota o valor esperado.
- a(Θ_k) = [1 e^{-jΘ_k} ... e^{-j(J-1)Θ_k}]^T é o array manifold. O deslocamento de fase do k-ésimo usuário é Θ_k = 2π(d/λ) cos(φ_k), onde d = λ/2 é o espaçamento entre os sensores, λ é o comprimento de onda da portadora, φ_k é a direção de chegada (DOA) do usuário k e ⊗ denota o produto de Kronecker.
- η_k[i] é um termo que leva em conta a interferência entre símbolos sofrida pelo usuário k.

III. RECEPTORES ESPÁCIO-TEMPORAIS DE POSTO REDUZIDO

A estrutura do receptor espácio-temporal interpolado adaptativo proposto (STAIR) é detalhada nesta seção. A Figura 1 ilustra o processador onde um interpolador e um receptor de posto reduzido são empregados.

Fig. 1. Receptor espácio-temporal de Posto Reduzido Proposto.

O vetor recebido $\mathbf{r}[i] = [r_0[i] \dots r_{JM-1}[i]]^T$ passa pelo filtro interpolador $\mathbf{v}_k[i] = [v_{k,0} \dots v_{k,N_I-1}]^T$ composto por N_I elementos. Na saída do interpolador obtém-se o sinal $\mathbf{r}_k[i]$ o qual é transformado em um vetor de dimensão $JM/L \times 1$ chamado aqui de $\bar{\mathbf{r}}_k[i]$. O vetor $\bar{\mathbf{r}}_k[i] = \mathbf{Dr}_k[i]$ é obtido com o auxílio de uma matriz de projeção \mathbf{D} , de dimensão $JM/L \times JM$. O receptor STAIR com fator de decimação L pode ser projetado escolhendo a matriz \mathbf{D} como:

onde m (m = 1, 2, ..., JM/L) denota a m-ésima linha.

Esta operação equivale a uma decimação uniforme do vetor $\mathbf{r}_k[i]$, que corresponde a descartar L-1 amostras de $\mathbf{r}_k[i]$ a cada conjunto de L amostras consecutivas. Finalmente a estimativa não quantizada de símbolo $x_k[i]$ é obtida por meio do produto escalar entre $\bar{\mathbf{r}}_k[i]$ e o vetor de parâmetros do receptor $\mathbf{w}_k[i] = [w_0[i] \dots w_{(JM/L)-1}[i]]$. A estratégia que nos permite formular soluções para tanto o interpolador quanto para o filtro de posto reduzido é expressar $x_k[i] = \mathbf{w}_k^H[i]\bar{\mathbf{r}}_k[i]$ como função tanto do receptor $\mathbf{w}_k[i]$ quanto do interpolador $\mathbf{v}_k[i]$:

$$x_k[i] = \mathbf{v}_k^H[i] \boldsymbol{\Re}[i] \mathbf{w}_k^*[i] = \mathbf{v}_k^H[i] \mathbf{u}_k[i]$$
(4)

onde $\mathbf{u}_k[i]=\Re[i]\mathbf{w}_k^*[i]$ é um vetor $N_I\times 1$, $(.)^*$ denota complexo conjugado e

$$\boldsymbol{\Re}[i] = \begin{bmatrix} r_0^{[i]} & r_L^{[i]} & \dots & r_{(JM/L-1)L}^{[i]} \\ r_1^{[i]} & r_{L+1}^{[i]} & \dots & r_{(JM/L-1)L+1}^{[i]} \\ \vdots & \vdots & \ddots & \vdots \\ r_{N_I-1}^{[i]} & r_{L+N_I}^{[i]} & \dots & r_{(JM/L-1)L+N_I-1}^{[i]} \end{bmatrix}$$
(5)

O receptor STAIR linear emprega um filtro FIR com JM/L elementos para estimar o símbolo desejado.

$$\hat{b}_k[i] = sgn\Big(Re\{x_k[i]\}\Big) \tag{6}$$

As soluções de mínimo erro médio quadrático (MMSE) para $\mathbf{w}_k[i]$ e $\mathbf{v}_k[i]$ podem ser encontradas considerando um problema cuja função custo é

$$J_{MSE}(\mathbf{w}_k[i], \mathbf{v}_k[i]) = E[|b_k[i] - \mathbf{v}_k^H[i] \Re[i] \mathbf{w}_k^*[i]|^2]$$
(7)

