Um Algoritmo de Passo Variável Robusto ao Ruído de Medição

Márcio H. Costa e José C. M. Bermudez

Resumo — Este trabalho apresenta uma modificação do algoritmo de passo variável de Kwong e Johnston (VSS) para filtros adaptativos da família LMS. O novo algoritmo, denominado *Robust Variable Step Size* (RVSS), apresenta menor sensibilidade à potência do ruído de medição, ao custo de um pequeno acréscimo de complexidade computacional. São fornecidos resultados analíticos e simulações estatísticas que mostram um melhor desempenho do novo algoritmo em regime permanente, e desempenho semelhante durante o regime transitório, quando comparado ao VSS. O algoritmo RVSS é indicado para aplicações de telefonia ou viva-voz em que interferências decorrentes de ruído e *double talking* são significativas.

Palavras-Chave — Filtros adaptativos, passo variável, VSS, LMS, NLMS, cancelamento de eco.

Abstract — This work presents a variation of the Kwong and Johnston's *Variable Step Size* algorithm (VSS) applied to the LMS adaptive filter family. The resulting algorithm, called *Robust Variable Step Size* (RVSS), presents smaller sensitivity to measurement noise power, at the cost of a small increase of the computational complexity. Analytical results and statistical simulations show a better steady-state performance and similar transient performance of the new algorithm, when compared to VSS. The RVSS algorithm is indicated for wireless and hands-free communication systems to deal with high noise power and double talking.

Index Terms — Adaptive filter, variable step size, VSS, LMS, NLMS, echo cancellation.

I. INTRODUÇÃO

O processamento adaptativo de sinais tem sido extensivamente utilizado em aplicações relacionadas à área de telecomunicações como, por exemplo, em sistemas de comunicações móveis, viva-voz e teleconferência [1,2]. A família de algoritmos adaptativos *Least Mean Square* (LMS) apresenta características interessantes para a implementação de técnicas de cancelamento de eco e equalização em sistemas de comunicação, em decorrência de sua simplicidade computacional e da necessidade de pouca informação *a priori* sobre a estatística dos sinais envolvidos. Sua capacidade de auto-ajuste permite sua utilização em sistemas variantes no tempo, como os encontrados em canais de comunicação [3,4].

Dois importantes membros da família LMS são os algoritmos LMS e NLMS. Embora os algoritmos em questão possuam uma grande simplicidade de implementação, seus comportamentos são profundamente afetados pela escolha do passo de adaptação. A determinação deste parâmetro de projeto representa um compromisso entre o desempenho no período transitório (velocidade de convergência) e em regime permanente (desajuste) [5].

Aplicações de filtros adaptativos em sistemas de comunicação requerem, ao mesmo tempo, as características de um passo de adaptação elevado, para rastreamento de sistemas variantes no tempo, e de um passo de adaptação pequeno, para redução do desajuste de estimação. Uma solução possível é a utilização de estratégias de passo variável. A exigência principal desse mecanismo é a baixa complexidade computacional e a robustez ao ruído de medição.

Diferentes critérios de ajuste do passo de adaptação têm sido propostos na literatura. Dentre os mais promissores encontram-se os baseados no erro quadrático instantâneo [6,7], nas mudanças de sinal de sucessivas estimativas do gradiente [8] e na correlação entre o sinal de entrada e o sinal de erro [9,10]. Entretanto, resultados experimentais demonstram que o desempenho da maioria destes algoritmos é seriamente afetado pelo ruído de medição, especialmente em sistemas nos quais a interferência decorrente de ruído e de double talking é significativa [2,7]. Dessa forma, a vantagem de estratégias de passo variável sobre passo fixo apenas é significativa em ambientes de elevada relação sinal-ruído (SNR - signal to noise ratio). Esse fato é facilmente constatado observando-se que a maioria dos critérios de ajuste do passo de adaptação é baseada na utilização do erro instantâneo, o qual é contaminado por ruído de medição.

