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Convolutional Codes Search Based on Minima
Trellis Complexity

Bartolomeu F. Uchda-Filho, Richard Demo Souza, Cecilio Pimentel and Mao-Chao Lin

Abstract— This paper considers convolutional codes with
low trellis complexity (i.e., low Viterbi decoding complexity)
and good distance spectrum (i.e., good error performance).
The trellis complexity of the convolutional code is defined
as the total number of edge symbols per information bit
in the minimal trellis module representing the code. We
introduce a class of convolutional codes, called generalized
punctured convolutional codes (GPCCs), which is broader
than and encompasses the class of the standard punctured
convolutional codes. A code in this class can be represented
by a trellis module, the GPCC trellis module, whose
topology resembles that of the minimal trellis module. The
GPCC trellis module for a punctured convolutional code is
shown to be isomorphic to the minimal trellis module. It is
also shown by means of examples that this class contains
codes with better distance spectrum than the best known
punctured convolutional codes with the same code rate and
trellis complexity. Good GPCCs obtained with the aid of a
computer search are presented.

I. INTRODUCTION

A convolutional code can be represented by a semi-
infinite trellis consisting, after a short transient, of con-
catenated copies of a topological structure called trellis
module. Specifically, a trellis module M for a rate R =
k/n (i.e., a (n,k)) convolutional code C' consists of n'
trellis sections (from depth O to depth n’), 2** states at
depth ¢, 2% branches emanating from each state at depth
t (for 0 <t < n'—1), and I; bits labeling each edge from
depth ¢ to depth ¢+1 (for 0 < ¢ < n'—1). McEliece and
Lin [1] stated that the computational effort required by
the Viterbi algorithm to decode a convolutional code is
proportional to the total number of edge symbols in the
trellis module representing the code. This is said to be the
trellis complexity of the module M for the convolutional
code C, denoted by T'C' (M), and according to [1] it is
defined as:

n' —1

1
TC(M) = : D 2vett ()
t=0
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symbols per bit. There can be many trellis modules de-
scribing the same code. The conventional trellis module
for the (n, k) convolutional code C, denoted by M on.,
consists of a single trellis section (i.e., n' = 1), 2¥ initial
states and 2 final states; each initial state is connected
by 2% directed branches to final states, and each edge is
labeled with n bits. The trellis complexity of My, is
then given by TC(Meony) = (n/k)2v+* symbols per
bit.

While every convolutional code can be decoded by
using the conventional trellis module, punctured convo-
lutional codes (PCCs) [2]-[4] form a special class of
(n, k) convolutional codes that can be described by an
alternative, low-complexity trellis module, namely, the
PCC trellis module (Mpcc). For rate R > 1/2, PCCs
can be obtained by puncturing a rate 1/2 periodically
time-varying convolutional code (PTVCC) [5] called
mother code. The trellis module Mpoc then consists
of n' = k trellis sections, 2¥ states and two branches
emanating from each state at depth ¢ (i.e., by = 1),
I; = 1 bit labeling each edge in 2k — n trellis sections,
and I; = 2 bits labeling each edge in n — k trellis
sections. The corresponding trellis complexity of Mpoc
is TC(Mpcc) = (n/k)2v+1 symbols per bit. Some of
the best known PCCs were tabulated in [4].

A theory of minimal trellis for convolutional codes
has been developed by Sidorenko and Zyablov [6] and
McEliece and Lin [1]. Unique (up to isomorphism), the
minimal trellis module, M, for the convolutional code
C' minimizes, among various complexity measures, the
number of states at each depth and the total number of
branches (see [7] for instance). For this minimal struc-
ture, the state complexity ; and the branch complexity
b; at depth ¢ will be denoted by 7; and by, respectively.
The minimal trellis module for the (n, k) convolutional
code C' consists of n' = n trellis sections, k& of which
has b, = 1 and the remaining (n — k) trellis sections
are informationless, i.e., a single edge leaves each state
(b = 0). There are 27 states at depth ¢, and I, = 1 for all
t. Since a low-complexity Viterbi decoder is desirable,
we adopt henceforth the trellis complexity of the minimal
trellis module, TC' (M), as the trellis complexity of the
convolutional code C.

In this paper, we search for good (in a distance
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spectrum sense) (n, k) convolutional codes with fixed
TC(M). It appears that a convolutional code search tak-
ing this measure of complexity has only been considered
in the literature by Tang and Lin [8]. The convolutional
codes they found, all of which of rate (n — 1)/n, had
better distance spectrum than the PCCs in [4], with
the same rate and trellis complexity. Herein, we aim at
finding convolutional codes better than PCCs for other
code rates as well. To achieve this goal, we introduce a
sufficiently broad class of convolutional codes, namely,
the generalized punctured convolutional codes (GPCCs),
which encompasses the class of PCCs. A code in this
class can be represented by a trellis module — the
GPCC trellis module (Mgpcc) — that shares all of
the topological characteristics of the minimal trellis, as
listed above, except possibly the minimality property.
The GPCC trellis module is guaranteed to be isomorphic
to the minimal trellis module if the code it represents is
a PCC (see details in Sec. II).