Fixando $\mathbf{v}_k[i]$ e minimizando (7) com respeito a $\mathbf{w}_k[i]$ obtémse os parâmetros do filtro FIR interpolado

$$\mathbf{w}_k[i] = \bar{\mathbf{R}}_k^{-1}[i]\bar{\mathbf{p}}_k[i] \tag{8}$$

onde $\mathbf{\bar{R}}_{k}[i] = E[\mathbf{\bar{r}}_{k}[i]\mathbf{\bar{r}}_{k}^{H}[i]], \mathbf{\bar{p}}_{k}[i] = [b_{k}^{*}[i]\mathbf{\bar{r}}_{k}[i]], \mathbf{\bar{r}}_{k}[i] = \mathbf{\Re}^{T}[i]\mathbf{v}_{k}^{*}[i]$. Fixando $\mathbf{w}_{k}[i]$ e minimizando (7) com respeito a $\mathbf{v}_{k}[i]$ chega-se a expressão dos parâmetros do interpolador

$$\mathbf{v}_k[i] = \bar{\mathbf{R}}_{u_k}^{-1}[i]\bar{\mathbf{p}}_{u_k}[i] \tag{9}$$

onde $\bar{\mathbf{R}}_{u_k}[i] = E[\mathbf{u}_k[i]\mathbf{u}_k^H[i]], \ \bar{\mathbf{p}}_{u_k}[i] = E[b_k^*[i]\mathbf{u}_k[i]]$ e $\mathbf{u}_k[i] = \Re[i]\mathbf{w}_k^*[i]$. A estrutura proposta troca uma inversão de uma matriz de posto JM pela inversão de duas matrizes: uma com posto JM/L e outra com posto N_I . As equações (8) e (9) não são soluções em forma fechada para $\mathbf{w}_k[i]$ e $\mathbf{v}_k[i]$ uma vez que (8) é função de $\mathbf{v}_k[i]$ e (9) depende de $\mathbf{w}_k[i]$ sendo assim necessário iterar (8) e (9) a partir de uma estimativa inicial para obter as soluções.

IV. ALGORITMOS ADAPTATIVOS PARA O STAIR

Nesta seção algoritmos adaptativos computacionalmente eficientes para o receptor STAIR proposto são descritos. No esquema do receptor de posto completo, é necessário que o algoritmo ajuste JM parâmetros enquanto para o receptor interpolado há dois algoritmos funcionando em paralelo: um para o receptor de posto reduzido, que atualiza JM/L parâmetros e outro para o interpolador que atualiza N_I parâmetros.

XXII SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES - SBrT'05, 04-08 DE SETEMBRO DE 2005, CAMPINAS, SP

A. Algoritmo de Projeções Afins (AP)

O algoritmo de projeções afins (AP) é um dos principais algoritmos adaptativos que conseguem um bom compromisso entre convergência e complexidade. Ao ajustar o número de projeções P, o desempenho do algoritmo pode ser controlado desde o NLMS (*normalized least mean square*) até o RLS (*recursive least squares*). O AP atualiza os seu vetor de coeficientes de forma que a nova solução pertença a interseção de P hiperplanos definidos pelo vetor de observação atual e P - 1 vetores de observações passadas [7].

A matriz de observação é $\mathbf{Y}_k[i] = [\mathbf{\bar{r}}_k[i] \dots \mathbf{\bar{r}}_k(i-P+1)],$ $\mathbf{u}_k[i] = \Re[i]\mathbf{w}_k^*[i], \mathbf{U}_k[i] = [\mathbf{u}_k[i] \dots \mathbf{u}_k(i-P+1)],$ o vetor dos símbolos desejados $\mathbf{b}_k[i] = [b_k[i] \dots b_k[i-P+1]]^T$ neste caso existem P saídas e o vetor de erro é dado por:

$$\mathbf{e}_{k}[i] = \begin{bmatrix} b_{k}^{*}[i] - \bar{\mathbf{r}}_{k}^{H}[i]\mathbf{w}_{k}[i] \\ \vdots \\ b_{k}^{*}[i] - \bar{\mathbf{r}}_{k}^{H}[i-P+1]\mathbf{w}_{k}[i] \end{bmatrix} = \mathbf{b}_{k}^{*}[i] - \mathbf{Y}_{k}^{H}[i]\mathbf{w}_{k}[i]$$
(10)