Um importante algoritmo de passo variável é o algoritmo Variable Step Size (VSS) de Kwong e Johnston [6]. Embora, a partir deste, diversos outros trabalhos tenham sido publicados e seus autores tenham alegado desempenhos superiores ao VSS, resultados apresentados em [11] demonstraram que isso ocorreu em decorrência da falta de uma metodologia adequada de projeto para os parâmetros do VSS. Comparações entre o VSS e os algoritmos desenvolvidos em [7] e [12] demonstraram que o algoritmo VSS acarreta um melhor desempenho em termos de velocidade de convergência e desajuste quando adequadamente projetado. Esse resultado reavivou o interesse no algoritmo VSS, embora o mesmo possua elevada

Márcio H. Costa e José C. M. Bermudez, Departamento de Engenharia Elétrica, Universidade Federal de Santa Catarina, Florianópolis-SC. Emails: costa@eel.ufsc.br, j.bermudez@ieee.org.

sensibilidade à influência do ruído de medição e, portanto, sua utilização seja restrita apenas a condições de elevada relação sinal-ruído.

Com a finalidade de eliminar a influência do ruído de medição sobre o comportamento do passo de convergência, Okello *et al.* [13] desenvolveram um algoritmo baseado na correlação entre o sinal de excitação e o erro. Embora apresente excelentes resultados, o custo computacional necessário para sua implementação, em termos do número de multiplicações, é da ordem do número de coeficientes do filtro adaptativo. Em decorrência deste fato, sua aplicação é inviabilizada em um grande número de aplicações práticas de interesse.

Este trabalho apresenta uma modificação no algoritmo originalmente proposto em [6] de forma a diminuir a influência do ruído aditivo sobre o comportamento do passo variável, melhorando as características de desajuste e mantendo a capacidade de rastreamento e velocidade de convergência, sem um aumento significativo do custo computacional. O novo algoritmo é denominado *Robust Variable Step Size* (RVSS).

A Seção II apresenta uma breve revisão do algoritmo VSS. O algoritmo RVSS é apresentado na Seção III. A Seção IV estuda o comportamento médio dos coeficientes do algoritmo RVSS. A seção V compara os desempenhos dos algoritmos VSS e RVSS. O comportamento do algoritmo RVSS em regime permanente é estudado na Seção VI. A Seção VII apresenta resultados de simulação e a Seção VIII apresenta as conclusões deste trabalho.

II. O ALGORITMO DE KWONG E JOHNSTON (VSS)

Considere o sistema descrito pelo diagrama apresentado na Fig. 1. Neste, $n \in o$ instante de tempo discreto, $x(n) \in o$ sinal de excitação, considerado de média zero, Gaussiano, com potência r_x . $d(n) \in o$ sinal desejado, $y(n) \in o$ sinal de cancelamento, $e(n) \in o$ sinal de erro e $z(n) \in o$ ruído aditivo, independente de x(n) e com potência r_z . $\mathbf{w}(n) = [w_0(n) w_1(n) \dots w_{N-1}(n)]^T \in o$ vetor de coeficientes adaptativos e $\mathbf{w}^0 = [w_0^0 w_1^0 \dots w_{N-1}^0]^T \in o$ vetor de coeficientes da resposta ao impulso do sistema desconhecido. Os vetores $\mathbf{w}(n)$ e \mathbf{w}^0 têm dimensão N.

