Construção de Constelações de Sinais Hiperbólicas a partir das Tesselações Regulares do Tipo $\{12g-6,3\}$

Mercio Botelho Faria, Mário José de Souza, Reginaldo Palazzo Jr. e Marcelo Firer

Resumo— Neste trabalho apresentamos uma construção de constelações de sinais hiperbólicas a partir de tesselações regulares do tipo $\{12g-6,3\}$ bem como a contagem do número de vértices de uma constelação $\{p,q\}$, com p = 12g-6 e q = 3.

Palavras-Chave— Constelações hiperbólicas, superfície de Riemann, tesselações regulares, gênero da superfície.

Abstract—In this paper we present a procedure for the construction of hyperbolic signal constellations from regular tessellations of the type $\{12g-6,3\}$ as well as a procedure of counting the number of vertices of the aforementioned constellation.

Keywords—Hyperbolic constellations, Riemann surfaces, regular tessellations, genus of a surface.

I. INTRODUÇÃO

Um dos principais objetivos em projetos de sistemas de comunicações digitais é a busca por constelações de sinais que apresentem o melhor desempenho em termos da probabilidade de erro, como critério de otimalidade a ser utilizado, quando comparadas com qualquer outra constelação de sinais em espaços de curvatura constante negativa. Existem vários trabalhos que versam sobre a construção de constelações hiperbólicas como [12], [4], [5], [1] e [6]. Em [12], Lazari propõe a construção de constelações de sinais geometricamente uniformes [10] no plano hiperbólico através do processo de construção de cadeias de partições geometricamente uniformes a partir do grupo de isometrias do octógono, domínio fundamental da tesselação $\{8,8\}$ e do grupo de isometrias do págono da tesselação $\{p,3\}$. Em um trabalho pioneiro no contexto da teoria de comunicações e projeto de sistema de comunicações, Brandani [4] expõe um importante subconjunto das tesselações, as auto-duais, que são as tesselações $\{p,q\}$ tais que p = q. Estas tesselações geram os g-toros a partir de simples orientações. Embora neste trabalho não seja explorado os aspectos de teoria de superfícies e suas possíveis relações com sistemas de comunicações, [4] já aponta nesta direção. Uma modelagem de superfícies compactas de gênero $g \ge 2$, no plano hiperbólico pode ser vista em [5]. Estas superfícies são obtidas a

partir de polígonos regulares de 4g arestas, onde g é o gênero da superfície. Tesselações auto-duais $\{4g, 4g\}$ no plano hiperbólico são consideradas, de modo que uma relação entre os aspectos de teoria de superfícies com sistemas de comunicações é estabelecida. Agustini em [1] apresenta um estudo analítico das superfícies de gênero $g \geq 2$ localmente isométricas a \mathbb{H}^2 obtidas por quocientes de gupos fuchsianos [11]. Também demonstra que para um g-toro, $g \ge 2$, dado pelo quociente $\frac{\mathbb{H}^2}{G}$, em que G é uma região fundamental poligonal regular, e com a condição de que G tenha um número par de geradores, o grupo triângulo T_{Δ} gerado pelas reflexões sobre o triângulo hiperbólico Δ de ângulos internos $\frac{\pi}{4}$, $\frac{\pi}{4}$ e $\frac{\pi}{2g}$ gera uma constelação \mathcal{C} de sinais geometricamente uniformes sobre o g-toro com cardinalidade 8g. Em [6] Cavalcante analisa o desempenho de constelações de sinais geometricamente uniformes provenientes de tesselações em espaços bidimensionais com curvatura seccional constante, K. Verifica que as constelações de sinais em espaços com K < 0 apresentam os melhores desempenhos em termos da probabilidade de erro quando comparadas com as constelações de sinais em espaços com $K \ge 0$. Bavard em [2] mostra que as tesselações do tipo $\{12g-6,3\}$ apresentam densidade de empacotamento ótima, isto é, estas tesselações tendem a ser mais densas que as constelações apresentadas anteriormente. Com relação às constelações auto-duais apresentadas em [12], [5] e [1] e aquela gerada pelo grupo triângulo gerado pelas reflexões sobre o triângulo hiperbólico Δ de ângulos internos $\frac{\pi}{4}$, $\frac{\pi}{4}$ e $\frac{\pi}{2g}$, cuja cardinalidade é 8g, observamos que nossas constelações apresentam cardinalidade maior, qualquer que seja o gênero g.

Observamos que as constelações obtidas a partir das tesselações $\{12g-6,3\}$ tendem a ser mais densas que as constelações apresentadas nos trabalhos supracitados.