Considerando o seguinte Lagrangeano :

$$\mathcal{L} = ||\mathbf{w}_{k}[i+1] - \mathbf{w}_{k}[i]||^{2} + Re\left[(\mathbf{b}_{k}[i] - \mathbf{Y}_{k}^{H}[i]\mathbf{w}_{k}[i+1])^{H}\boldsymbol{\lambda}_{1}\right]$$
$$+ ||\mathbf{v}_{k}[i+1] - \mathbf{v}_{k}[i]||^{2} + Re\left[\left(\mathbf{b}_{k}[i] - \mathbf{U}_{k}^{H}[i]\mathbf{v}_{k}[i+1]\right)^{H}\boldsymbol{\lambda}_{2}\right]$$
(11)

onde λ_1 e λ_2 are são os vetores de multiplicadores de Lagrange. Calculando os termos do gradiente de (11), igualandoos a zero e resolvendo o sistema de equações restante, chega-se ao seguinte algoritmo:

$$\mathbf{t}_{k}[i] = (\mathbf{Y}_{k}^{H}[i]\mathbf{Y}_{k}[i] + \delta \mathbf{I})^{-1}\mathbf{e}_{k}[i]$$
(12)

$$\mathbf{t}_{v,k}[i] = \left(\mathbf{U}_k^H[i]\mathbf{U}_k[i] + \delta \mathbf{I}\right)^{-1} \mathbf{e}_k[i]$$
(13)

$$\mathbf{v}_{k}[i+1] = \mathbf{v}_{k}[i] + \eta_{0} \mathbf{U}_{k}[i] \mathbf{t}_{v,k}[i]$$
(14)

$$\mathbf{w}_{k}[i+1] = \mathbf{w}_{k}[i] + \mu_{0}\mathbf{Y}_{k}[i]\mathbf{t}_{k}[i]$$
(15)

onde μ_0 e η_0 são fatores de convergência e δ uma pequena constante utilizada para melhorar a robustez do algoritmo. O algoritmo AP descrito tem uma complexidade computacional de $O(P \times JM/L + P \times N_I + 2K_{inv}P^2)$, onde K_{inv} é o número de operações necessárias para se inverter uma matriz $P \times P$.

B. Algoritmo Recursive Least-Squares (RLS)

Um algoritmo do tipo RLS tem o potencial de atingir um bom desempenho independentemente do espalhamento de autovalores da matriz de correlação do sinal de entrada. Considerando a estimativa de matriz correlação dada por $\hat{\mathbf{R}}_k[i] = \sum_{l=1}^i \alpha^{i-l} \bar{\mathbf{r}}_k(l) \bar{\mathbf{r}}_k^H(l)$ onde α é um fator de esquecimento, que pode ser representado de forma alternativa por $\hat{\mathbf{R}}_k[i] = \alpha \hat{\mathbf{R}}_k[i-1] + \bar{\mathbf{r}}_k[i] \bar{\mathbf{r}}_k^H[i]$. Para evitar a inversão de $\hat{\mathbf{R}}_k[i]$ necessária em (8), usa-se o lema de inversão de matrizes e define-se $\mathbf{P}_k[i] = \hat{\mathbf{R}}_k^{-1}[i]$ e um vetor de ganho $\mathbf{G}_k[i]$ como:

$$\mathbf{G}_{k}[i] = \frac{\alpha^{-1}\mathbf{P}_{k}[i-1]\bar{\mathbf{r}}_{k}[i]}{1+\alpha^{-1}\bar{\mathbf{r}}_{k}^{H}[i]\mathbf{P}_{k}[i-1]\bar{\mathbf{r}}_{k}[i]}$$
(16)

e portanto pode-se escrever $\mathbf{P}_k[i]$ como

$$\mathbf{P}_{k}[i] = \alpha^{-1}\mathbf{P}_{k}[i-1] - \alpha^{-1}\mathbf{G}_{k}[i]\bar{\mathbf{r}}_{k}^{H}[i]\mathbf{P}_{k}[i-1]$$
(17)