O sinal de erro é dado pela expressão

$$e(n) = z(n) - \mathbf{v}^{T}(n)\mathbf{x}(n)$$
(1)

em que $\mathbf{x}(n) = [x(n) x(n-1) \dots x(n-N+1)]^T$ é o vetor de dados observados e $\mathbf{v}(n) = \mathbf{w}(n) - \mathbf{w}^{\mathbf{0}}$ é o vetor erro dos coeficientes $(\mathbf{v}(n) = [v_0(n) v_1(n) \dots v_{N-1}(n)]^T).$

O algoritmo VSS [6] ajusta o passo de adaptação $\beta_{VSS}(n)$ de acordo com a seguinte equação recursiva:

$$\beta_{VSS}(n+1) = \alpha_{VSS}\beta_{VSS}(n) + \gamma_{VSS}e^{2}(n)$$
(2)

em que as constantes α_{VSS} e γ_{VSS} são os parâmetros de controle.

A cada iteração, o novo passo é calculado através da Eq. (2) e a seguinte regra é aplicada de forma a impedir a instabilização do algoritmo (passo de convergência máximo) e a manutenção de sua capacidade de rastreamento (passo de convergência mínimo):

$$\beta_{VSS}(n+1) = \begin{cases} \beta_{MIN} & \text{se } \beta_{VSS}(n+1) < \beta_{MIN} \\ \beta_{VSS}(n+1) & \text{se } \beta_{MIN} \le \beta_{VSS}(n+1) \le \beta_{MAX} \\ \beta_{MAX} & \text{se } \beta_{VSS}(n+1) > \beta_{MAX} \end{cases}$$
(3)

Em [11] é demonstrado que este algoritmo possui um desempenho superior a outros algoritmos de passo variável posteriormente propostos [7,12], quando seus parâmetros são adequadamente projetados.

O VSS pode ser utilizado em conjunto com uma variedade de algoritmos adaptativos para a atualização dos coeficientes. Os mais utilizados em aplicações práticas são os algoritmos LMS e NLMS, este último em função de sua robustez a variações da potência do sinal de excitação.

Fig. 1. Diagrama em blocos do sistema adaptativo abordado.

III. O ALGORITMO RVSS

A nova proposta de atualização do passo variável $\beta(n)$ é dada por:

$$\beta(n+1) = \alpha\beta(n) + \gamma \left[k \mathbf{x}^{T}(n) \mathbf{x}(n) - 1 \right] e^{2}(n)$$
(4)

A diferença entre a Eq. (4) e o algoritmo VSS reside na inserção de uma parcela multiplicativa extra, associada ao erro quadrático instantâneo. De forma geral, esta alteração acarreta em um aumento do custo computacional de apenas 4 multiplicações e duas somas por iteração, quando $\mathbf{x}^{T}(n)\mathbf{x}(n)$ é calculado de forma recursiva. Entretanto, quando utilizado em conjunto com o algoritmo NLMS, para o qual a avaliação do fator $\mathbf{x}^{T}(n)\mathbf{x}(n)$ já é necessária, o aumento de complexidade computacional é de apenas 2 multiplicações.

Os parâmetros de controle α , $\gamma \in k$ são definidos na próxima seção de forma a minimizar a influência do ruído de medição sobre o desempenho do algoritmo. As restrições previstas na Eq. (3) são também aplicadas ao RVSS.

IV. ANÁLISE DO COMPORTAMENTO MÉDIO

A equação de atualização dos algoritmos da família LMS, utilizando estratégias de passo variável, pode ser descrita da seguinte forma

$$\mathbf{v}(n+1) = \mathbf{v}(n) + \beta(e(n), \mathbf{x}(n)) f(e(n), \mathbf{x}(n))$$
(5)

Assumindo-se que α_{VSS} seja próximo da unidade e que γ_{VSS} seja suficientemente pequeno, pode-se considerar a seguinte aproximação [6, Eq.(7)]:

$$\mathbf{v}(n+1) = \mathbf{v}(n) + E\left\{\beta\left(e(n), \mathbf{x}(n)\right)\right\} f\left(e(n), \mathbf{x}(n)\right)$$
(6)