Este trabalho está organizado da seguinte maneira: na seção II propomos a construção de constelações de sinais a partir de tesselações do tipo $\{12g-6,3\}$. Para isso, inicialmente, apresentamos um emparelhamento de arestas de um polígono P_g com 12g-6 arestas e ângulos internos iguais a $\frac{2\pi}{3}$, representando uma superfície de Riemann compacta orientável de gênero g. Este polígono fornece uma tesselação do tipo $\{12g-6,3\}$. Considerando os baricentros desses polígonos temos uma constelação de sinais geometricamente uniforme. Na seção III, descrevemos uma maneira de contar o número de polígonos de uma constelação de suma constelação de seconda d

Departamento de Telemática, FEEC-UNICAMP. e-mails: mercio, mario, palazzo@dt.fee.unicamp.br. Este trabalho foi financiado pela FAPESP, CNPq e CAPES

Departamento de Matemática, IMECC-UNICAMP,. email: mfirer@ime.unicamp.br

lação regular, fato relevante no que diz respeito ao projeto de constelações de sinais.

Tendo em vista que os baricentros dos polígonos das tesselações $\{12g-6,3\}$ fornecem constelações de sinais geometricamente uniformes apresentando, dessa forma, a maior densidade de empacotamento, implicando na menor probabilidade de erro quando comparada com qualquer outra constelação de sinais em espaços de curvatura constante negativa. Observamos ainda que poder-se-ia ter curvatura constante igual a zero e neste caso, a tesselação é a $\{6,3\}$ que fornece a constelação mais densa no plano euclidiano. Encerramos nossa introdução concluindo que as tesselações $\{12g-6,3\}$ são as candidatas diretas para o projeto de sinais para a codificação de fonte ou de canal.

II. Emparelhamento das Arestas de um Polígono

O objetivo principal desta seção é apresentar um emparelhamento das arestas de um polígono P_g com 12g-6 arestas e ângulos iguais a $\frac{2\pi}{3}$, representando uma superfície de Riemann compacta orientável de gênero g. As identificações das arestas serão efetuadas por isometrias hiperbólicas que aplicam arestas congruentes uma na outra com a orientação devida. Tais aplicações serão denominadas transformações de emparelhamento de arestas.

O polígono P_g apresenta as seguintes propriedades:

- a) Nenhuma transformação de G (grupo de simetrias) pode deixar fixo uma aresta do polígono, a não ser a identidade;
- b) As arestas de P_g se correspondem dois a dois, e a translação que leva uma aresta no seu correspondente é única;
- c) Duas arestas correspondentes têm o mesmo comprimento e são percorridos em sentido contrário, no perímetro de P_g ;
- d) Cada aresta tem uma única correspondente;
- e) Duas arestas correspondentes não podem ser consecutivas, caso contrário a isometria seria elíptica ou parabólica;
- g) O grupo G é gerado pelas transformações que levam cada aresta de P_g na sua correspondente.

Das propriedades anteriores, deduz-se a construção da superfície de Riemann no caso hiperbólico, e expressa pelo seguinte resultado.

Teorema II.1. [13] Para obter uma superfície de Riemann na forma normal, no caso hiperbólico, é suficiente identificar as arestas correspondentes do polígono P_g do grupo de recobrimento dessa superfície.

Definição II.2. Chamamos de ciclo de vértices de P_g , a um conjunto maximal de vértices desse polígono, equivalentes entre si por G. Como esses pontos corresponderão a um mesmo ponto da superfície de Riemann R e como a representação de $\frac{\mathbb{D}^2}{G}$ é conforme, a soma dos ângulos nos vértices de um mesmo ciclo é sempre 2π .

Observação II.3. Cada ciclo possui um número finito de vértices, pois a transformação que leva um vértice A em

outro A', do mesmo ciclo, leva P_g em um dos polígonos que incidem em A', e esses polígonos são em número finito.

De posse dos resultados e observações acima mencionados descreveremos um emparelhamento de arestas para o polígono P_3 , isto é, um polígono hiperbólico regular com 30 arestas, como mostrado na figura 1.

Fig. 1. Polígono para $g = 3, P_3$.

