
Frequency-Domain Blind Source Separation
employing a Non-Uniform DFT

Diego B. Haddad
CEFET-RJ/COPPE-UFRJ

Telecommunications Coord. / PADS
Email: diego@pads.ufrj.br

Mariane R. Petraglia
COPPE/UFRJ

Electrical Engineering Dept.
Email: mariane@pads.ufrj.br

Paulo Bulkool Batalheiro
UERJ

Dept. of Electronic and
Telecommunications Engineering

Email: bulkool@pads.ufrj.br

Abstract—Blind source separation (BSS) techniques have been
extensively investigated in the last years, due to their large num-
ber of applications. There are two main approaches employed
for such techniques: in the time-domain and in the frequency-
domain. In this paper, we propose the use of a non-uniform
DFT transform as a strategy for improving the behavior of two
frequency-domain BSS algorithms.

I. INTRODUCTION

Extensively investigated in the last years, blind source
separation techniques in the convolutive context (referred to
here as CBSS, for Convolutive Blind Source Separation) have
as goal to recover the original source signals from reverber-
ant mixtures, with no other information about the sources
(originating the adjective blind). Music transcription, temporal
series analysis, remote sensing, audio edition and speech
recognition are potential applications for such techniques.

Most of the recent CBSS techniques consider convolutive
configurations where the mixture system is composed of FIR
(finite impulse response) filters with thousand of coefficients.
It is possible to divide most of these techniques in two classes:
frequency-domain techniques ([1], [2], [3], [4]) and time-
domain techniques ([4], [5]). These last algorithms employ
non-trivial generalizations of the cost functions used in ICA
(independent component analysis [6]), tend to present source
estimates with less artifacts, and imply, in general, in a high
computational cost.

When implemented in the frequency-domain, almost all
methods employ data windowing followed by a DFT (cor-
responding to a short time Fourier transform, STFT). How-
ever, it is known that the energy of most input signals is
concentrated at the low frequency components and that the
mixture filters have non-flat frequency responses (usually they
present lowpass characteristics). Therefore, the use of uniform
transforms might not be the best strategy. Usually, the use of
a small number of high-frequency components of the sources
turns it difficult their separation at such frequencies. On the
other hand, since the mixing filters normally present larger
reverberation time at low-frequencies [7], it is desirable that
the separation system assigns more resources at the low part
of the spectrum.

In this paper, we propose the use of non-uniform transforms
for improving the performances of two recently developed
frequency-domain BSS algorithms. Without loss of generality,

we suppose that there are two sources and two mixtures
(determined case).

II. NON-UNIFORM DFT (NDFT)

In [8], non-uniform extensions of the standard DFT were
proposed. Considering FK the K ×K Van der Monde NDFT
matrix given by

FK =
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1 z−1
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0

1 z−1
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1
...

. . .
...
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K−1

 , (1)

different types of non-uniform DFTs can be obtained by
choosing the locations of zk (in particular, the uniform DFT
can be obtained by setting zk = ej2πk/K).

Inspired by the Warped DFT (WDFT) proposed in [9], we
set:

zk = ejatan[ 1−α
1+α tan( 2πk

K )], (2)

where α is a factor that controls the non-uniform characteristic
of the NDFT transform (α = 0 implies the standard DFT).

III. BSS-EHOD METHOD

Frequency-domain BSS (FD-BSS) techniques are com-
monly used due to their less demanding computational cost
requirements. These techniques can obtain excellent results
when the number of bins K is greater than the length M of
the mixing filters ([10] considers as necessary the condition
K >> M for a good separation).

Most of the FD-BSS algorithms exploit the property that
convolutions in the time domain convert to products in the
frequency domain. Supposing that each mixture bin is an
instantaneous mixture of the corresponding sources bins, in-
stantaneous BSS techniques can then be employed in each bin.
This simple but powerful idea presents three inconveniences: i)
if the STFT is employed, the product in the frequency domain
corresponds, in the time domain, to a circular convolution
and not to the desired linear convolution; ii) the permutation
problem, inherent to instantaneous BSS techniques, becomes
non-trivial when we need to distinguish, in a consistent way
along the bins, the estimates that belong to each source and
iii) the scaling ambiguity, also inherent to BSS techniques, can
generate an intolerable source filtering, randomly emphasizing



(or attenuating) some bins.
For easing (ii), several approaches were proposed such as

constraining the maximum lengths of the separation filters
in the time-domain ([10]), using the envelope correlation
([11], [12]) or estimates of the directions of arrival ([13], [1]),
or even employing a hybrid approach ([2]). We chose the
EHOD (Exploration of High-Order Dependencies), proposed
in [3], which employs the multidimensional score function
that, as it preserves the statistics dependencies of higher
orders1 among the bins during the iterations, ensures coherent
estimates at the end of the optimization process.