Tomando-se o valor esperado da Eq. (4), o comportamento

médio do passo pode ser obtido através da seguinte equação recursiva

$$E\left\{\beta(n+1)\right\} = \alpha E\left\{\beta(n)\right\} - \gamma E\left\{e^{2}(n)\right\} + k\gamma E\left\{\mathbf{x}^{T}(n)\mathbf{x}(n)e^{2}(n)\right\}$$
(7)

A determinação do comportamento médio do passo de adaptação depende da avaliação de dois valores esperados em função do erro quadrático. O primeiro termo da Eq. (7) é avaliado assumindo-se as aproximações previstas na teoria da independência [1,14]. Elevando-se a Eq. (1) ao quadrado e tomando-se seu valor esperado obtém-se:

$$E\left\{e^{2}\left(n\right)\right\} = tr\left\{\mathbf{R}_{\mathbf{x}}\mathbf{K}\left(n\right)\right\} + r_{z}$$

$$\tag{8}$$

em que $\mathbf{K}(n)=E\{\mathbf{v}(n)\mathbf{v}^{T}(n)\}$ é a matriz de momentos de segunda ordem do vetor erro de coeficientes, e $\mathbf{R}_{\mathbf{x}}=E\{\mathbf{x}(n)\mathbf{x}^{T}(n)\}$ é a matriz de correlação do sinal de excitação. O segundo valor esperado da Eq. (7) é dado por:

$$E\left\{e^{2}(n)\mathbf{x}^{T}(n)\mathbf{x}(n)\right\}$$

$$= E\left\{\mathbf{v}^{T}(n)\mathbf{x}(n)\mathbf{x}^{T}(n)\mathbf{x}(n)\mathbf{x}^{T}(n)\mathbf{v}(n)\right\}$$

$$-2E\left\{\mathbf{v}^{T}(n)\mathbf{x}(n)\mathbf{x}^{T}(n)\mathbf{x}(n)\right\}$$

$$+ E\left\{z^{2}(n)\mathbf{x}^{T}(n)\mathbf{x}(n)\right\}$$

$$= 2tr\left\{\mathbf{R}_{x}\mathbf{R}_{x}\mathbf{K}(n)\right\} + r_{x}N tr\left\{\mathbf{R}_{x}\mathbf{K}(n)\right\} + r_{x}Nr_{z}$$
(9)

em que, para o cálculo do primeiro valor esperado à direita do sinal de igualdade, se fez uso do teorema de fatoração dos momentos Gaussianos [1].

Substituindo-se (8) e (9) em (7) chega-se em

$$E\left\{\beta(n+1)\right\} = \alpha E\left\{\beta(n)\right\} + 2k\gamma tr\left\{\mathbf{R}_{\mathbf{x}}\mathbf{R}_{\mathbf{x}}\mathbf{K}(n)\right\} + \gamma\left(kr_{x}N-1\right)tr\left\{\mathbf{R}_{\mathbf{x}}\mathbf{K}(n)\right\} + \gamma\left(kr_{x}N-1\right)r_{z}\right\}$$
(10)

A Eq. (10) pode ser simplificada pela representação de $\mathbf{R}_{\mathbf{x}}$ em termos de suas matrizes de autovalores (Λ) e de autovetores (\mathbf{Q}), de forma que:

$$E\left\{\beta(n+1)\right\} = \alpha E\left\{\beta(n)\right\} + 2k\gamma tr\left\{\Lambda\Lambda\tilde{\mathbf{K}}(n)\right\} + \gamma\left(kr_{x}N-1\right)tr\left\{\Lambda\tilde{\mathbf{K}}(n)\right\} + \gamma\left(kr_{x}N-1\right)r_{z}\right\}$$
(11)

em que $\tilde{\mathbf{K}}(n) = \mathbf{Q}^T \mathbf{K}(n) \mathbf{Q}$. Através das propriedades de $\mathbf{\Lambda}$, \mathbf{Q} e do operador traço, chega-se em

