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Novel Algorithms for Nonlinear Channel
Equalization Using Neural Vector Quantization

Luı́s G. M. Souza, Guilherme A. Barreto and João C. M. Mota

Abstract— In this paper we use the Self-Organizing Map
(SOM), a well-known neural vector quantization algorithm, to
design nonlinear adaptive filters through the Vector-Quantized
Temporal Associative Memory (VQTAM) method. In VQTAM,
the centroids (codebook vectors) of input clusters found by the
SOM are associated with codebook vectors of output clusters,
so that the SOM can learn dynamic input-output mappings in
a very simple and effective way. In addition, we also propose
two VQTAM-based Radial Basis Function (RBF) adaptive filters.
Firstly, a global RBF model is built using all the input codebook
vectors as centers of M gaussian basis functions, while the
hidden-to-output layer weights are given by the output proto-
types. Then, a local RBF model is built in a similar fashion, but
using only K � M neurons. We evaluate the proposed VQTAM-
based adaptive filters in a nonlinear channel equalization task.
Performance comparisons with the standard linear FIR/LMS and
the nonlinear Multilayer Perceptron (MLP) equalizers are also
carried out.

Index Terms— Self-Organizing Maps, Vector Quantization,
Radial Basis Functions, Channel Equalization.

Resumo— Neste trabalho, usa-se a Rede Auto-Organizável de
Kohonen (SOM, sigla em inglês), um conhecido algoritmo neural
de quantização vetorial, para projetar filtros adaptativos não-
lineares por meio do método de Memória Associativa Temporal
por Quantização Vetorial (VQTAM, sigla em inglês). Neste
método, os vetores-código (protótipos) dos dados de entrada
encontrados pela rede SOM são associados com os vetores-
códigos dos dados de saı́da, permitindo que a SOM aprenda
mapeamentos dinâmicos entrada-saı́da de modo simples e efetivo.
Além disso, dois filtros adaptativos baseados na arquitetura da
rede de Funções de Base Radial (RBF) e no método VQTAM são
propostos. Primeiramente, um modelo RBF Global é construı́do
usando todos os vetores-código de entrada como centros de M

funções de base gaussiana, enquanto os pesos da camada de saı́da
são obtidos a partir dos protótipos da saı́da. Em seguida, um
modelo RBF local é construı́do de forma similar, porém usando
somente K � M neurônios. Os filtros adaptativos propostos são
avaliados na equalização de um canal não-linear. Comparações de
desempenho com equalizador linear (FIR/LMS) e um não-linear
(rede Perceptron Multicamadas) são também realizadas.

Palavras-Chave— Mapas Auto-Organizáveis, Quantização Ve-
torial, Funções de Base Radial, Equalização de Canal.

I. INTRODUCTION

Modern telecommunications impose severe quality require-
ments for radio link or cellular telephony systems. Crucial
for attaining such requirements are the design of adaptive
channel equalization algorithms capable to deal with several
adverse effects, such as noise, intersymbol interference (ISI),
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co-channel and adjacent channel interference, nonlinear distor-
tions, fading, time-varying characteristics, among others [8],
[18].

Supervised neural networks, such as MLP and RBF, moti-
vated by their universal approximation property, have been
successfully used as nonlinear tools for channel equaliza-
tion [11]. It has been demonstrated that the performance of
MLP- or RBF-based adaptive filters usually outperform tra-
ditional linear techniques in many common signal processing
applications [12], [20], [25].

The Self-Organizing Map (SOM) is an important unsuper-
vised neural architecture which, in contrast to the supervised
ones, has been less applied to adaptive filtering. For being
a kind of clustering algorithm, its main field of application
is vector quantization of signals [9], [10], and hence, it is
not used as a stand-alone function approximator, but rather in
conjunction with standard linear [19], [23] or nonlinear [4]
models.

Recently, the Vector-Quantized Temporal Associative Mem-
ory (VQTAM) [1] method was proposed to enable the SOM
to learn input-output mappings, such as those commonly
encountered in time series prediction, robotics and control
system applications. In these tasks the performance of the
SOM was comparable to or better than those of supervised
neural architectures.