There are two reasons for considering the class of
GPCCs in our code search. First, many of the good
(n,n—1) convolutional codes found by Tang and Lin [8]
are in fact GPCCs — we can show this by performing
row operations on the scalar generator matrix of the
code and turning this matrix into a GPCC form (details
will be given in Section Il1). This means that the class
of GPCCs is likely to contain good codes for other
code rates as well. Second, it is possible to define a
template for the scalar generator matrix of the GPCC
which yields naturally to the minimal-span form [1],
and one can easily control the spanlength of each row,
predetermining the value of TC(M) for an ensemble of
GPCCs. This property makes it possible to search for
codes with fixed T'C'(M). As a result, we have found
some GPCCs better than PCCs in [4], with the same

rate and trellis complexity.

The remainder of this paper is organized as follows.
In Section I, we introduce the class of GPCCs. Then,
in Section Ill, we describe the computer code search
and present a table containing good GPCCs. Finally, in
Section 1V, we conclude the paper.

Il. GPCCs

In this section we introduce the class of generalized
punctured convolutional codes. We begin by considering
the class of PCCs. For simplicity, let us consider a (3,2)
PCC of memory size v = 2, obtained by puncturing a
rate 1/2 PTVCC of period 2. The scalar generator matrix
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Fig. 1. (a) The PCC trellis module for a (3,2) PCC, and (b) the GPCC
trellis module for the same code.

is then given by:

G3
Gi &9
_ Gy GY Gy
Gscalar = Gg G% Gg
Gy &Y
Go

where the generator submatrices G¢ at time ¢, ¢t € {0,1},
are of one of the following two forms: G? = [« z],
Gl =[x ] or GY = [+ %], G} = [+ =], where the
nontrivial binary entries are marked by asterisk and
denotes a punctured position. The trellis module Mpce
for this code is shown in Fig. 1(a), where we have
assumed without loss of generality that G? = [x x|,

G} = [* z]. We can now regroup the entries of the
same scalar generator matrix so that it can look like:
G
Gi G3 Gy
Gscatar = G(2) q(lJ q% q%
Gy Gi G
[02] G3

where now all shown generator submatrices are of the
form Gt = [« z]. This is the GPCC form of the scalar
generator matrix of this PCC. It should be noted that at
time t = 1 G = [0 2], and at time ¢ = 2 G7 is placed to
the right of G (and not following the diagonal, as usual).
This means that the same information bit would feed the
time-varying encoder at times ¢t = 1 and ¢t = 2. In effect,
there is only one edge leaving each state at depth ¢ = 1
in the GPCC trellis module. The output branch label is
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the same as that produced by a zero information bit at
time ¢t =1 in a PCC. At times ¢ = 0 and ¢ = 2, there
are two branches leaving each state. Finally, note that at
time ¢ = 1 the generator submatrix G3 is nontrivial. The
trellis section with two-bit branch labels in Fig. 1(a) has
been replaced by two trellis sections with one-bit branch
label, and there are 8 states at depth ¢ = 1 in the trellis
module Mgpoe for this code, which is shown in Fig.
1(b).

In general, in the trellis module Mpce for a (n, k)
PCC with memory size v taken from [4], the n — k
non-punctured trellis sections with state complexities
vy = vyp1 = v is replaced by two punctured trellis
sections in the trellis module Mgpcc, comprehending
the times ¢, t+1, and t+2, where the corresponding state
complexities are vy = Vg4 = v and vyy; = v + 1. The
2k —n punctured trellis sections in Mpcc are replicated
to the GPCC trellis module.

Let us now define the class of GPCCs. Consider the
set C' containing all rate 1/2 PTVCCs of period k, where
the memory size vary from one phase to another within
a period and satisfies a topological constraint, namely, if
v' = {wg,v1,...,vk—1} is the set of memory sizes of a
PTVCCinC'then vy <wpp+1,for0<t < k—1,and
vo < vg—1 + 1. The class of (n, k) GPCCs is precisely
the set of codes obtained by puncturing the codes in C’ in
exactly 2k — n positions within a period. As a particular
case, if v, = v for all t € {0,1,...,k — 1}, then the
GPCC is a PCC.