Arrumando os termos em (16) tem-se $\mathbf{G}_k[i] = \alpha^{-1} \mathbf{P}_k[i - 1] \bar{\mathbf{r}}_k[i] - \alpha^{-1} \mathbf{G}_k[i] \bar{\mathbf{r}}_k^H[i] \mathbf{P}_k[i - 1] \bar{\mathbf{r}}_k[i] = \mathbf{P}_k[i] \bar{\mathbf{r}}_k[i]$. Empregando uma média temporal de (8) e a recursão $\hat{\mathbf{p}}_k[i] = \alpha \hat{\mathbf{p}}_k[i - 1] + \bar{\mathbf{r}}_k[i] b_k^*[i]$ obtém-se:

$$\mathbf{w}_{k}[i] = \hat{\mathbf{R}}_{k}^{-1}[i]\hat{\mathbf{p}}_{k}[i] = \alpha \mathbf{P}_{k}[i]\hat{\mathbf{p}}_{k}[i-1] + \mathbf{P}_{k}[i]\bar{\mathbf{r}}_{k}[i]b_{k}^{*}[i]$$
(18)

Substituindo (17) em (18) chega-se a:

$$\mathbf{w}_k[i] = \mathbf{w}_k[i-1] + \mathbf{G}_k[i]\xi_k^*[i]$$
(19)

onde o erro de estimação *a priori* é descrito por $\xi_k[i] = b_k[i] - \mathbf{w}_k^H[i-1]\bar{\mathbf{r}}_k[i]$. Recursões similares para o interpolador são derivadas a partir de (9). A estimativa $\hat{\mathbf{R}}_{\mathbf{u}_k}$ pode ser obtida através de $\hat{\mathbf{R}}_{\mathbf{u}_k}[i] = \sum_{l=1}^i \alpha^{i-l} \mathbf{u}_k(l) \mathbf{u}_k^H(l)$ também escritas como $\hat{\mathbf{R}}_{\mathbf{u}_k}[i] = \alpha \hat{\mathbf{R}}_{\mathbf{u}_k}[i-1] + \mathbf{u}_k[i]\mathbf{u}_k^H[i]$. Para evitar a inversão de $\hat{\mathbf{R}}_{\mathbf{u}_k}$ usa-se o lema de inversão de matrizes e novamente define-se $\mathbf{P}_{\mathbf{u}_k}[i] = \hat{\mathbf{R}}_{\mathbf{u}_k}^{-1}[i]$ e o vetor de ganho de Kalman $\mathbf{G}_{\mathbf{u}_k}[i]$ como:

$$\mathbf{G}_{\mathbf{u}_{\mathbf{k}}}[i] = \frac{\alpha^{-1} \mathbf{P}_{\mathbf{u}_{\mathbf{k}}}[i-1] \mathbf{u}_{k}[i]}{1 + \alpha^{-1} \mathbf{u}_{k}^{H}[i] \mathbf{P}_{\mathbf{u}_{\mathbf{k}}}[i-1] \mathbf{u}_{k}[i]}$$
(20)

e portanto pode-se escrever $\mathbf{P}_{\mathbf{u}_{\mathbf{k}}}[i]$ como

$$\mathbf{P}_{\mathbf{u}_{\mathbf{k}}}[i] = \alpha^{-1} \mathbf{P}_{\mathbf{u}_{\mathbf{k}}}[i-1] - \alpha^{-1} \mathbf{G}_{\mathbf{u}_{\mathbf{k}}}[i] \mathbf{u}_{k}^{H}[i] \mathbf{P}_{\mathbf{u}_{\mathbf{k}}}[i-1]$$
(21)

De forma similar chega-se, para o interpolador, a:

$$\mathbf{v}_{k}[i] = \mathbf{v}_{k}[i-1] + \mathbf{G}_{\mathbf{v}_{\mathbf{k}}}[i]\xi_{k}^{*}[i]$$
(22)

O algoritmo RLS para o receptor STAIR proposto é uma questão de compromisso entre a complexidade de um receptor de posto completo $O((JM)^2)$ contra dois algoritmos RLS operando em paralelo com complexidades da ordem de $O((JM/L)^2)$ e $O(N_I^2)$, para o vetor de parâmetros do receptor e interpolador respectivamente. Como N_I é pequeno $(N_I << JM$, como mostrado em [6]) as vantagens em termos de complexidade e flexibilidade do receptor proposto são significativas.