In this paper we further explore the function approximation
ability of the VQTAM in difficult adaptive filtering tasks,
such as nonlinear channel equalization. Through simulations
we demonstrate the superior performance of the VQTAM-
based adaptive filters over the standard linear and nonlinear
adaptive structures, such as the FIR/LMS, the MLP and the
Least-Squares SOM-based (LESSOM) local regression model
proposed in [17].

The remainder of the paper is organized as follows. Section
II summarizes the VQTAM technique and illustrates how it
can be applied to channel equalization. In Section III we
show how to build global and local RBF models through VQ-
TAM. In Section IV several computer simulations evaluate the
performance of the proposed VQTAM-based adaptive filters
in nonlinear channel equalization. The paper is concluded in
Section V.

II. THE VQTAM METHODOLOGY

The VQTAM method is based on the SOM algorithm, which
can be defined as an unsupervised neural algorithm designed to
build a representation of neighborhood (spatial) relationships
among vectors of an unlabeled data set [13]–[15]. Neurons
in the SOM are put together in an output layer, A, arranged
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in one-, two- or even three-dimensional array (grid). The
arrangement of the neurons in this well-defined geometric grid
are necessary in order to define a physical neighborhood for
each neuron in the grid.

Each neuron i ∈ A has a weight vector wi ∈ <n, also
called codebook vector, with the same dimension of the input
vector x ∈ <n. The network weights are trained according to
a competitive-cooperative scheme in which the weight vectors
of a winning neuron and its neighbors in the output array
are updated after the presentation of each input vector. This
training procedure eventually leads the neurons to reproduce
proximity relationships of the input data vectors in their weight
vectors. That is, data vectors that are close in the data space
are mapped to neighboring neurons in the SOM array. This
property is called topology preservation and is one of the main
strength of the SOM over conventional vector quantization
(clustering) algorithms.

The VQTAM method itself is a generalization to the tempo-
ral domain of a SOM-based associative memory technique that
has been used by many authors to learn static (memoryless)
input-output mappings, specially within the domain of robotics
(see [2] and references therein). In both cases, the input vector
to be presented to the SOM at time step t, x(t), is composed
of two parts. The first part, denoted xin(t) ∈ Rp, carries data
about the input of the dynamic mapping to be learned. The
second part, denoted xout(t) ∈ Rq, contains data concerning
the desired output of this mapping. The weight vector of
neuron i, wi(t), has its dimension increased accordingly.
These changes are formulated as follows:

x(t) =

(
xin(t)
xout(t)

)
and wi(t) =

(
win

i (t)
wout

i (t)

)
(1)

where win
i (t) ∈ Rp and wout

i (t) ∈ Rq are, respectively,
the portions of the weight (codebook) vector which store
information about the inputs and the outputs of the mapping
being learned.

Depending on the variables chosen to build the vectors
xin(t) and xout(t) one can use the SOM to learn forward or
inverse mappings. It is worth emphasizing that these vectors
not necessarily have the same dimensionality. Indeed, we have
p > q in general.

In this paper, we are interested in the equalization of nonlin-
ear channels, a complex adaptive filtering task corresponding
to the learning of the inverse model of the channel (see
Fig. 1a). In this case, we have p > 1 and q = 1, and the
following definitions apply:

xin(t) = [y(t) y(t − 1) · · · y(t − p + 1)]T (2)

xout(t) = s(t − τ) (3)

where s(t) is the symbol transmitted at the time step t, y(t) is
the corresponding channel output, τ ≥ 0 is the symbol delay,
p is the order of the equalizer, and the superscript T denotes
the transpose vector. Without loss of generality, in this paper
we assume τ = 0.