$$E\left\{\beta(n+1)\right\} = \alpha E\left\{\beta(n)\right\} + 2k\gamma \lambda_{2}^{T}\tilde{\mathbf{k}}(n) +\gamma(kr_{x}N-1)\lambda^{T}\tilde{\mathbf{k}}(n) + \gamma(kr_{x}N-1)r_{z}$$
(12)

em que $\lambda = diag\{\Lambda\}$, $\lambda_2 = diag\{\Lambda\Lambda\}$ e $\tilde{\kappa}(n) = diag\{\tilde{\kappa}(n)\}$. O operador $diag\{\cdot\}$ produz um vetor coluna composto pelos elementos da diagonal principal da matriz operada.

A. Definição do Parâmetro k

Observando-se a Eq. (12) verifica-se a existência de uma parcela do termo gerador diretamente proporcional à potência do ruído de medição. Para diminuir a sensibilidade do novo algoritmo às características de z(n), o parâmetro k é projetado de tal forma que

$$k = 1/(r_x N) \tag{13}$$

Substituindo-se a Eq. (13) em (12) chega-se em

$$E\left\{\beta(n+1)\right\} = \alpha E\left\{\beta(n)\right\} + \frac{2\gamma}{r_{x}N}\boldsymbol{\lambda}_{2}^{T}\tilde{\mathbf{k}}(n)$$
(14)

Em aplicações cujo sinal de excitação apresente características não-estacionárias, o parâmetro k pode ser calculado, a cada iteração, através de um estimador da potência deste sinal. No caso de sinais brancos, a Eq. (14) torna-se

$$E\left\{\beta\left(n+1\right)\right\} = \alpha E\left\{\beta\left(n\right)\right\} + \frac{2\gamma r_{x}}{N} \sum_{i=0}^{N-1} k_{i}\left(n\right)$$
(15)

V. COMPARAÇÃO COM O ALGORITMO VSS

O comportamento médio dos coeficientes do algoritmo VSS é dado por [6, Eq.(11)]:

$$E\left\{\beta_{VSS}\left(n+1\right)\right\} = \alpha_{VSS}E\left\{\beta_{VSS}\left(n\right)\right\} + \gamma_{VSS}E\left\{e^{2}\left(n\right)\right\}$$
(16)

Substituindo-se a Eq. (8) em (16) e procedendo da mesma maneira que na seção anterior, chega-se a

$$E\left\{\beta_{VSS}\left(n+1\right)\right\} = \alpha_{VSS}E\left\{\beta_{VSS}\left(n\right)\right\} + \gamma_{VSS}\boldsymbol{\lambda}^{T}\tilde{\mathbf{k}}\left(n\right) + \gamma_{VSS}r_{z}$$
(17)

Para o caso de sinais brancos a Eq. (17) torna-se

$$E\left\{\beta_{VSS}\left(n+1\right)\right\} = \alpha_{VSS}E\left\{\beta_{VSS}\left(n\right)\right\} + \gamma_{VSS}r_{x}\sum_{i=0}^{N-1}k_{i}\left(n\right)$$

+ $\gamma_{VSS}r_{z}$ (18)

Comparando-se as Eqs. (14) e (17) verifica-se que a diferença entre os dois algoritmos reside em seus termos geradores. No algoritmo VSS, esse termo depende de $tr{\mathbf{R_xK}(n)}$ somado à potência do ruído de medição (r_z) enquanto que o novo algoritmo depende apenas de $tr{\mathbf{R_xK}(n)}$. O desaparecimento do termo relativo à potência do ruído no novo algoritmo é o fator responsável pela sua maior robustez.

Para o caso de sinais de excitação brancos, Eqs. (15) e (18), assumindo-se $\alpha = \alpha_{VSS}$ e $\gamma = N\gamma_{VSS}/2$, o novo algoritmo apresenta basicamente o mesmo comportamento médio que o algoritmo VSS, a menos de um termo determinado pela potência do ruído de medição. Para este caso, a equivalência entre os dois algoritmos é mais pronunciada.

