
XXII SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES - SBrT’05, 04-08 DE SETEMBRO DE 2005, CAMPINAS, SP

Infinitely Reiterated
Data-reusing LMS Algorithm

R. F. Vigelis, A. L. F. de Almeida, J. C. M. Mota

Resumo— Este trabalho apresenta um novo algoritmo de
filtragem baseado na técnica de reuso de dados sobre LMS. O
algoritmo proposto reusa os dados recebidos, da amostra inicial
até a amostra atual, um número infinito de vezes. A formulação
algébrica do algoritmo resultante mostrou-se similar ao algoritmo
RLS. O novo algoritmo converge tão rápido quanto o algoritmo
RLS, e converge para o mesmo erro médio quadrático, em
regime permanente, produzido pelo LMS. Com um valor pequeno
do fator de passo, o algoritmo proposto atinge a solução de
Wiener, sem qualquer degradação em sua taxa de convergência.
Simulações em computador confirmaram tais observações.

Palavras-Chave— Algoritmos adaptativos, LMS, RLS, APA,
Reuso de dados.

Abstract— This work presents a new filtering algorithm based
on data-reusing LMS techniques. The proposed algorithm reuses
the received data from the initial sample up to the current
sample an infinity number of times. The resulting algebraic
formulation of the algorithm have shown to be similar to the
RLS algorithm. The new algorithm converges as fast as the RLS
algorithm, and converges to the same LMS misadjustment. With
a small step-size value, the proposed algorithm can achieve the
Wiener solution without any degradation in its convergence rate.
Computer simulations have confirmed these observations.

Keywords— Adaptive algorithms, LMS, RLS, APA, Data-
reusing techniques.

I. INTRODUCTION

In the class of data-reusing algorithms past samples are re-
processed in order to achieve better convergence performance.
In principle, data-reusing techniques can be successfully ap-
plied to any stochastic gradient based algorithm. But here
we focus our attention to the LMS case. There are basically
two categories of data-reusing algorithms based on the LMS
algorithm. If at each iteration the current sample is reused,
we have the data-reusing LMS (DR-LMS) algorithm. For a
detailed analysis of the DR-LMS algorithm, see [1]. When
a fixed number of past samples is reused, the Schnaufer
and Jenkins data-reusing LMS (SJ-DR-LMS) algorithm is
obtained. The SJ-DR-LMS algorithm (also named New Data-
reusing LMS Algorithm) is proposed in [2]. The terminol-
ogy adopted here is the same as in [3]. As the number of
reuses increases, data-reusing LMS based algorithms present
faster convergence, but its computational complexity increases
proportionally. There is a trade-off between computational
complexity and convergence rate.

The SJ-DR-LMS algorithm is strongly related to the affine
projection algorithm (APA) [4], [5], [6]. In the APA, the
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coefficient vector is updated in a direction that is orthogonal to
a hyperplane defined by the last K input data vectors. When
the numbers of reiterations R (see details in Section II) in
the SJ-DR-LMS tends to infinity, the resulting algorithm is
equivalent to the APA [7], [8]. The SJ-DR-LMS algorithm can
be seen as an approximation to the APA. This fact permits to
analyze the convergence performance of SJ-DR-LMS based
algorithms.

The proposed algorithm, at each iteration, reuses data from
the initial sample up to the current sample an infinity number
of times. This assures a fast convergence of the proposed
algorithm, whose simulations showed to be as fast as the
RLS algorithm. The steady-state mean-square error value of
the proposed algorithm, as also confirmed by simulations, for
equal step-size value, is the same of the LMS algorithm. The
algebraic formulations of the RLS and the proposed algorithm
have shown to be similar, so resulting in computational com-
plexity of O(N2). The proposed algorithm mixes RLS and
LMS characteristics: it converges fast and presents a residual
mean-square error determined by a step-size parameter.

This paper is organized as follows. Section II summarizes
graphical interpretations of the LMS, the affine projection and
the SJ-DR-LMS algorithms. Section III contains the algebraic
development of the proposed algorithm and a comparison to
the RLS algorithm. In Section IV, we present some simulation
results. Finally, our conclusions and perspectives are contained
in Section V.