During learning, the winning neuron at time step t is
determined based only on xin(t):

i∗(t) = arg min
i∈A

{‖xin(t) −win
i (t)‖} (4)

+

CHANNEL

−
ADAPTIVE(t)s (t)y ŝ (t)NON−LINEAR

(t)e
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(t)u (t)y
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(b)

Fig. 1. (a) Channel equalization by an adaptive filter and (b) the block
diagram of the noisy nonlinear channel used in the simulations.

For updating the weights, both xin(t) and xout(t) are used:

win
i (t + 1) = win

i (t) + αh(i∗, i; t)[xin(t) −win
i (t)] (5)

wout
i (t + 1) = wout

i (t) + αh(i∗, i; t)[xout(t) −wout
i (t)] (6)

where 0 < α < 1 is the learning rate and h(i∗, i; t) is a time-
varying Gaussian neighborhood function defined as follows:

h(i∗, i; t) = exp

(
−
‖ri(t) − ri∗(t)‖2

2γ2(t)

)
(7)

where ri(t) and ri∗(t) are the coordinates of the neurons i

and i∗ in the SOM array, respectively. The parameter γ(t)
defines the width of the neighborhood of the current winning
neuron. For the sake of convergence of the SOM, the parameter
γ(t) should decrease exponentially in time according to the
following equation:

γ(t) = γ0

(
γN

γ0

)t/N

(8)

where γ0 and γN are the initial and final values of the
neighborhood, and N is the length of the training sequence.

In words, the learning rule in (5) performs the topology-
preserving vector quantization of the input space and the rule
in (6) acts similarly on the output space of the mapping being
learned. As training proceeds, the SOM learns to associate
the input codebook vectors win

i with the corresponding output
codebook vectors wout

i .
The SOM-based associative memory procedure imple-

mented by the VQTAM can then be used for function approx-
imation purposes. More specifically, once the SOM has been
trained, its output z(t) for a new input vector is estimated from
the learned codebook vectors, wout

i∗ (t), as follows:

z(t) ≡ wout
i∗ (t) (9)
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where wout
i∗ = [wout

1,i∗ wout
2,i∗ · · · wout

q,i∗ ]T is the weight vector
of the current winning neuron i∗(t), found as in (4). For the
channel equalization task we are interested in, we have set
q = 1. Thus, the output of the VQTAM-based equalizer is a
scalar version of (9), given by:

z(t) = ŝ(t) = wout
1,i∗(t) (10)

where ŝ(t) is the estimated transmitted symbol at time t.
It is worth noting that this kind of associative memory is

different from the usual supervised approach. In MLP and RBF
networks, the vector xin(t) is presented to the network input,
while the xout(t) is used at the network output to compute
explicitly an error signal that guides learning. The VQTAM
method instead allows competitive neural networks, such as
the SOM, to correlate the inputs and outputs of the mapping
without computing an error signal explicitly1.

III. BUILDING EFFICIENT RBF MODELS FROM VQTAM

The VQTAM method itself can be used for function
approximation purposes. However, since it is essentially a
vector quantization method, it may require a large number
of neurons to achieve an accurate generalization. To improve
its performance, we introduce two RBF models obtained from
a SOM network trained under the VQTAM scheme.

A. A Global RBF Model

Assuming that the SOM has Nh neurons, a general Radial
Basis Function network with Nh gaussian basis functions and
q output neurons can be built over the learned input and output
codebook vectors, win

i and wout
i , as follows:

z(t) =

∑Nh

i=1 wout
i Gi(x

in(t))
∑Nh

i=1 Gi(xin(t))
(11)

where z(t) = [z1(t) z2(t) · · · zq(t)]
T is the output vector,

wout
i = [wout

1,i wout
2,i · · · wout

q,i ]T is the weight vector
connecting the ith basis function to the q output units, and
Gi(x

in(t)) is the response of this basis function to the current
input vector xin(t), i.e.

Gi(x
in(t)) = exp

(
−
‖xin(t) −win

i ‖
2

2σ2

)
(12)

where win
i plays the role of the center of the ith basis function

and σ defines its radius (or spread).
Note that in (11), all the Nh codebook vectors are used to

estimate the corresponding output. In this sense, we referred
to the RBF model just described as the Global RBF (GRBF)
model, despite the localized nature of each gaussian basis.