A. Formulação Fechada para Sinais Brancos

Escrevendo-se as equações (15) e (17) sob a forma fechada, assumindo-se $\alpha = \alpha_{VSS}$ e $\gamma = N\gamma_{VSS}/2$, chega-se aos seguintes resultados

$$E\left\{\beta_{VSS}\left(n\right)\right\} = \alpha_{VSS}^{n}\beta_{VSS}\left(0\right) + \gamma_{VSS}r_{x}\alpha_{VSS}^{n}\sum_{i=0}^{n-1}\sum_{j=0}^{N-1}\frac{k_{j}\left(i\right)}{\alpha_{VSS}^{i}} + \left(1 - \alpha_{VSS}^{n}\right)\frac{\gamma_{VSS}}{1 - \alpha_{VSS}}r_{z}$$
(19)

$$E\{\beta(n)\} = \alpha_{VSS}^{n}\beta(0) + \gamma_{VSS}r_{x}\alpha_{VSS}^{n}\sum_{i=0}^{n-1}\sum_{j=0}^{N-1}\frac{k_{j}(i)}{\alpha_{VSS}^{i}}$$
(20)

Observando-se as Eqs. (19) e (20), verifica-se através da parcela extra na Eq. (19), que o efeito do ruído será mais pronunciado à medida que o número de iterações aumenta. Dessa forma, espera-se que o comportamento transitório dos dois algoritmos seja aproximadamente o mesmo mas com

uma pronunciada diferença em regime permanente para situações de baixa relação sinal-ruído, devido ao efeito da terceira parcela da Eq. (19).

VI. REGIME PERMANENTE

O valor médio do passo de convergência do novo algoritmo em regime permanente, considerando-se as suposições e aproximações realizadas, é obtido assumindo-se convergência da Eq. (14), de tal forma que

$$\lim_{n \to \infty} E\left\{\beta(n)\right\} = \frac{2\gamma}{(1-\alpha)r_x N} tr\left\{\mathbf{R}_x \mathbf{R}_x \lim_{n \to \infty} \mathbf{K}(n)\right\}$$
(21)

em que a matriz de momentos de segunda ordem em regime permanente deve ser obtida a partir do algoritmo adaptativo utilizado para a atualização dos coeficientes (vide [1] para o LMS e [15] para o NLMS).

VII. SIMULAÇÕES

De forma a ilustrar as características do novo algoritmo, essa seção apresenta cinco simulações comparativas com o algoritmo VSS.

Exemplo 1: Algoritmo NLMS, sinal de excitação Gaussiano branco e baixa SNR – Sinal de excitação Gaussiano branco com potência unitária $r_x=1$. Ruído aditivo Gaussiano branco com potência $r_z=0,15$. **w**^o=[2,8 2,8 2,8 2,8]^T; $\alpha_{VSS}=0,995$; $\gamma_{VSS}=0,01$; $\alpha=\alpha_{VSS}$, $\gamma=N\gamma_{VSS}/2$; $[\beta_{MIN},\beta_{MAX}]=[0,1]$. Inicialização dos coeficientes adaptativos na origem. $\beta_{VSS}(0)=\beta(0)=0,8$; 1000 realizações.

Exemplo 2: Algoritmo NLMS, sinal de excitação Gaussiano branco e elevada SNR – Mesmas condições do exemplo 1 porém com $r_z=10^{-6}$.

Exemplo 3: Algoritmo NLMS, sinal de excitação Gaussiano branco e ruído de medição com variação abrupta de potência – Sinal de excitação Gaussiano branco com potência unitária. Ruído aditivo Gaussiano branco com potência $r_z=10^{-8}$. w^o=[0,17 0,5 0,7 0,5 0,17]^T; $\alpha_{VSS} = 0,99$; $\gamma_{VSS}=0,01$; $\alpha = \alpha_{VSS}$, $\gamma = N\gamma_{VSS}/2$; $[\beta_{MIN}, \beta_{MAX}] = [0,1]$. Inicialização dos coeficientes adaptativos na origem. $\beta_{VSS}(0) = \beta(0) = 0,1$; 1000 realizações. Na iteração 3000 a amplitude do ruído de medição é multiplicada por 7000.