II. PRELIMINARY DISCUSSION

Let xn = (xn, . . . , xn−N+1)T be the vector containing the
last N past samples of the input signal sequence (xi), i ≥ 1,
where the superscript T denotes transpose of vector or matrix.
In the LMS algorithm, the coefficient vector wn of dimension
N × 1 is updated recursively as

en = dn −wH
n xn (1)

wn+1 = wn + µxne∗n, (2)

where the superscript H stands for hermitian operation. In the
LMS algorithm, the system output ŷn = wH

n xn approximates
as close as possible the desired response dn. Convergence is
ensured if the step-size parameter µ obeys 0 < µ < 2/λmax,
where λmax is the maximum eigenvalue of the input signal’s
correlation matrix. A wide discussion concerning the LMS
algorithm can be found in [4], [9].

Now we will describe geometrically the LMS algorithm.
Let Sn be the translated subspace of dimension N − 1 that
contains all vectors w such that xH

n w = d∗n. Except for a
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noise term, the optimum Wiener solution wo is in Sn. The
coefficient-updating equations (1)-(2) move wn orthogonally
to Sn. Depending on the value of µ, if 0 < µ < 1

‖xn‖2 ,
µ = 1

‖xn‖2 or 1
‖xn‖2 < µ < 2

‖xn‖2 , the vector wn+1, which
is in wn + span(xn), will lie between wn and Sn, in Sn, or
beyond Sn, respectively, as illustrated in Fig. 1. In this manner,
the updated coefficient vector wn+1 results closer to wo.

The LMS algorithm can be improved if wn is projected
onto S(L)

n = Sn ∩ · · · ∩ Sn−L+1, i.e., S(L)
n is an hyperplane

that contains all vectors w such that XH
n w = d∗n, where

Xn = (xn, . . . ,xn−L+1) and dn = (dn, . . . , dn−L+1)T .
As S(L)

n has dimension smaller than Sn, and contains wo,
the updated vector wn+1 will be closer to wo, compared to
the LMS algorithm. Let Xn(XH

n Xn)−1XH
n be the projection

operator onto S(L)
n . Then Xn(XH

n Xn)−1(d∗n − XH
n wn) is

the translation vector added to wn in order to obtain the
vector projected onto S(L)

n . The coefficient-updating equations
becomes:

en = d∗n −XH
n wn

wn+1 = wn + µXn(XH
n Xn)−1en.

The equations above define the affine projection algorithm. In
the case L = 2, we have the binormalized data-reusing LMS
algorithm [10]. The APA is strongly related to the SJ-DR-LMS
algorithm, as we will discuss bellow.

The SJ-DR-LMS algorithm is based on a simple and ef-
ficient idea. At instant n − 1 the LMS algorithm generates
a = wn. Let m < n. If the updating-coefficient equations
(1)-(2) are initialized by a, and updated by xi and di in any
order for m ≤ i ≤ n, then the resulting coefficient vector b,
compared to wn, except for a noise term, will be closer to the
Wiener solution. The SJ-DR-LMS algorithm, at each instant n,
for m = n−K +1, realizes this operation using a decreasing
order of indices (i = n, . . . , n − K + 1), and so updates
wn+1 = b. In the proposed algorithm, instead, we adopt an
increasing order of updating. The performance of the technique
above is improved if this procedure is repeated R times.
Summarizing, a general data-reusing LMS algorithm may be
expressed by the following steps, where Kn and Rn are the
number of reuses and reiterations at time n, respectively:

Initialization: w(0,0)
n = wn

For 1: i = 0, . . . , Rn − 1
For 2: j = 0, . . . , Kn − 1

k = n−Kn + 1 + j
e
(i,j)
n = dk − (w(i,j)

n )Hxk (3)
w(i,j+1)

n = w(i,j)
n + µkxk(e(i,j)

n )∗ (4)
End For 2

w(i+1,0)
n = w(i,Kn)

n

End For 1
Update: wn+1 = w(Rn,0)

n

The subscript of µk indicates that this variable is function
of k. At each increment j, as the updating equations (3)-
(4) move w(i,j)

n orthogonally to Sn−Kn+1+j , the resulting
vector w(i,j+1)

n approximates to the Wiener solution wo.
The procedure above corresponds to a sequence of repeated

b

b

1

2

3

wn Sn

wn + spanxn

Fig. 1. Geometrical interpretation of the LMS algorithm. The updated vector
wn+1 will lie in region 1, point 2 or region 3 if 0 < µ < 1

‖xn‖2 , µ = 1
‖xn‖2

or 1
‖xn‖2 < µ < 2

‖xn‖2 , respectively.

b
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Fig. 2. Geometrical illustration of the reiterated version of the SJ-DR-LMS
algorithm for µn = 1

‖xn‖2 and Kn = 2.

projections towards Sn−Kn+1, . . . ,Sn. Increases in the values
of Kn and Rn lead to coefficient vectors wn+1 closer to wo.