Denotaremos as arestas do polígono P_g por $\{\tau_1, \tau_2, \ldots, \tau_{12g-6}\}$ e por γ_k a função de emparelhamento que envia τ_k em τ_j , isto é, $\gamma_k(\tau_k) = \tau_j$. Assim,

Proposição II.4. Seja P_g $(g \ge 2)$ um polígono com 12g - 6 arestas e ângulos iguais a $\frac{2\pi}{3}$. Se os pares apresentados a seguir têm o mesmo comprimento hiperbólico, $\{\tau_i, \tau_{i+6g-3}\}, \{\tau_{i+1}, \tau_{i+6g-2}\}, i \in I_g = \{1, k_0, k_1, \dots, k_{g-2}\}, k_m = (m+1)5 \ \forall g \ge 2, \{\tau_{3+5k}, \tau_{12g-6-k}, \tau_{4+5k}, \tau_{7+5k}\}, \{\tau_{5g-2}, \tau_{11g-5}\}, k = 0, 1, \dots, g-2, \{\tau_{6g+5k}, \tau_{6g-3-k}, \tau_{6g+1+5k}, \tau_{6g+4+5k}\}, k = 0, 1, \dots, g-2.$ Então as funções

$$\Phi = \left\{ \{\gamma_i, \gamma_{i+1}\}_{i \in I_g}, \{\gamma_{3+5k}, \gamma_{4+5k}, \gamma_{5g-2}, \gamma_{6g+5k}, \gamma_{6g+1+5k}\}_{k=0}^{g-2} \right\},\$$

fornecem um emparelhamento para P_g tal que $\frac{\mathbb{D}^2}{\Gamma_g}$ é homeomorfo a uma superfície de Riemann compacta orientável de gênero g, onde Γ_g é o grupo gerado pelas 6g - 3 funções de Φ e \mathbb{D}^2 é o disco hiperbólico.

Demonstração: Notando que as arestas emparelhadas têm o mesmo comprimento e percorrendo o emparelhamento Φ , assumindo que os ângulos do polígono são $\frac{2\pi}{3}$, temos que a soma dos ângulos formados pelos ciclos de vértices identificados é 2π . Pelo Teorema de Poincaré [8] temos que o grupo Γ_g é discreto e que $\frac{\mathbb{D}^2}{\Gamma_g}$ é homeomorfa a uma superfície de Riemann compacta orientável de gênero g.

O emparelhamento Φ apresentado foi escolhido a partir de um polígono com ângulos $\frac{2\pi}{3}$ tendo o maior número possível de funções emparelhadas diametralmente opostas, a saber 2g + 1 funções. Supondo que o polígono tenha todas as arestas do mesmo tamanho, isto é, seja regular, teremos que o exterior dos círculos isométricos, fornecidos pelas 6g - 3 funções de emparelhamento, é um domínio fundamental que denotaremos por P_g .

Desta forma, admitindo que P_g seja um polígono regular em \mathbb{D}^2 temos que sua construção é possível a partir das funções de emparelhamento Φ . Assim, o próximo passo será apresentar as matrizes das funções γ_i para $j \in J \in J$ o conjunto de índices de Φ .

Para expressarmos as matrizes das funções de emparelhamento é suficiente conhecer uma das funções, digamos γ_1 , pois todas as outras se tornam conhecidas a partir desta utilizando-se transformações elípticas. Admitindo ser conhecida a matriz de γ_1 temos:

Proposição II.5. Dada a matriz γ_1 , as demais são obtidas da seguinte forma

•
$$\{\gamma_1, \gamma_2\} \leftrightarrow \{\gamma_1, \rho_1\gamma_1\rho_1^{-1}\}$$

• {
$$\gamma_i, \gamma_{i+1}$$
} \leftrightarrow { $\rho_{i-1}\gamma_1\rho_{i-1}^{-1}, \rho_i\gamma_1\rho_i^{-1}$ },
 $i \in \{5, k, k, n\}$ $e = k_n - (m+1)5$

 $i \in \{5, k_1, \dots, k_{g-2}\} e k_m = (m+1)5,$ • $\{\gamma_{3+5k}, \gamma_{4+5k}\} \leftrightarrow \{\rho_{6g-4-k}\gamma_1\rho_{2+5k}^{-1}, \rho_{3+5k}\gamma_1\rho_{6g-5-5k}^{-1}\}, k \in \{0, 1, \dots, g-2\},$

•
$$\gamma_{5g-2} \leftrightarrow \rho_{5g-3} \gamma_1 \rho_{5g-3}^{-1}$$

• $\{\gamma_{6g+5k}, \gamma_{6g+1+5k}\} \leftrightarrow \{\rho_{6g-4-k}\gamma_1^{-1}\rho_{2+5k}^{-1}, \rho_{6g+3+5k}\gamma_1^{-1}\rho_{3+5k}^{-1}\}, k \in \{0, 1, \dots, g-2\}$ onde $\rho_k = e^{ik\frac{2\pi}{12g-6}}$.