Exemplo 4: Algoritmo NLMS, sinal de excitação Gaussiano branco e planta variante no tempo – Mesmas condições do exemplo 3 (assumindo estacionaridade dos sinais) porém $r_z=10^{-2}$ e na iteração 20000 a planta sofre uma reversão de polaridade ($w^o=-w^o$).

Exemplo 5: Algoritmo NLMS, sinal de excitação Gaussiano correlacionado e baixa SNR – Mesmas condições do exemplo 4 (sem variação da planta) porém com sinal de excitação Gaussiano correlacionado de potência unitária e dispersão de autovalores igual a 21.

Nas Figs. 2 até 5 são apresentados os resultados dos exemplos 1 e 2. Observando-se as curvas do erro médio quadrático (Figs. 2 e 4) verifica-se que durante o período

transitório o algoritmo VSS possui uma maior velocidade de convergência, esse fato pode ser explicado pela existência do termo gerador extra na Eq. (19) que, para a equivalência de parâmetros adotada, produzirá passos mais elevados para o VSS (proporcionalmente ao valor de r_z). Entretanto, verificase a superioridade do novo algoritmo em regime permanente, em decorrência do menor passo de convergência. No exemplo 2 obtém-se um desajuste de 30% para o VSS e 1,5% para o RVSS [16]. Através das Figs. 3 e 5 observa-se que quanto menor a SNR maior será a diferença entre os comportamentos dos dois algoritmos em regime permanente.

As Figs. 6 e 7 ilustram a robustez do novo algoritmo frente a variações da potência do ruído de medição e seu impacto sobre o erro médio quadrático. As Figs. 8 a 10 indicam a manutenção da capacidade de rastreamento do algoritmo VSS original. A Fig. 9 apresenta o erro médio quadrático em excesso $(E\{[e(n)-z(n)]^2\})$ de forma a permitir uma comparação sem a influência do ruído aditivo. As Figs. 11 e 12 permitem verificar que as características demonstradas para sinais brancos são mantidas no caso de sinal de excitação correlacionado.

VIII. CONCLUSÕES

Este trabalho apresenta uma nova proposta de algoritmo de passo variável baseada no algoritmo de Kwong e Johnston (VSS). A modelagem analítica do comportamento médio do passo indica uma diminuição da sensibilidade do novo algoritmo à potência do ruído de medição quando comparado à do algoritmo VSS, ao custo de um pequeno acréscimo da complexidade computacional. Simulações Monte Carlo comprovam a validade dos resultados teóricos mostrando que o novo algoritmo mantém as características de rastreamento e desempenho do algoritmo VSS original para sinais de excitação correlacionados.

AGRADECIMENTOS

Este trabalho foi parcialmente financiado pelo Funpesquisa-UFSC e pelo CNPq.

REFERÊNCIAS

- [1] S. Haykin, Adaptive Filter Theory, 4° edição, 2002.
- [2] C. Breining *et al.* "Acoustic Echo Control. An Application of Very-High-Order Adaptive Filters," *IEEE Signal Processing Magazine*, v.16, n.4, p.42-69, Julho 1999.
- [3] B. Widrow e S.D. Stearns, *Adaptive Signal Processing*, Prentice-Hall, 1985.
- [4] D.G. Manolakis, V.K. Ingle, S.M. Kogon, Statistical and Adaptive Signal Processing: Spectral Estimation, Signal Modeling, Adaptive Filtering and Array Processing, 2000.
- [5] M.H. Costa, J.C.M. Bermudez, "An Improved Model for the Normalized LMS Algorithm with Gaussian Inputs and Large Number of Coefficients," *Int. Conf. on Acoustics, Speech and Signal Processing*, v.2, p.1385-1388, 2002.
- [6] R.H. Kwong, E.W. Johnston, "A Variable Step Size LMS Algorithm," *IEEE Trans. on Signal Processing*, v.40, n.7, p.1633-1642, Julho 1992.
- [7] T. Abounasr, K. Mayas, "A Robust Variable Step Size LMS-Type Algorithm: Analysis and Simulation," *IEEE Trans. on Signal Processing*, v.45, n.3, p.631-639, Março 1997.