Fig. 2 illustrates geometrically the procedure above for the
simple case µn = 1

‖xn‖2 and Kn = 2. In this illustration,
we take the assumption that the algorithm operates on a noise
free environment, where we have wo ∈ Sn ∩ Sn−1. Initially,
the vector w(0,0)

n = wn is projected onto Sn−1. The obtained
vector w(0,1)

n is projected onto Sn. These operations continue
up to i = Rn−1 and j = 2. The final vector w(Rn−1,2)

n results
closer to S(2)

n , compared to w(0,1)
n . If Rn tends to infinity,

the final vector w(Rn−1,2)
n approximates to the orthogonal

projection of wn onto S(2)
n . Such geometrical argument links

the SJ-DR-LMS algorithm to the APA. These results can
be extended to any µn and Kn. The SJ-DR-LMS algorithm
when is infinitely reiterated (Rn → ∞) is equivalent to the
affine projection algorithm. For a theoretical treatment linking
the APA and the SJ-DR-LMS algorithm, in the Kaczmarz’s
method context, see [7] and its references.

In the proposed algorithm, the updating equations (3)-(4) are
repeated for µn = µ, Kn = n and Rn →∞. As S(N)

n has null
dimension and equals wo except for a noise term, just Kn =
N would be necessary in order to obtain fast convergence. But
due to computational considerations and noise impairments,
we prefer to adopt Kn = n.

In the next section we effectuate the algebraic development
of the proposed algorithm and a comparison to the RLS
algorithm.
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III. THE PROPOSED ALGORITHM

A. Algebraic development

Now we will express w(i,n)
n as a function of w(i,0)

n , where
Kn = n is assumed. Rewriting the updating equations (3)-
(4) as w(i,j+1)

n = (I − µQj+1)w
(i,j)
n + µxj+1d

∗
j+1, where

Qj+1 = xj+1xH
j+1, and I is the identity matrix with proper

dimension, we have

w(i,1)
n = (I− µQ1)w(i,0)

n + µx1d
∗
1

w(i,2)
n = (I− µQ2)w(i,1)

n + µx2d
∗
2

...

w(i,n)
n = (I− µQn)w(i,n−1)

n + µxnd∗n.

Substituting the right side of the equation that defines w(i,j)
n

for w(i,j)
n in the equation that defines w(i,j+1)

n , and doing this
for j = 1, . . . n, we obtain

w(i,n)
n =

n∏

k=1

(I− µQk)

︸ ︷︷ ︸
An

w(i,0)
n + µ

n∑

k=1

n∏

l=k+1

(I− µQl)xkd∗k

︸ ︷︷ ︸
w̃n+1

= Anw(i,0)
n + w̃n+1 (5)

In the matrix product above pre-multiplications are realized.
The terms An and w̃n+1 are recursively determined by

An = (I− µQn)An−1

w̃n+1 = (I− µQn)w̃n + µxnd∗n

or

ẽn = dn − w̃H
n xn

w̃n+1 = w̃n + µxnẽ∗n.

Notice that w̃n is recognized as the coefficient vector of the
LMS algorithm initialized by the null vector w̃0 = 0.