Demonstração: Seja P_g o polígono regular com 12g-6arestas. Para determinar as isometrias que emparelham suas arestas, considere P_g centrado na origem, o que implica que suas arestas serão arcos de círculos isométricos. Assim, se um par de tais arestas (τ'_k, τ_k) é emparelhado por uma isometria γ_k , ou seja, $\gamma_k(\tau'_k) = \tau_k$, então τ'_k está contida no círculo isométrico $I(\gamma_k) \in \tau_k \text{ em } I(\gamma_k^{-1})$. Assim, P_g tem área $2\pi(2g-2)$, e é formado por 12g-6 triângulos isósceles equivalentes, cada um com área $\frac{\pi(2g-2)}{6g-3}$. Como o ângulo de cada um destes triângulos no vértice (0,0) é $\frac{\pi}{6g-3} = \frac{2\pi}{12g-6}$, segue pelo Teorema de Gauss-Bonnet, [3], que os outros dois ângulos são iguais a $\frac{\pi(2g-1)}{6g-3}$. Sejam $\tau_i, \tau_{i+6g-3}, \text{ com } i \in I_g = \{1, k_0, \dots, k_{g-2}\}, k_m = (m+1)5 \ \forall g \ge 1$ 2; e τ_{3+5k} , $\tau_{12g-6-k}$, τ_{4+5k} , τ_{7+5k} , τ_{5g-2} , τ_{11g-5} , τ_{6g+5k} , $\tau_{6g-3-k}, \ \tau_{6g+1+5k}, \ \tau_{6g+4+5k}, \ \text{com} \ k \in \{0, 1, \dots, g-2\}, \ \text{as}$ arestas de P_g emparelhadas pelas transformações $\gamma_i,\,\gamma_{i+1},\,$ $\operatorname{com} i \in I_g \ \mathrm{e} \ \gamma_{3+5k}, \ \gamma_{4+5k}, \ \gamma_{6g+5k}, \ \gamma_{5g-2}, \ \gamma_{6g+1+5k}, \ k \in I_g$ $\{0, 1, \ldots, g-2\}.$

Suponha que o ponto inicial e o ponto final da aresta τ_1 encontram-se nas semiretas definidas respectivamente pelas equações

$$\arg(z) = \frac{-\pi}{2}$$
, $\arg(z) = \frac{-\pi(6g-5)}{12g-6}$. (1.1)

Seja

$$\rho_k = \begin{pmatrix} e^{\frac{jk\pi}{6g-3}} & 0\\ 0 & e^{\frac{jk\pi}{6g-3}} \end{pmatrix}, \ k=1,\ldots,g-2.$$

Com alguns cálculos simples obtemos:

$$\begin{aligned} \gamma_2 &= \rho_1 \gamma_1 \rho_1^{-1}; \\ \gamma_i &= \rho_{i-1} \gamma_1 \rho_{i-1}^{-1}, \\ \gamma_{i+1} &= \rho_i \gamma_1 \rho_i^{-1}, \ i \in I_g = \{1, k_0, \dots, k_{g-2}\}, \ k_m = (m+1)5; \\ \gamma_{3+5k} &= \rho_{6g-4-k} \gamma_1 \rho_{2+5k}^{-1}, \\ \gamma_{4+5k} &= \rho_{3+5k} \gamma_1 \rho_{6g-5-5k}^{-1}, \\ \gamma_{5g-2} &= \rho_{5g-3} \gamma_1 \rho_{5g-3}^{-1}, \\ \gamma_{6g+5k} &= \rho_{6g-4-k} \gamma_1^{-1} \rho_{2+5k}^{-1}, \\ \gamma_{6g+1+5k} &= \rho_{6g+3+5k} \gamma_1^{-1} \rho_{3+5k}^{-1}, \ k \in \{0, 1, \dots, g-2\}, \end{aligned}$$

o que prova a proposição.

Sendo P_g um domínio fundamental do grupo fuchsiano gerador de uma superfície de Riemann compacta orientável de gênero $g, \frac{\mathbb{D}^2}{\Gamma_g}$, apresentamos no próximo resultado os centros e os raios dos círculos isométricos que contêm as arestas de P_g . Os vértices e arestas do polígono serão denotados por $\{v_1, v_2, ..., v_{12g-6}\} \in \{\tau_1, \tau_2, ..., \tau_{12g-6}\}, [1],$ respectivamente.