V. SIMULAÇÕES E RESULTADOS

Os resultados de simulações apresentados são para um sistema DS-CDMA síncrono com modulação BPSK e que utiliza seqüencias de espalhamento Gold de tamanho N = 31.

É suposto também controle de potência perfeito. O canal de cada usuário possui $L_p = 9$ no máximo. Os canais experimentados pelos usuários são independentes e identicamente distribuídos. Os coeficientes para cada usuário são $h_{k,l} =$ $p_{k,l}\alpha_{k,l}[i]$ $(l = 0, 1, ..., L_p - 1)$, onde $\alpha_{k,l}[i]$, são seqüencias estatisticamente independentes de variáveis aleatórias Gaussianas correlatadas obtidas ao filtrar-se um processo Gaussiano branco complexo por um filtro com resposta em freqüência dada aproximadamente por:

$$H(f) = k/\sqrt{1 - (f/f_d)^2}$$
(23)

onde k é uma constante de normalização , $f_d = v/\lambda$ é o

máximo desvio Doppler de freqüência, λ é o comprimento de onda, e v é a velocidade de deslocamento do terminal móvel [8]. Os resultados para o canal com desvanecimento são mostrados em termos da freqüência Doppler normalizada. Nesta simulação os canais utilizados possuem 3 percursos com potências relativas $p_{k,l}^2$ dadas por 0, -3 e -6 dB, respectivamente, onde em cada repetição o atraso do segundo percurso (τ_2) é descrito por uma variável aleatória inteira discreta uniformemente distribuída entre 1 e 4 chips e o terceiro dado por uma variável aleatória inteira discreta uniformemente distribuída entre τ_2 +1 e 9 *chips*. Os parâmetros dos algoritmos também estão otimizados para a simulação. O filtro de Wiener multi-estágio (MWF) possui D = 4 estágios, o comprimento do interpolador, $N_I = 3$ e $\alpha = 0,998$ para o algoritmo RLS. As direções de chegada ϕ_k são supostas desconhecidas e uniformemente distribuídas entre $-\pi$ e π . Em todas as figuras as curvas referentes ao filtro de posto completo são denominadas full-rank.

Nas figuras 2 e 3 mostra-se a convergência de taxa de erro de bits (BER) para os algoritmos adaptativos RLS e AP (P = 3) respectivamente. As curvas são obtidas com o processamento de 2000 símbolos e tiradas as médias de 100 experimentos independentes. Para os receptores é usada uma seqüência de treinamento com 200 símbolos sendo depois colocados em modo de operação onde as decisões tomadas são utilizadas como seqüência de treinamento para adaptação dos parâmetros (*decision-directed mode*). O número K de usuários no sistema é fixado em 10 e a razão E_b/N_0 em 12dB. As curvas mostram que os receptores de posto reduzido propostos STAIR possuem desempenho superior aos receptores de posto completo e a implementação com MWF. Além disso, o desempenho para o RLS é superior ao desempenho para o AP as custas de um aumento de complexidade que será analisado posteriormente.

Fig. 2. BER versus número de símbolos para algoritmo RLS.

O desempenho de taxa de erro de bits versus E_b/N_0 é analisado nas figuras 4 e 5 para os algoritmos adaptativos RLS e AP (P = 3) respectivamente. As curvas são novamente obtidas com o processamento de 2000 símbolos e tiradas as médias de 100 experimentos independentes. Para os receptores é usada novamente uma seqüência de treinamento com 200

Fig. 3. BER versus número de símbolos para algoritmo AP.

símbolos sendo depois colocados em *decision-directed mode*. O número K de usuários no sistema é fixado em 10.

Para o algoritmo AP, as curvas indicam que o receptor de posto completo tem desempenho inferior se comparado ao receptor proposto quando o número de parâmetros a ser adaptados cresce a medida em que J aumenta. Com J = 3antenas, o receptor STAIR posposto utilizando L = 2 tem o melhor desempenho em termos de BER, seguido pelo MWF, pelo STAIR com L = 3, 4 e pelo filtro de posto completo. Para a implementação com RLS os resultados mostram que para J = 3 antenas o receptor proposto com L = 2 também possui o melhor desempenho, seguido pelo STAIR com L = 3, pelo receptor de posto completo, pelo STAIR com L = 4 e pelo MWF.