Since we are interested in the equalization of a single
communication channel, we set q = 1. In this case, the output
vector of the GRBF network in (11), which is used to estimate
(recover) the current transmitted symbol, reduces to a scalar
output, z(t), defined as:

z(t) = ŝ(t) =

∑Nh

i=1 wout
1,i Gi(x

in(t))
∑Nh

i=1 Gi(xin(t))
(13)

1In reality, an error signal is computed implicitly in (6).

In the usual two-phase RBF training, the centers of the basis
functions are firstly determined by clustering the xin vectors
(e.g. using K-means algorithm) and then the hidden-to-output
layer weights are then computed through the LMS rule (or the
pseudo-inverse method). In the GRBF model just described
one single learning phase is necessary, in which SOM-based
clustering is performed simultaneously on the input-output
pairs {xin(t),xout(t)}.

It is worthwhile to contrast the GRBF with two well-known
RBF design strategies, namely the Generalized Regression
Neural Network (GRNN) [21] and the Modified Probabilistic
Neural Network (MPNN) [24]. In the GRNN, there is a basis
function centered at every training input data vector xin,
and the hidden-to-output weights are just the target values
xout. The MPNN and the GRNN share the same theoretical
background and basic network structure. The difference is
that MPNN uses the K-means clustering method for the
computation of its centers.

For both the GRNN/MPNN models, the output is simply a
weighted average of the target values of training vectors close
to the given input vector. For the GRBF instead, the output
is the weighted average of the output codebook vectors wout

i

associated with the input codebook vectors wout
i close to the

given input vector xin, as stated in (11) and (13).

B. A Local RBF Model

Recently, many authors have studied the problem of approx-
imating nonlinear input-output mappings through the so-called
local models [3], [5], [16], [17]. According to this approach
just a small portion of the modeled input-output spaces are
used to estimate the output for a new input vector.

In the context of the VQTAM approach, local modeling
means that we need only 1 < K < Nh prototypes to set
up the centers of the basis functions and the hidden-to-output
weights of a RBF model. To this purpose, we suggest to use
the weight vectors the first K winning neurons, denoted by
{i∗1, i

∗
2, . . . , i

∗
K}, which are determined as follows:

i∗1(t) = argmin
∀i

{
‖xin(t) −win

i ‖
}

(14)

i∗2(t) = arg min
∀i 6=i∗1

{
‖xin(t) −win

i ‖
}

...
...

...

i∗K(t) = arg min
∀i 6={i∗1 ,...,i∗

K−1}

{
‖xin(t) −win

i ‖
}

The estimated output is now given by:

z(t) =

∑K

k=1 wout
1,i∗

k
Gi∗

k

(
xin(t)

)

∑K

i∗
k
=1 Gi∗

k
(xin(t))

(15)

We referred to the local RBF model thus built as the KRBF
model. It is worth noting that the VQTAM and the GRBF
become particular instances of the KRBF if we set K = 1
and K = Nh, respectively.

A local RBF model was proposed earlier in [6]. First, a
GRNN model is built and then only those centers within a
certain distance ε > 0 from the current input vector are used
to estimate the output. This idea is basically the same as that

779
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used to build the KRBF, but it suffers from the same drawbacks
of the GRNN model regarding its high computational cost.
Furthermore, depending on the value of ε the number of
selected centers may vary considerably (in a random way)
at each time step. If ε is too small, it may happen that no
centers are selected at all! This never occurs for the KRBF
model, since the same number of K centers is selected at
each time step.

More recently another local RBF model was proposed
in [7] based on a double vector quantization procedure.
This method associates a small cluster of input-output pairs
{xin(t),xout(t)} to each neuron, so that Nh local RBF models
are built, one for each neuron. In the KRBF only a single local
RBF model is built dynamically from the K prototype vectors
closest to the current input vector.