Proposição II.6. Se P_g é um polígono regular com 12g-6arestas centrado na origem de \mathbb{D}^2 com vértices no eixo real positivo, então as arestas de P_g estão contidas nos círculos isométricos

$$C\left(\sqrt{\frac{1+\sec\frac{\pi}{6g-3}}{2}}e^{i\left(\frac{\pi}{6g-3}\left(\frac{1}{2}+k\right)\right)};\frac{\tan\frac{\pi}{6g-3}}{\sqrt{2\left(1+\sec\frac{\pi}{6g-3}\right)}}\right),$$

onde $k = 0, 1, \dots, 12g - 7$ e C(c; r) representa o círculo euclidiano de centro c e raio r.

Demonstração: Suponha que o vértice que está sobre o eixo real seja v_1 e considere o conjunto de círculos isométricos $\{I_1, I_2, ..., I_{12g-6}\}$ com $I_j \supset \tau_j, j \mod (12g-6)$. Sejam d_1 a distância do centro o do disco de Poincaré \mathbb{D}^2 ao centro c_1 do círculo isométrico I_1 , p_1 o ponto de interseção de I_1 com o disco \mathbb{D}^2 e q_1 a interseção da reta tangente ao círculo I_1 no ponto v_1 com a reta determinada pelos pontos $o \in c_1$. Denote por Δ_0 , $\Delta_1 \in \Delta_2$ os triângulos com vértices $\{o, p_1, c_1\}, \{o, v_1, q_1\} \in \{v_1, q_1, c_1\},$ respectivamente. Em Δ_1 os vértices $o \in v_1$ têm ângulos iguais a $\theta = \frac{2\pi}{2(12g-6)}$, pois a semireta iniciada em o passando por c_1 é o bissetor do ângulo oposto à aresta τ_1 em o e o segmento com extremidades $\{o, v_1\}$ é o bissetor do ângulo em v_1 . Desta forma, temos que $\overline{oq_1}$ e $\overline{q_1v_1}$ têm a mesma medida, que denotamos por ρ . Logo, $d_1 = \rho + \delta$, onde δ é a distância de q_1 a c_1 .Note que Δ_0 e Δ_2 são triângulos retângulos donde seguem as equações

$$\delta^2 = r_1^2 + \rho^2 \tag{1.2}$$

$$d_1^2 = (\rho + \delta)^2 = 1 + r_1^2. \tag{1.3}$$

Sendo o ângulo em q_1 de Δ_2 igual a 2 θ , de 1.2 temos

$$r_1^2 = \delta^2 - \rho^2 = \delta^2 - \delta^2 \cos^2 2\theta = \delta^2 \sin^2 2\theta.$$
 (1.4)

De 1.3 segue

$$(\delta + \delta \cos 2\theta)^2 = 1 + r_1^2. \tag{1.5}$$

De 1.4 e 1.5 temos

$$r_1 = rac{ an 2 heta}{\sqrt{2(1+\sec 2 heta)}} \qquad e \qquad d_1 = \sqrt{rac{1+\sec 2 heta}{2}} ~.$$

Portanto, temos que os centros euclidianos dos círculos isométricos que contêm as aresta de P_g são

$$d_k e^{i\left(\frac{2\pi}{12g-6}\left(\frac{1}{2}+k\right)\right)},$$

onde k = 0, 1, ..., 12g - 7 e $d_k = d_1 \forall k$ pois todos os círculos isométricos são congruentes já que o polígono é regular. Os raios são todos de mesma medida e iguais a

$$r = \frac{\tan 2\theta}{\sqrt{2\left(1 + \sec 2\theta\right)}}$$

provando a proposição.

Nosso propósito não é discorrer sobre densidade de empacotamentos, no entanto sentimos que, neste momento, cabe uma pequena observação sobre o assunto.

Observação II.7. De acordo com [2], uma tesselação do tipo $\{12g - 6,3\}$, no caso hiperbólico, está associada a uma densidade de empacotamento máxima. Verifica-se que com esta tesselação, mediante um empacotamento por bolas, um valor bem próximo a $\frac{3}{\pi}$ pode ser atingido escolhendo-se um gênero g apropriado. O valor exato de $\frac{3}{\pi}$ é atingido para um empacotamento por horobolas, [7].