Now let’s iterate over the superscript i in w(i,0)
n . From (5),

observing that w(i+1,0)
n = w(i,n)

n , we obtain

w(0,0)
n = wn

w(1,0)
n = Anw(0,0)

n + w̃n+1

w(2,0)
n = Anw(1,0)

n + w̃n+1

...

wn+1 = w(Rn,0)
n = Anw(Rn−1,0)

n + w̃n+1

Substituting the right side of the equation that defines w(i,0)
n

for w(i,0)
n in the equation that defines w(i+1,0)

n , and doing this
for i = 1, . . . , Rn, we get

wn+1 = ARn
n wn + (I + An + A2

n + · · ·+ ARn−1
n )w̃n+1

= ARn
n wn + (I−ARn

n ) · (I−An)−1w̃n+1. (6)

With 0 < µ < 2
‖xn‖ , which ensures the LMS algorithm

convergence, the matrix ARn
n tends to the null matrix as

Rn →∞. Then, with Rn →∞, equation (6) becomes

wn+1 = (I−An)−1w̃n+1. (7)

Now we will determine the matrix (I−An)−1 recursively.
To do this, we will use the matrix inversion lemma. Let D,
E and G be non-singular matrices. It is assumed that D and
E have the same dimension N × N and G has dimension
M × M . Let F be a matrix of dimension N × M . If these
matrices follow the relation

D = E−1 + FG−1FH ,

then

D−1 = E−EF(G + FHEF)−1FHE.

Applying the matrix inversion lemma to the following equation

µ−1(I−An)A−1
n−1 = µ−1[I− (I− µxnxH

n )An−1]A−1
n−1

= µ−1(I−An−1)A−1
n−1 + xnxH

n ,

with

D = µ−1(I−An)A−1
n−1 F = xn

E = µAn−1(I−An−1)−1 G = 1,

we have

µAn−1(I−An)−1 = Cn−1 − Cn−1xnxH
n Cn−1

1 + xH
n Cn−1xn

, (8)

where Cn−1 = µAn−1(I − An−1)−1. Pre-multiplying both
sides of (8) by (I− µxnxH

n ), and after some simplifications,
we get

Cn = Cn−1 − µxnxH
n Cn−1+

+ µxnxH
n

Cn−1xnxH
n Cn−1

1 + xH
n Cn−1xn

− Cn−1xnxH
n Cn−1

1 + xH
n Cn−1xn

= Cn−1 − µxnxH
n Cn−1

1 + xH
n Cn−1xn

− Cn−1xnxH
n Cn−1

1 + xH
n Cn−1xn

= Cn−1 − gnxH
n Cn−1, (9)

where

gn =
(Cn−1 + µI)xn

1 + xH
n Cn−1xn

. (10)

Noticing that (I−An)−1 = µ−1Cn +I, equation (7) becomes

wn+1 = (µ−1Cn + I)w̃n+1. (11)

Developing (10), we find that gn can be rewritten as follows:

gn + gnxH
n Cn−1xn = (Cn−1 + µI)xn

gn = (Cn−1 − gnxH
n Cn−1 + µI)xn

gn = (Cn + µI)xn.

Using the equation above, we will eliminate w̃n+1 from (11)
and write wn+1 directly as a function of wn. Doing so, we
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TABLE I
THE PROPOSED AND THE RLS ALGORITHM

Initialization:

δ = small positive constant

C0 = δ−1I P0 = δ−1I

w0 = 0 ŵ0 = 0

Proposed algorithm:

gn =
(Cn−1 + µI)xn

1 + xH
n Cn−1xn

en = dn −wH
n xn

Cn = Cn−1 − gnxH
n Cn−1 wn+1 = wn + gne∗n

RLS algorithm:

kn =
Pn−1xn

1 + xH
n Pn−1xn

αn = dn − ŵH
n−1xn

Pn = Pn−1 − knxH
n Pn−1 ŵn = ŵn−1 + knα∗n

finally get

wn+1 = (µ−1Cn + I)[(I− µxnxH
n )w̃n + µxnd∗n]

= (µ−1Cn + I)w̃n−
− (Cn + µI)xnxH

n w̃n + (Cn + µI)xnd∗n
= (µ−1Cn−1 + I− µ−1gnxH

n Cn−1)w̃n−
− gnxH

n w̃n + gnd∗n
= (µ−1Cn−1 + I)w̃n−
− gnxH

n (µ−1Cn−1 + I)w̃n + gnd∗n
= wn + gn(d∗n − xH

n wn)
= wn + gne∗n, (12)

where en = dn −wH
n xn.

Equations (10), (9) and (12) define the proposed algorithm,
which is summarized in the Table I.