IV. SIMULATIONS

To evaluate the proposed VQTAM-based adaptive filters in
channel equalization tasks, we simulated a nonlinear noisy
channel with memory (Figure 1b). First, a linear channel is
realized by the following equations:

u(t) =
hT v(t)

‖h‖
, t = 1, 2, . . . , N

where u(t) ∈ R is the channel output, v(t) = [v(t) v(t −
1) · · · v(t − n + 1)]T is the tapped-delay vector containing
the n most recent noisy symbols, h ∈ Rn is the linear channel
impulse response, and N is the length of the symbol sequence.

A given noisy symbol at time t is defined as

v(t) = s(t) + w(t) (16)

where s(t) ∈ R is the noise-free transmitted symbol, and
w(t) ∼ N (0, σ2

w) is a white gaussian noise sequence. We
assume that data sequence {s(t)}N

t=1 and the noise sequence
{w(t)}N

t=1 are jointly independent.
The symbol sequence {s(t)}N

t=1 is realized as a first-order
Gauss-Markov process, as follows:

s(t) = as(t − 1) + bε(t) (17)

where ε(t) ∼ N (0, σ2
ε) is the white gaussian driving noise,

and |a| < 1 for the sake of stationarity. Therefore, the symbol
samples are zero-mean gaussian s(t) ∼ N(0, σ2

s), with power
σ2

s given by

σ2
s =

b2

1 − a2
σ2

ε (18)

For a = 0, the source signal becomes a white gaussian noise
sequence.

Finally, the output y(t) of the nonlinear channel is obtained
by applying a static nonlinearity to the signal u(t):

y(t) = 0.2u(t) − 0.2u2(t) + 0.04u3(t) + (19)

+ 0.9 tanh[u(t) − 0.1u2(t) +

+0.5u3(t) − 0.1u4(t) + 0.5]

In the following simulations we compare the equalizers
implemented via the VQTAM, GRBF, KRBF and MLP neu-
ral models. In addition, we also evaluate the performance

of the conventional FIR/LMS equalizer and the LESSOM
model [17]. The LESSOM model is similar to the KRBF
since both models use the codebook vectors of K neurons
to build a predictor for the transmitted symbol. However, the
LESSOM implements a local linear predictor, while the KRBF
implements a nonlinear one.

The following parameters were used to set up the simu-
lations: a = 0.95, b = 0.1, σ2

ε = 1, σ2
w = 0.03, h =

[1 0.8 0.5]T , p = 5 and N = 6000. Without loss
of generality, we assume that the symbol period is larger
than the processing time of the proposed adaptive algorithms.
Furthermore, no encoding/decoding technique is used for the
transmitted symbol sequence.

The equalizers were trained online using the first half of
the sequences {s(t), y(t)}, while the second half was used to
test their generalization (prediction) performances. A total of
500 training/testing runs were performed for a given filter in
order to assign statistical confidence to the computation of the
Normalized Mean squared error (NMSE) to build learning and
prediction error curves. For each training/testing run, different
white noise sequences {w(t), ε(t)} are generated to built new
realizations of the signal sequences {s(t), y(t)}.

The MLP equalizer has a single layer of Nh hidden neurons,
all of them with hyperbolic tangent activation functions, and
a linear output neuron. Weights are updated through the
backpropagation algorithm with momentum term. The learning
rate of all equalizers was set to α = 10−1, and held constant
during training. For the VQTAM model, the parameters of
the neighborhood function were set to γ0 = 0.5Nh and
γN = 10−2.

The first simulation evaluates the learning curves of the
VQTAM, MLP and FIR/LMS equalizers. The results are
shown in Figure 2. For this simulation, the number of neurons
was set to Nh = 10 and the adaptation step size of the
FIR/LMS equalizer was set to 10−4. As expected, the nonlin-
ear equalizers performed much better (i.e. faster convergence
to lower levels of the error) than the linear one. The VQTAM
equalizer converged as fast as the MLP equalizer, but the
former has produced slightly higher NMSE values as training
proceeds. Despite of this result, the next simulation illustrates
that, depending on the number of neurons, the VQTAM and
its variants (GRBF and KRBF) are able to perform better than
the MLP equalizer during the prediction phase.