Seja

e

$$\begin{array}{cccc} \gamma_1 & : & \mathbb{D}^2 & \to & \mathbb{D}^2 \\ & z & \longmapsto & \frac{az+b}{\overline{b}z+\overline{a}} \end{array}$$

uma isometria hiperbólica. Os círculos isométricos de γ_1 e γ_1^{-1} são dados por

$$I_{1} = \left\{ z \in \mathbb{D}^{2} \mid \left\| z + \frac{\overline{a}}{\overline{b}} \right\| = \frac{1}{\left\| \overline{b} \right\|} \right\}$$
$$I_{1}^{-1} = \left\{ z \in \mathbb{D}^{2} \mid \left\| z - \frac{a}{\overline{b}} \right\| = \frac{1}{\left\| \overline{b} \right\|} \right\}.$$

Da Proposição II.6 temos que

$$-\frac{\overline{a}}{\overline{b}} = \sqrt{\frac{1 + \sec\frac{\pi}{6g-3}}{2}} e^{i\left(\frac{\pi}{12g-6}\right)}$$
(1.6)

$$\frac{1}{\|\overline{b}\|} = \frac{\tan\frac{\pi}{6g-3}}{\sqrt{2\left(1 + \sec\frac{\pi}{6g-3}\right)}}$$
(1.7)

$$\frac{a}{\overline{b}} = \sqrt{\frac{1 + \sec\frac{\pi}{6g-3}}{2}} e^{i\left(\frac{(12g-5)\pi}{12g-6}\right)}$$
(1.8)

De 1.6 e 1.7 temos

$$a = -e^{i\pi}\overline{a}$$

e de $a\overline{a} - b\overline{b} = 1$ e 1.7 temos

$$a = -\frac{\cos \frac{\pi}{6g-3} + 1}{\sin \frac{\pi}{6g-3}}ie^{i\frac{\pi}{2}}.$$

Por 1.6 temos

$$b = \frac{\sqrt{2\cos\frac{\pi}{6g-3}\left(\cos\frac{\pi}{6g-3} + 1\right)}}{\sin\frac{\pi}{6g-3}}ie^{i\frac{(6g-2)\pi}{12g-6}}$$

Portanto,

Corolário II.8. Seja P_g como na Proposição II.4. A isometria hiperbólica γ_1 que emparelha os pares $\{\tau_1, \tau_{6g-3}\}$ é dada por

$$\frac{-\left(\cos\frac{\pi}{6g-3}+1\right)ie^{i\frac{\pi}{2}}z+\sqrt{2\cos\frac{\pi}{6g-3}\left(\cos\frac{\pi}{6g-3}+1\right)ie^{i\frac{(6g-2)\pi}{12g-6}}}}{-\sqrt{2\cos\frac{\pi}{6g-3}\left(\cos\frac{\pi}{6g-3}+1\right)}ie^{-i\frac{(6g-2)\pi}{12g-6}}z+\left(\cos\frac{\pi}{6g-3}+1\right)ie^{-i\frac{\pi}{2}}}$$

As outras isometrias podem ser obtidas por conjugação como na Proposição II.5.

As constelações de sinais são o objeto de interesse no projeto de sistemas de comunicações digitais. Diferentemente do que ocorre no caso euclidiano, existem infinitas escolhas para novas constelações de sinais no plano hiperbólico.

Apresentamos, a seguir, um método de contagem para o número de pontos de uma constelação obtida a partir de uma tesselação $\{12g-6,3\}$ com $g \ge 1$.

Com o intuito de contar o número de pontos de certas constelações de sinais, tanto euclidianas, quanto hiperbólicas alguns conceitos necessários são apresentados.

III. Cálculo do Número de Vértices de uma Constelação de Sinais

Dada uma tesselação $\{12g-6,3\} = \{p,3\}$, escolheremos um polígono da mesma, que chamaremos de nível zero e denotaremo-o por \mathcal{N}_0 . Os p vértices serão denotados por $v_{0,1}, \ldots, v_{0,p}$.

O nível \mathcal{N}_{1} consiste do conjunto de vértices e arestas dos polígonos que tenham um vértice em comum com o nível \mathcal{N}_{0} excluindo os vértices e arestas que pertençam ao nível zero. Denotando por Λ_{1} o conjunto de todos os polígonos da tesselação $\{p, 3\}$ que tenham um vértice em comum com o nível \mathcal{N}_{0} , temos que $\mathcal{N}_{1} = \Lambda_{1} - \mathcal{N}_{0}$. Sendo Λ_{i} o conjunto de todos os polígonos da tesselação que tenham um vértice em comum com o nível \mathcal{N}_{i-1} , temos que o nível $\mathcal{N}_{i} = \Lambda_{i} - \mathcal{N}_{i-1}$. Denotamos por $v_{i,1}, \ldots, v_{i,k}$ os k vértices do nível \mathcal{N}_{i} .

Definição III.1. Dado o nível \mathcal{N}_i de $\{p,3\}$ definimos um vértice $v_{i,j}$ como sendo do tipo k se em $v_{i,j}$ encontram-se k arestas. Neste caso temos $k \in \{p,3\}$. Denotaremos por $NV_{i,k}$ o número de vértices do tipo k no nível \mathcal{N}_i .