The problem (i) requires a large K, such as to obtain
a good approximation for the linear convolution from the
circular convolution. We verify the possibility of improving
the algorithm performance when K is reduced.

If si(n) is the n-th sample of the i-th mixture and hj,k is
the filter impulse response corresponding to the multiple paths
from the k-th source to the j-th sensor, we have that xp(n)
(corresponding to the n-th sample of the p-th mixture) can be
written as:

xp(n) =

2∑
m=1

M−1∑
k=0

hp,m(k)sm(n− k), (3)

where M , as defined before, is the length of the mixture filters.
The EHOD method initially applies a STFT to the mixtures

(usually employing a Hanning window of length K and sliding
of K/4 samples among frames), supposing instantaneous
mixtures (M = 1) in each frequency bin. This allows the
application of a 2×2 separation matrix to the mixture samples
in each bin in order to estimate the bins values of each
source, considering the TITO (two-input two-output) case.
With W(k) the 2 × 2 separation matrix (constant along the
frames, supposing that the mixture system is stationary) of
the k-th bin, it is possible, from an initial guess2, to recur
to an iterative procedure for estimating such matrix. Denoting
x
(k)
i (m) the k-th bin of the i-th mixture in the m-th frame,

we can find the estimates y(k)j (m) from:[
y
(k)
1 (m)

y
(k)
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]
= W(k)

[
x
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1 (m)

x
(k)
2 (m)

]
(4)

At each iteration, we apply the following recursion:

W(k)
new = W(k)

old + µ∆W(k), (5)

where µ is the learning factor (typically smaller or equal
to 0.1). The elements of ∆W(k) can be calculated from the
expression:

∆w
(k)
ij =

2∑
l=1

{
δ(i− l)− E

[
χ(k)

]}
w

(k)
lj , (6)

where E [·] is the statistic mean operator (which is applied
along the frames), with χ(k) and φ(k) (a multidimensional

1And not only the correlation, which is not enough to preserve the
consistency among the frequency bins of the estimates.

2Usually a whitening matrix is employed.
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At the end of all iterations, the minimum distortion principle
[14] is applied by means of the following modification in all
matrices:

W(k) ← diag
[(

W(k)
)−1

]
W(k), (9)

where the operator diag(·) zeroes the elements which are not in
the main diagonal. Supposing that the separation is reasonable
and (without loss of generality) that there is no permutation,
we can approximate the matrix W(k) as:

W(k) ≈∆(k)
[
H(k)

]−1

, (10)

where ∆(k) is a diagonal matrix which corresponds to scaling
and H(k) is the mixture matrix, that supposes instantaneous
mixtures in each bin. Therefore, we have:

diag
[
W(k)

]−1
W(k) ≈ diag

[
H(k)

] (
H(k)

)−1
, (11)

from which we observe that the minimum distortion principle
results in a reasonable scaling (although not ideal) instead of
arbitrary.

IV. GABSOS METHOD

Using separation filters of length K, the GABSOS (Gen-
eralization of Blind Source Separation Algorithms Based on
Second-Order Statistics) [4] obtains such filters (wi,j) so that
the sources estimates are given by:

yp(n) =

2∑
q=1

K−1∑
k=0

wp,q(k)xq(n− k). (12)

A short description of this algorithm is presented as follows.
Let

Xp(m) = diag
{

F4K[xp(mK − 3K) ... xp(mK +K − 1)]T
}
,

(13)
where (·)T is the transpose operator. To work in the frequency
domain, it is convenient to define the following input matrix:

X(m) = [X1(m)X2(m)]. (14)

and the coefficient matrix:

Wpq(m) = diag
{

F4K [wpq,0, . . . , wpq,K−1, 0, . . . , 0]
T
}

(15)

We should emphasize that, after each iteration of the algorithm
(based on the natural gradient), we should convert the coefficients to
the time-domain so as to zero the last coefficients, in order to limit
the order of the filter and guarantee the implementation of a linear
convolution. We also define:

W =

[
W11 W12
W21 W22

]
, (16)

Sxx = XHF4K

[
03K×3K 03K×3KF−1

4KX,
]
, (17)



G4K = F4K
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]
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4K , (18)

G8K =

[
G4K 04K×4K

04K×4K G4K

]
, (19)

Syy = WHG8KSxxG8KW, (20)

L =

F4K
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]
04K×D

04K×D F4K

[
ID×D
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]
 , (21)

LI =

[
14L×1 04K×1

04L×1 14K×1

]
(22)

where D is an arbitrary parameter (which should satisfy the condition
1 ≤ D ≤ K), (·)H is the hermitian operator and 0i×j , Ii×j , 1i×j

are, respectively, the null matrix, the identity matrix and the matrix
with all elements equal to 1, all of dimension i × j. The natural
gradient of the adopted cost function is given by:

∇NG
W = =

b∑
i=1

2

b
G8KWLLH {Syy − bdiag(Syy}L

.
{

bdiag(LHSyyL)
}−1

LH , (23)

where the bdiag {·} operator on a partitioned block matrix consisting
of several submatrices sets all submatrices on the off-diagonals to
zero.