The second simulation attempts to evaluate empirically
how the number of hidden neurons influences the prediction
performance the MLP, VQTAM and GRBF equalizes. The
generalization performance of a given equalizer, for each value
of Nh varying from 1 to 20, is evaluated in terms of the
resulting normalized mean-squared error (NMSE). The results
are shown in Figures 3a and 3b.

In both figures the MLP performed better when few hidden
neurons are used. However, unlike the VQTAM and GRBF
models, its performance does not improve as Nh increases.
The minimum NMSE for the MLP was obtained for Nh = 9.
From this value on, the NMSE tends to increase due to
overfitting. For the VQTAM and GRBF models, the NMSE
always decreases since we are using more codebook vectors to
quantize the input-output spaces, thus reducing the associated
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Fig. 2. Learning curves of the MLP and VQTAM equalizers (Nh = 10)
and the conventional FIR/LMS equalizer.

TABLE I

GENERALIZATION PERFORMANCE OF THE SEVERAL EQUALIZERS FOR

Nh = 20.

Neural NMSE
Equalizer mean min max variance

KRBF (K = 8) 0,0487 0,0190 0,1723 4,67×10
−4

GRBF 0,0500 0,0177 0,2198 6,79×10
−4

VQTAM 0,0583 0,0265 0,1428 3,33×10
−4

MLP 0,0785 0,0185 1,3479 0,0065
LESSOM (K = 15) 0,0991 0,0251 0,7721 0,0076

quantization errors. For Nh ≥ 16, the VQTAM performs
better than the MLP. For Nh ≥ 12, the GRBF performs
better than the MLP and VQTAM equalizers, demonstrating
that the nonlinear transformation implemented by the gaussian
basis functions yields additional prediction power to the GRBF
equalizer.

In the third simulation, we evaluate the prediction per-
formance of the local models (KRBF and LESSOM) as a
function of the number of prototype vectors used to build the
local models. For each input vector, the LESSOM builds the
corresponding local model by selecting the prototype vectors
of the winning neuron and its (K − 1) closest neighboring
neurons. These prototypes are then used to set up a linear
least-squares regression model. For this simulation, we used
Nh = 20 and varied K from 8 to 20. The results are shown
in Figure 4. One can easily note that the KRBF performed
better than the LESSOM for all the range of variation of K.
For this simulation, the minimum NMSE for the KRBF was
obtained for K = 8, while for the LESSOM the minimum
was obtained for K = 15.

Finally, in Table I we show the best results obtained for
the equalizers simulated in this paper, assuming Nh = 20.
It is worth noting that the KRBF and the GRBF models
performed better than the other equalizers and presented the
lowest variances in the results.
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Fig. 3. Prediction error (NMSE) versus the number of hidden neurons (Nh):
(a) MLP × VQTAM, and (b) MLP × GRBF.

V. CONCLUSION

In this paper we used the Self-Organizing Map (SOM), a
well-known neural vector quantization algorithm, to design
nonlinear adaptive filters through the Vector-Quantized Tem-
poral Associative Memory (VQTAM) method. In addition, we
also propose two VQTAM-based Radial Basis Function (RBF)
adaptive filters. It was demonstrated through simulations that
the proposed models performed better than the linear FIR/LMS
equalizer and neural network based equalizers, such as the
MLP and the LESSOM model, in nonlinear channel equaliza-
tion tasks.

We are currently developing learning strategies to determine
in an adaptive fashion the number of neurons (Nh) that yields
optimal performance for the VQTAM-based equalizers. One of
these strategies uses the growing self-organizing map [22] to

781
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Fig. 4. Prediction error (NMSE) versus the number of local prototypes (K:
KRBF × LESSOM.

add neurons to the network until a given performance criterium
has been reached.
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