The GPCC trellis module for a (n, k) GPCC has state
complexity profile o = {7o,v1,...,Un_1}, wWhich is
related to v’ as follows. Let u; denote the number of
non-punctured phases of the PTVCC (to give origin to
the GPCC) occurring prior to phase ¢. By convention,
up = 0. Then, for 0 < t < k — 1, set Vpyy, = 14
if the ¢t-th phase of the PTVCC has been punctured,
and set Uyy, = v and Vpyy,+1 = v + 1 if the ¢-th
phase of the PTVCC has not been punctured. The branch
complexity profile of Mgpcc, b = {bo,b1,...,bn_1},
can be obtained as follows. For 0 < ¢ < k — 1, set
biyu, = 1 if the t;th phase of theA PTVCC has been
punctured, and set by1,, = 1 and by1,,+1 = O if the
t-th phase of the PTVCC has not been punctured. The
phases in which b; = 0 correspond to the phases with
G} = [0 z] in the scalar generation matrix of the GPCC.

We can summarize the topological restrictions on &
and b of the GPCC trellis for a (n, k) GPCC as follows:

o Dpy1 <Dy+by, fort=0,1,2,...,n—2, and 9 <

:V:n—l + bn—l- N
e by=0foralte J and b, =1 forall t € I\J,
where J is some subset of size n — k of the set
I={0,1,...,n—1};
The trellis complexity of Mgpcc for the (n, k) GPCC

is given by:

TC(Mgpcc) = QVitbe 2

symbols per bit.

We now show that the trellis module Mgpcc for any
(n,k) PCC with memory size v is the minimal trellis
module. We should note that the scalar generator matrix
of any PCC in [4] looks like:

_ T -
[xz] [*1]
D [x 4]
MLz T 2] 3
[1 %] [xz] [+1] ©
[* ]
1]
L [1 ]

where every underlined entry (the leftmost nonzero entry
in its row) and every overlined entry (the rightmost
nonzero entry in its row) occupy positions in a way
that satisfy the so called “LR” property [1]. Following
the procedure developed in [1] for finding the minimal
trellis for convolutional codes, one can find that the state
complexities of M are ...,v,v,v + L,v,...,v,v,v +
1,v,.... On the other hand, from the construction of
the GPCC trellis module described above, we can see
that the state complexities of Mgpce and M coincide,
ie, vy = 7 for all ¢. According to a property of
the minimal trellis for block codes (see for instance
[7] for details), which can be adapted to the case of
convolutional code, the equality above for all ¢ implies
that the two trellis modules are isomorphic. So, for the
PCCs in [4], Mgpcc is isomorphic to M.

I1l. CODE SEARCH RESULTS

As already mentioned, our goal is to find GPCCs with
better distance spectrum than PCCs, with the same code
rate and the same trellis complexity. We now describe
the procedure we followed to find good GPCCs. The
first step was to calculate the value of TC(M) for the
existing PCCs. We then proposed templates for the scalar
generator matrix of GPCCs. By placing in this matrix the
leading and trailing “ones” of each row (as illustrated in
the matrix (3)) in specific positions, while others were
set free to assume any binary value, we could define
ensembles of GPCCs with a particular trellis complexity.
By choosing this complexity to be equal to the same

TC(M) for the existing PCCs, we searched within the
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TABLE |
SOME GOOD GENERALIZED PUNCTURED CONVOLUTIONAL CODES
I rR v ]| G(D) | TC(M) | dy | Spectrum |
3/4 | 3¢ [3110;0311;,2233] 21. 33 4 29,0,532,0,10059
34 | 4™ [1123;2111;4641] 42.67 4 3,44,160,638,3558
3/5 | 3® [31001;03310;20033] 26.67 4 1,5,14,40,102
3/5 | 4™ [33223;23310;60231] 53.33 6 15,0,136,0,1208
4/5 | 3™ [11110;22111;02211;22023] 20.00 3 5,36,200,1065,5893
4/5 | 4b [31110;23011;22310;00232] 40.00 4 30,126,815,4822,29046
47 | 3™ [1101111;2111010;0223310;2220011] 28.00 5 4,13,33,81,203
47 | 4n [3101101;2333201;2221110;0202033] 56.00 6 8,27,46,143,380

¢ Code also found by Cain et al. [2]
™ Code also found by Tang and Lin [8], but with different G(D)
b Code also found by Bocharova and Kudryashov [4]
™ New code found in this study by a random search

corresponding ensemble and found GPCCs with better
distance spectrum.

The free Hamming distance of the convolutional code
will be denoted by dy, and the distance spectrum is
defined as a sequence of numbers indicating multiplic-
ities; the first number in this sequence corresponds to
the number of codewords of Hamming weight d¢, the
second number corresponds to the number of codewords
of Hamming weight d; + 1, and so on. The best code
is the one with maximum dy. In the case that more than
one code with the same trellis complexity and the same
dy exists, the best code is the one having the smallest
distance spectrum in a lexicographical sense.