Fig. 4. BER versus E_b/N_0 para algoritmo RLS.

Já o desempenho de taxa de erro de bits versus número de usuários (K), para os algoritmos adaptativos RLS e AP (P =3), é analisado nas figuras 6 e 7 respectivamente. As curvas são novamente obtidas com o processamento de 2000 símbolos e tiradas as médias de 100 experimentos independentes. Para os receptores é novamente usada novamente uma seqüência

Fig. 5. BER versus E_b/N_0 para algoritmo AP.

de treinamento com 200 símbolos sendo depois colocados em *decision-directed mode*. A razão E_b/N_0 é fixada em 12dB. Novamente o receptor proposto apresenta os melhores resultados.

Fig. 6. BER versus número de usuários para algoritmo RLS.

Fig. 7. BER versus número de usuários para algoritmo AP.

A complexidade dos algoritmos adaptativos utilizados para estimar os parâmetros do receptor proposto é mostrada nas tabelas I e II em termos do número de operações em ponto flutuante (*flops*) para o AP e RLS respectivamente. Os algoritmos AP são menos complexos que as recursões RLS em todas as implementações analisadas. Nota-se que o número de operações cresce de forma aproximadamente linear com o número de parâmetros a ser estimado enquanto que os algoritmos RLS e a implementação MWF requerem um número de operações que cresce com o quadrado do número de parâmetros a ser estimado. Um outro aspecto interessante do receptor proposto que opera com RLS é que pode-se se chegar a uma economia computacional de uma ordem de magnitude em relação ao receptor de posto completo com RLS.

TABELA I

Complexidade do Algoritmo AP com P = 3 em milhares de flops por símbolo.

Receptores	Full	STAIR	STAIR	STAIR	MWF
	rank	(L=2)	(L=3)	(L=4)	(D=4)
J=1	7.98	4.94	3.26	2.53	56.7
J=2	15.4	9.08	5.94	4.48	218
J=3	22.9	13.2	8.63	6.67	481

TABELA II Complexidade do Algoritmo RLS em milhões de flops por símbolo.

Receptores	Full	STAIR	STAIR	STAIR	MWF
_	rank	(L=2)	(L=3)	(<i>L</i> =4)	(D=4)
J=1	0.266	0.041	0.014	0.006	0.056
J=2	2.02	0.227	0.087	0.041	0.218
J=3	6.68	0.895	0.267	0.128	0.481

VI. CONCLUSÕES

Um processador espácio-temporal de posto reduzido utilizando filtros FIR adaptativos com interpoladores também adaptativos para supressão de interferência em sistemas DS-CDMA é proposto. Uma implementação linear é investigada. Uma análise comparativa do processador proposto com outros métodos existentes na literatura mostram que o esquema proposto atinge um desempenho satisfatório sem grandes custos de complexidade.

REFERÊNCIAS

- [1] A. Paulraj, R. Nabar, and D. Gore, *Introduction to Space Time Wireless Communications*. Cambridge University Press, 1997.
- [2] J. C. Liberti and T. S. Rappaport, Smart Antennas for Wireless Communications: IS-95 and Third Generation CDMA Applications. Prentice Hall Upper Saddle River, 1999.
- [3] S. Verdu, Multiuser Detection. Cambridge United Press, 1997.
- [4] M. L. Honig and J. S. Goldstein, "Adaptive Reduced-Rank Interference Suppression based on the Multistage Wiener Filter," *IEEE Trans. on Communications*, vol. 50, June 2002.
- [5] C. C. Hu and I. S. Reed, "Space-Time Adaptive Reduced-Rank Multistage Wiener Filtering for Asynchronous DS-CDMA," *IEEE Trans. on Sig. Proc.*, vol. 52, July 2004.
- [6] R. C. de Lamare and R. Sampaio-Neto, "Adaptive Reduced-Rank MMSE Filtering with Interpolated FIR Filters and Adaptive Interpolators," *IEEE Sig. Proc. Letters*, vol. 12, March 2005.
- [7] S. Haykin, Adaptive Filter Theory. Prentice Hall, 2001.
- [8] T. S. Rappaport, Wireless Communications: Principles and Practice. Prentice Hall PTR, 1996.