B. Comparison to the RLS algorithm

The RLS algorithm is shown in Table I. The matrix Pn

is the inverse of correlation matrix Φn =
∑n

i=1 xixH
i . (Here

we do not consider the forgetting factor λ, which corresponds
to the “memory” of the algorithm.) Let θn =

∑n
i=1 xid

∗
i be

the cross-correlation between the tap inputs of the transversal
filter and the desired response. The RLS algorithm estimates
in a least-square sense the coefficient vector as ŵn = Φ−1

n θn.
See [4], [9] for a detailed RLS discussion.

As can be observed, the proposed and the RLS algorithm
are algebraically similar. In both algorithms, the matrices
Cn and Pn are initialized by δ−1I, where δ is small. This
value avoids the singularity of C1 and P1. The matrices
Cn and Pn, as well as the vectors gn and kn, play the
same role in an algebraic sense, though they have different
interpretations. Notice that Cn is not hermitian. If µ is taken
sufficiently small, the proposed algorithm approaches the RLS
algorithm. Each iteration of the proposed algorithm requires
3N2 + 5N multiplications, whereas in the RLS algorithm
we need 2N2 + 4N multiplications. Both algorithms have
complexity of O(N2).

In the following section, we present some simulation results
that illustrate the performance of the new algorithm.
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Fig. 3. Comparison of the proposed and the LMS algorithm for (a) µ =
0.025 and (b) µ = 0.075.

IV. SIMULATIONS

We run the proposed algorithm in a simple channel equal-
ization problem. The symbol source consists of a sequence
(sn) that assumes values +1 or −1 with equal probability,
i.e, we have used a BPSK modulation scheme. This sequence
pass through the linear channel h of length L corrupted by
the additive white gaussian noise sequence (νn) of variance
σ2

ν = 0.001, resulting in the following received sequence:

xn = hHsn + νn, for n = 1, 2, . . . ,

where sn = (sn, . . . , sn−L+1)T . The elements of h are
defined by

hi =





0 for i = 0,
1
2

[
1 + cos

(2π

W
(i− 2)

)]
for i = 1, 2, 3,

where the factor W controls the distortion produced by the
channel, expressed by the eigenvalue spread of the matrix
correlation of (xn). The value W = 3.1 was used in the
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simulation, which corresponds to eigenvalue spread equal to
11.1238. The number of elements of the weight coefficient
vector was N = 11. This value yields an optimum delay
of 7 samples for the LMS algorithm, demanding the desired
response dn = sn−7.

For each experiment, the instantaneous squared error be-
tween the desired response and the filter equalizer output was
averaged over 5.000 independent trials. The line at the bottom
of the graphics indicates the optimum Wiener mean-square
error. The value δ = 10−5 was used.

Fig. 3 shows the learning curves of the LMS and the
proposed algorithm for µ = 0.025 and 0.075. The convergence
rate of the proposed algorithm has shown insensitive to the
step-size µ value. The mean-square error of the proposed and
the LMS algorithm converged to the same steady-state value.
The curves of further experiments for different µ values have
obeyed the same behavior as observed above.

Fig. 4-(a) exhibits a comparison of the proposed algorithm
for µ = 0.075 and the RLS algorithm. The rate of convergence
is similar. The curves differ from the mean-square steady-
state value. In Fig. 4-(b), for the proposed algorithm we
chose a sufficiently small µ value in order to approximate
the minimum mean-square error to the Wiener solution. For
µ = 0.001, the proposed algorithm behaves similarly to the
RLS algorithm, as it was expected.

V. CONCLUSIONS AND PERSPECTIVES

In this paper, based on data-reusing techniques we devel-
oped an algorithm that mixes some LMS and RLS charac-
teristics. The proposed algorithm showed to converge to the
same misadjustment produced by the LMS algorithm, and
to converge as fast as the RLS algorithm. As in the LMS
algorithm, the residual mean-square error can be controlled
by a step-size parameter. The proposed algorithm presented
complexity of O(N2), and was algebraically similar to the
RLS algorithm, although it has different interpretation.

A perspective of this work includes a fast version implemen-
tation, an analysis of the relationship between the proposed
algorithm and Kalman filters, a theoretical understanding of
the step-size influence over the misadjustment, as well as the
implementation of a forgetting factor that might extend the
proposed algorithm to non-stationary environments.
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