A seguir passamos a descrever o número de vértices existente em cada nível \mathcal{N}_i de uma tesselação $\{p,3\}$ com $p \geq 6$.

É imediato que em \mathcal{N}_0 temos p vértices do tipo 2. Como cada vértice tem 3 arestas na tesselação $\{p,3\}$, de cada

vértice em \mathcal{N}_0 inserimos uma nova aresta e de \mathcal{N}_0 como um todo, inserimos um total de p novas arestas.

Seja a_i a aresta inserida em $v_{0,i}$. As arestas a_i e a_{i+1} têm como extremidades os vértices $v_{0,i}$ e $v_{0,j}$ e $v_{0,i+1}, v_{1,k}$, respectivamente. Inserindo p-4 vértices entre cada par de arestas a_i e a_{i+1} , conforme (a) da Figura 2, obtemos p(p-4) pontos do tipo 2 no nível \mathcal{N}_1 . Por outo lado, de cada extremidade de $v_{1,j}$ partem duas outras arestas, (b) da Figura 2, configurando dessa forma um vértice do tipo 3. Assim, temos um total de p vértices do tipo 3 no nível \mathcal{N}_1 . Para o nível \mathcal{N}_2 , temos

$$p(p-4)(p-5) + p(p-5),$$

vértices do tipo 2, obtidos do seguinte modo: cada polígono do nível \mathcal{N}_1 , a partir dos vértices do tipo 2, fornece p-5pares de arestas. Como em cada par dessas arestas inserimos p-4 vértices, (c) da Figura 2, obtemos (p-4)(p-5)vértices para cada polígono do nível \mathcal{N}_1 , chegando-se a p(p-4)(p-5) vértices do tipo 2. Por outro lado, cada vértice do tipo 3 no mesmo nível \mathcal{N}_1 fornece p-5 vértices, (c) da Figura 2, de modo que obtemos mais p(p-5) vértices do tipo 2, confirmando nossa afirmação. Para o nível \mathcal{N}_3 , seguindo o raciocínio anterior, temos $p(p-4)(p-5)^2$ vértices do tipo 2 correspondentes aos pares de arestas formados a partir dos vértices do tipo 2 do nível \mathcal{N}_2 ; p(p-4)(p-5) vértices do tipo 2 correspondentes aos vérices do tipo 3 no nível \mathcal{N}_2 e por fim p(p-4)(p-6)vértices do tipo 2 correspondentes aos vértices do tipo 3 no nível \mathcal{N}_1 , conforme Figura 2. Desse modo, obtemos

$$p(p-4)(p-5)^{2} + p(p-4)(p-5) + p(p-4)(p-6)$$

vértices do tipo 2 no nível \mathcal{N}_3 . Ressaltamos que o número de vértices do tipo 3 no nível \mathcal{N}_{i+1} é igual ao número de vértices do tipo 2 no nível \mathcal{N}_i , ou seja,

$$NV_{i+1,3} = NV_{i,2}$$
.

Com isso, o total de vértices do tipo 2 nos níveis superiores pode ser generalizado da seguinte forma:

Teorema III.2. Se $\{p,q\}$ é uma tesselação regular com $p \ge 6$ e q = 3, então o número de vértices do tipo 2 em um nível k é dado pela fórmula recursiva:

$$NV_{0,2} = p, NV_{1,2} = p(p-4)$$

e

 $NV_{k,2} = p(p-4)(p-5)^{k-1} + (p-5)NV_{k-1,3} + (p-4)(p-6)NV_{k-2,3}$ para $k \ge 2$.

Proposição III.3. Nas condições do Teorema III.2, o número de vértices em um nível k é dado por

$$NV_0 = p, NV_1 = p(p-4) + p$$

e

$$NV_k = NV_{k,2} + NV_{k,3}$$

para $k \geq 2$.

Diante deste resultado estabeleceremos a seguir uma expressão que nos auxiliará no cálculo do número de polígonos em um dado nível k da tesselação $\{p,3\}$.

Fig. 2. Ilustração dos vértices do tipo 2 e 3

Denotaremos por NP_k o número de polígonos no nível \mathcal{N}_k .