As an example, consider the best (5,3) PCC with
memory size v = 4, found by an exhaustive search
performed by Bocharova and Kudryashov in [4].
This code has dy 6 and distance spectrum
18,0,139,0,1210,... Viewing this PCC as a GPCC, the
state complexity profile of the GPCC trellis module is
Q = (4,4,5,4,5), and the branch complexity profile
b = (1,1,0,1,0). Since this code is a PCC, by the
property presented at the end of Section Il we have
that 7 = & and b = b. So TC(M ) = 53.33 symbols
per b|t. After performing a random code search, we
found a (5,3) GPCC with dy = 6 and distance spectrum
15,0,136,0,1208,... The state complexity profile of the
GPCC trellis module for this GPCC is ¥ = (4,4, 5,5, 6),
and the branch complexity profile b = (1,1,0,1,0).
Although the GPCC trellis module for this code is more
complex than the GPCC trellis module for the PCC, the
minimal trellis modules for the two codes have exactly
the same state and branch complexity profiles. There-
fore, the two codes have the same trellis complexity:
TC(M) = 53.33 symbols per bit, but the GPCC we
found has a better distance spectrum.

As a second example, consider the best (4,3) PCC
with memory size v = 4, found by Lee [9] (also listed
in [4]). This code has dy = 4 and distance spectrum

5,42,134,662,3643,...Tang and Lin [8] have found a
(4,3) convolutional code with the same free Hamming
distance and the same trellis complexity, but with a better
distance spectrum given by 3,44,160,638,3558,...We
show next that this code is in fact a GPCC. First, we
write part of the scalar generator matrix of the code
found in [8]:

1 1 0 1 0 0 1 1 0 O O O
1 1 1 1 0 O O O O 0 O
o 0 1 0 0 1 1 O0 1 1 O

11 0 1 0 0 1 1 O O O O

o0 1 1 1 1 0 O O O O 0 O

o 0o o 1 o 0 1 1 0 1 1 O

1 1 0 1 0 0 1 1

0 1 1 1 1 0 0 O

o 0o o 1 o o0 1 1

At a first look, it may seem from the positions of the
leading and trailing “ones” in each column of this matrix
that this code is a GPCC whose GPCC trellis module has
state complexity profile (2,5,6,5). Recalling the topolog-
ical restrictions for GPCCs presented in Section 11, such
a profile is not allowed — 4 states at depth zero and
32 states at depth one; there are not enough branches
to reach the 32 states. However, we are allowed to
perform row operations on this matrix without changing
the code. Let [«] denote the x-th row of a matrix, where
k =1,2,3,.... With the following operation:

[3k] < [3K] + [3K + 2]
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we turn the matrix above in the following matrix:

o ©o B O r O
o = = = O O
o = O O O K~
= o= = O O
O = O = O = O O
S = B H O O +H O O
S B O O O B r O O
= = = O O = O O O
S = O = O O
= o O = O O
o O B H O O
o o = O O o

We now have a GPCC whose GPCC trellis module has
state complexity profile (4,5,6,5) and branch complexity
profile (1,1,0,1), satisfying the topological restrictions.
Note that this code is not a PCC, and has distance
spectrum better than that of the best PCC of the same rate
and trellis complexity. Therefore, the class of GPCCs
seems to contain interesting convolutional codes.

Some good GPCCs found after a computer search are
tabulated in Table I. The generator matrices are shown
in octal form with the highest power in D in the most
significant bit of the representation (e.g. 6 = D + D?).
Table I shows several (n — 1,n) GPCCs with the same
distance spectrum of the best (n — 1,n) codes with the
same code rate and trellis complexity of the (n — 1,n)
PCCs. For other code rates, the GPCCs have better
distance spectrum than the corresponding PCCs with the
same trellis complexity.

IV. CONCLUSIONS

In this paper, we have considered convolutional codes
with low trellis complexity (i.e., low Viterbi decoding
complexity) and good distance spectrum (i.e., good error
performance). The trellis complexity of the convolutional
code was defined as the total number of edge sym-
bols per information bit in the minimal trellis module

representing the code. A new class of convolutional
codes, called the generalized punctured convolutional
codes (GPCCs), was introduced. A code in this class was
shown to be represented by a trellis module, the GPCC
trellis module, whose topology resembles that of the
minimal trellis module. The class of GPCCs was shown
to include all standard punctured convolutional codes.
The GPCC trellis module for a punctured convolutional
code was shown to be isomorphic to the minimal trellis
module. We showed, by means of examples, that the
class of GPCCs contains many interesting convolutional
codes. We searched for GPCCs with better distance spec-
trum than the standard punctured convolutional codes,
with the same code rate and trellis complexity. A table
containing good GPCCS has been provided.
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