- [8] R.W. Harris et al., "A Variable Step (VS) Adaptive Filter Algorithm," *IEEE Trans. on Acoustics Speech and Signal Processing*, v. ASSP-34, n.2, p.309-316, Abril 1986.
- [9] T.J. Shan, T. Kailath, "Adaptive Algorithms with Automatic Gain Control Feature," *IEEE Trans. on Circuits and Systems*, v.35, n.1, p.122-127, Janeiro 1988.
- [10] D.M. Montezano, J.C.M. Bermudez, "Um Algoritmo de Passo Variável Baseado no Princípio da Ortogonalidade," XX Simp. Bras. de Telecomunicações, p.1-6, Outubro 2003.
- [11] C.G. Lopes, J.C.M. Bermudez, "Evaluation and Design of Variable Step Size Adaptive Algorithms," *Int. Conf. on Acoustics, Speech and Signal Processing*, v.6, p.3845-3848, Maio 2001.
- [12] S. Koike, "A Novel Adaptive Step Size Control Algorithm for Adaptive Filters," *Int. Conf. on Acoustics, Speech and Signal Processing*, v.4, p.1-4, 1999.
- [13] J. Okello *et al.* "A new Modified Variable Step Size for the LMS Algorithm," *Int. Symp. On Circuits and Systems*, v.5, p.170-173, Maio-Junho 1998.
- [14] J.E. Mazo, "On the Independence Theory of Equalizer Convergence," *Bell Syst. Tech. Journal*, v.58, p.963-993, 1979.
- [15] G. Barrault, et al. "A New Analytical Model for the NLMS Algorithm," Int. Conf. on Acoustics, Speech and Signal Processing, p.1-4, 2005.
- [16] D.T.M. Slock, "On the Convergence Behavior of the LMS and the Normalized LMS Algorithms," *IEEE Trans. on Signal Processing*, v.41, n.9, p.2811-2825, 1993.

Fig. 2. Simulação do erro médio quadrático, Exemplo 1. (a) VSS; (b) RVSS.

Fig. 3. Simulação do comportamento médio do passo de adaptação, Exemplo 1. (a) VSS; (b) RVSS.

Fig. 4. Simulação do erro médio quadrático, Exemplo 2. (a) VSS; (b) RVSS.

Fig. 5. Simulação do comportamento médio do passo de adaptação, Exemplo 2. (a) VSS; (b) RVSS.

Fig. 6. Simulação do erro médio quadrático, Exemplo 3. (a) VSS; (b) RVSS.

Fig. 7. Simulação do comportamento médio do passo de adaptação, Exemplo 3. (a) VSS; (b) RVSS.

Fig. 8. Simulação do erro médio quadrático, Exemplo 4. (a) VSS; (b) RVSS.

Fig. 9. Simulação do erro médio quadrático em excesso, Exemplo 4. (a) VSS; (b) RVSS.

Fig. 10. Simulação do comportamento médio do passo de adaptação, Exemplo 4. (a) VSS; (b) RVSS.

Fig. 11. Simulação do erro médio quadrático, Exemplo 5. (a) VSS; (b) RVSS.

Fig. 12. Simulação do comportamento médio do passo de adaptação, Exemplo 5. (a) VSS; (b) RVSS.