The matrix W has redundancies, which are removed after each
iteration through the transformation W′ = WKI, with the matrix W′
having two columns, each one with 2K rows. The natural gradient
of W′ is:

∇W′NG = G′8K∇NG
W =LI, (24)

with:

G′4K = F4K

[
IK×K 0K×3K

03K×K 03K×3K

]
F−1
4K , (25)

and

G′8K =

[
G′4K 04K×4K

04K×4K G′4K

]
. (26)

V. PERFORMANCE MEASURES

In [15], three performance measures for source separation (in
noise-free case): SIR (signal-interference ratio, the most important
of the three), SAR (signal-artifact ratio) e SDR (signal-distortion
ratio) were presented. These measures are vastly employed in the
recent literature, and, consequently, used in this work. It should be
emphasized that the ISI (intersymbol interference) is not a useful
measure in the source separation for convolutive mixtures (only
in the source separation for instantaneous mixtures or in blind
deconvolution), since it is important to preserve the temporal structure
of the sources (filtered versions of the sources are allowed).

Decomposing the i-th estimate yi of the sources in three compo-
nents (for more details about this decomposition, see [15]):

yi = sdesired + einterf + eartif, (27)

SIR, SAR and SDR are defined as 3:

SIR = 10log10

||sdesired||2

||einterf||2
, (28)

3We made a simplification when we assumed that the sensors do not
introduce noise in the mixtures.

TABLE I
SIR, SAR AND SDR MEASUREMENTS (IN DB) FOR DIFFERENT VALUES

OF α.

α SIR SAR SDR
0 9.3297 19.9848 8.7531

0.0025 9.3432 20.0037 8.7673
0.005 9.4946 20.2316 8.9398

0.0075 9.7855 20.58 9.256
0.01 10.2763 21.1436 9.7834

0.0125 10.7723 21.7602 10.3183
0.015 11.0727 22.138 10.6423

0.0175 11.2103 22.2531 10.7851
0.02 11.2832 22.4297 10.8737

0.0225 11.2652 22.6684 10.8875
0.025 11.1309 22.7502 10.7765

TABLE II
SIR MEASUREMENTS (IN DB) FOR DIFFERENT VALUES OF α AND µ.

α µ = 10−6 µ = 10−5 µ = 10−4

0 2.0743 9.3785 1.4799
0.001 7.942 7.7514 6.7462
0.01 5.2732 9.6256 3.5903
0.05 2.3612 8.3299 9.0171
0.1 1.6491 8.9129 8.9041

SAR = 10log10

||sdesired + einterf||2

||eartif||2
, (29)

SDR = 10log10

||sdesired||2

||einterf + eartif||2
. (30)

VI. SIMULATION RESULTS

In both experiments presented in this section, two speech signals
were employed: a male and a female. The length of the mixing filters
was M = 8.

A. Experiment 1
In this experiment, the number of bins was K = 8. The EHOD

algorithm was implemented in its off-line form, with 2500 iterations
and µ = 0.1. The results obtained in this experiment are presented
in Table 1. This table shows the improvement in the SIR, SAR and
SDR is approximately 2 dB for α = 0.02.

B. Experiment 2
The GABSOS method in the frequency-domain does not introduce

artifacts and distortions in the estimates, as opposed to the EHOD
method. Therefore, the SAR and SDR measurements are very high
and carry little information. For this reason, we present only the SIR
values for this experiment. The GABSOS algorithm was implemented
in its on-line version and the value of the step-size µ influences the
final result. Table 2 contains the final SIR obtained for different values
of α and µ (the initial SIR was 1.67 dB).

In the average, non-zero values of α generate a larger SIR than
when using the conventional DFT. It can also be observed that a
smaller variation in the results (with respect to the values of µ) is
obtained when the NDFT is employed, which might be another reason
for using non-uniform transforms. Figure 1 shows the increase of SIR
in the same configuration (but using another µ).

VII. CONCLUSIONS

In this paper, a non-uniform DFT (NDFT) was used as an
alternative to the employment of uniform transforms for the purpose
of source separation, both in the on-line form and off-line form. We
verified that a 2 dB improvement is obtained in the SIR, SAR and
SDR with the WDFT when compared to the DFT results. In the
on-line configurations, the use of the WDFT yielded more stable



Fig. 1. SIR (dB) evolution of GABSOS method with µ = 2.10−6.

performances of the algorithms. The optimal use of the WDFT
requires the selection of the parameter α, which controls the non-
uniformity of the NDFT. Such problem will be explored in our future
research.
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