No nível zero, temos $NP_0 = 1$ polígono. No nível \mathcal{N}_1 , temos $NP_1 = p$ polígonos. Para o nível \mathcal{N}_2 verifica-se que para cada polígono do nível \mathcal{N}_1 estão associados p-5polígonos e para cada vértice do tipo 3, nesse mesmo nível, um novo polígono está associado, isto é,

$$NP_2 = (p-5)NP_1 + NV_{1,3}.$$

Para \mathcal{N}_3 , vê-se que $NP_3 = (p-5)NP_2 - NP_1 + NV_{2,3}$ sendo $(p-5)NP_2$ o número de polígonos associados com os polígonos de \mathcal{N}_2 e $NV_{2,3}$ o número de polígonos relacionados aos vértices do tipo 3 no nível \mathcal{N}_2 . Com este procedimento e com o auxílio da Figura 3, chegamos à fórmula recursiva dada por:

Fig. 3. Ilustrando alguns níveis

Nível No. arestas	6	18	30	42
0	1	1	1	1
1	6	18	30	42
2	12	252	780	1596
3	18	3510	20250	60606
4	24	48888	525720	2301432

TABELA I Número de polígonos em cada nível

- [7] M.B. Faria, Empacotamento de Esferas em Espaços Hiperbólicos, Dissertação de Mestrado, IMEEC-UNICAMP, 2001.
- [8] M. Firer, Grupos Fuchsianos, Notas de Aula, IMECC-UNICAMP.
- [9] L.R. Ford, Automorphic Functions, Chelsea Publishing Company, 1951.
- [10] G.D. Forney, "Geometrically uniform codes," *IEEE Transactions on Inform. Theory*, v. 37, n. 5,1991, pp. 1241-1260.
- [11] S. Katok, Fuchsian Groups, The University of Chicago Press, Chicago, 1991.
- [12] H. Lazari, Uma Contribuição à Teoria dos Códigos Geometricamente Uniformes Hiperbólicos, Tese de Doutorado, FEEC-UNICAMP, 2000.
- [13] A.A.M. Rodrígues, *Teoria das Superfícies de Riemann*, Notas de Matemática, n. 26, IMPA, Rio de Janeiro, 1961.

Proposição III.4. Seja $\{p,3\}$ uma tesselação regular com $p \ge 6$. Então o número de polígonos no nível k é dada por:

e

$$NP_{k} = (p-5)NP_{k-1} - NP_{k-2} + NV_{k-1,3}$$

 $NP_0 = 1, NP_1 = p, NP_2 = (p-5)NP_1 + NV_{1,3}$

para $k \geq 3$.

De posse dos resultados anteriores podemos estabelecer um mapeamento dos pontos de uma constelação de sinais finita. A Tabela I, mostra o número de polígonos em cada nível.

IV. Conclusões

Este trabalho teve como objetivo a proposta de construção de constelações de sinais a partir das tesselações do tipo $\{12g-6,3\}$ apresentando a maior densidade de empacotamento [2], isto é, aquelas que atingem a menor probabilidade de erro quando comparada com qualquer outra constelação de sinais em espaços de curvatura constante negativa. Um método para a contagem dos pontos de uma constelação do tipo $\{p,3\}$ com $p \ge 6$ foi apresentado (Teorema III.2, Proposição III.3 e Proposição III.4). Em [4] a contagem do número de pontos de uma constelação de sinais do tipo $\{p,q\}$ com $p \ge 3$ e $q \ge$ 3 foi apresentada. Entretanto, a estratégia utilizada na referida contagem teve como hipótese as tesselações $\{p,q\}$ cujo número de arestas é da forma 4g, onde g denota o gênero da superfície de Riemann. Todavia, neste trabalho abordamos a contagem de pontos sob a estratégia de que as tesselações $\{p,q\}$ são tais que p = 12g - 6 e q = 3. Estas tesselações são as mais densas e, portanto, conduzindo a novos resultados sobre a contagem de pontos.

Referências

- E. Agustini, Constelações de Sinais em Espaços Hiperbólicos, Tese de Doutorado, IMEEC-UNICAMP, 2002.
- [2] C. Bavard, "Disques extrémaux et surfaces modulaires," Annales de la Faculté des Sciences de Toulouse, vol. V, n. 2, pp.191-202, 1996.
- [3] A. Beardon, The Geometry of Discrete Groups, Springer-Verlag, New York, 1983.
- [4] E. Brandani, Constelações de Sinais e Análise de Desempenho no Plano Hiperbólico, Tese de Doutorado, FEEC-UNICAMP, 2000.
- [5] E.D. Carvalho, Construção e Rotulamento de Constelações de Sinais Geometricamente Uniformes em Espaços Euclidianos e Hiperbólicos, FEEC-UNICAMP, 2001.
- [6] R.G. Cavalcante, Análise de Desempenho de Constelações de Sinais em Variedades Riemannianas, Dissertação de Mestrado, FEEC-UNICAMP, 2002.