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Hammerstein and Volterra Adaptive Blind
Equalization for Wiener Channels

Carlos A. R. Fernandes, Gérard Favier and João Cesar M. Mota

Abstract— Currently, the most part of the adaptive techniques
to perform equalization of nonlinear channels on the literature
is trained. This works proposes, in an original way, adaptive
techniques to perform blind equalization of nonlinear channels,
specifically with Wiener structures. To do so, we are going
to make use of the Constant Modulus Algorithm (CMA). We
develop expressions for the adaptation of the equalizer using a
unified notation for three different equalizer filter structures: i)
an Hammerstein filter; ii) a diagonal Volterra filter; and iii) a
Volterra filter. Trying to improve the performance of the CMA
equalizers, we will also employ the step-size normalization of
these algorithms and develop Recursive Least Squares (RLS)
version of them.

Keywords— Adaptive Blind Equalization, Wiener Model, Ham-
merstein Model, Volterra Model, Constant Modulus Algorithm

Resumo— As técnicas atualmente encontradas na literatura
para realização de equalização adaptativa de canais não-lineares
são, em sua grande maioria, supervisionadas. O presente trabalho
propõe, de forma original, algoritmos cegos e adaptativos para
equalização de canais não-lineares, especificamente canais do
tipo Wiener. Para tanto, vamos fazer uso do Algoritmo do
Módulo Constante (CMA). As expressões para a adaptação do
equalizador são encontradas com o auxı́lio de uma notação
unificada para três diferentes estruturas: i) um filtro de Ham-
merstein; ii) um filtro de Volterra diagonal; e iii) um filtro de
Volterra completo. Com o intuito de melhorar a performance dos
equalizadores não-lineares do tipo CMA, este trabalho também
propõe versões do CMA normalizadas e baseadas no algoritmo
dos Mı́nimos Quadrados Recursivos (RLS) para o caso de canais
não-lineares.

Palavras-Chave— Equalização Autodidata Adaptativa, Modelo
de Wiener, Modelo de Hammerstein, Modelo de Volterra, Algo-
ritmo do Modulo Constante.

I. INTRODUCTION

Many nonlinear systems can be modelled as a cascade of
linear blocks with memory and memoryless nonlinearities.
Particularly, the Wiener model, which consists of a linear block
with memory followed by a memoryless nonlinearity, is very
used in communications systems.

The Wiener filters can model, for example, satellite commu-
nication channels, in which high power amplifiers are driven at
or near saturation, to achieve the power consumptions require-
ments. The result is the introduction of nonlinear band-limited
signal distortion. Another important application of Wiener
models is in the modelling of Radio Over Fiber (ROF) links in
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communications systems. In this case, the signal is transmitted
by a mobile station and it is converted in optical frequencies
in a Radio Access Point (RAP), and then transmitted through
optical fibers. When the length of the optical fiber is short
(order of kilometers) and the radio frequency have an order
of GHz, the dispersion of the of the fiber is negligible. In
this case, the nonlinear distortion arising from the electrical
to optical conversion process becomes preponderant. Thus,
the system can be seen as a Wiener model. Application of
these nonlinear models are also present in other domains, like
control valves and biological systems.

There has been several works that propose and study
techniques for identification and equalization of nonlinear
communication channels. Some of the first works on nonlinear
equalization of communication channels were done in [1], [2],
[3], most of them using Volterra filters. Most recently, Hedge
et al. in [4] studied the identification of a series cascade of a
linear FIR filter, followed by a memoryless nonlinearity and
followed by a second linear FIR filter (Wiener-Hammerstein
system). The filters are adapted by the Normalized Least Mean
Square (NLMS) algorithm in two different filter identification
structures: a Wiener-Hammerstein structure and a Volterra
filter followed by an Moving Average (MA) linear filter.

Another interesting work in this area was done in [5],
where the authors have also used an equalizer with a Volterra
structure to compensate the distortions of nonlinear Satellite
Channels. In this work, they used a diagonal matrix with
different step-size values among the diagonal instead of a
fixed step-size. This approach was found to improve the
performance of the LMS-Volterra equalizer. Another way to
improve the performance of nonlinear equalizers was found
by Fernando et al. in [6]. They proposed an equalizer filter
structure composed of a Hammerstein filter followed by a
Decision Feedback Equalizer (DFE). The simulation results
showed that the DFE inclusion in nonlinear filters seems to
be a good option for the improvement of nonlinear equalizers
performance.

However, the adaptive techniques to perform nonlinear blind
equalization in the literature are, in the most part, trained. The
main contribution of this work is to propose blind adaptive
techniques to equalize channels with Wiener structures. To
do so, we are going to make use of the CMA, one of the
most used algorithms for blind equalization of linear channels.
We are going to develop the expressions for the adaptation
of the equalizer using three different approaches, each one
considering a different structure for the equalizer. The first one
considers the nonlinear communication system model of in fig.
1, which shows a Hammerstein-type equalizer for a Wiener-
type channel. It is known that the inverse of a Wiener system
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is a Hammerstein system [7], so it is the first natural choice for
the equalization of a Wiener channel. This approach considers
the independency of the linear and the nonlinear filters to adapt
them separately. The second approach adapts these two filters
jointly, constituting a Diagonal Volterra filter. And finally, the
last approach considers the equalizer as a complete Volterra
filter. Trying to improve the performance of the nonlinear
CMA equalizers, we will employ the step-size normalization
of these algorithms and develop RLS version of them in
the next chapter. All these techniques are develop using an
unified notation introduced in the next section. Moreover, it
was possible to write the three nonlinear equalizer structures
in a way that they are linear with respect to their coefficients.

The rest of the work is organized as follows: section II
briefly explains the structure of the system and develop a
unified signal notation; section III develops the adaptation
expressions of the considered equalizers based on the CMA,
the NCMA (Normalized CMA) and the RCMA (Recursive
CMA); section IV illustrates the performance of the algorithms
by means of computational simulations; and some conclusion
and perspectives are drawn in section V.

II. SIGNAL MODELS

A simplified version of the nonlinear SISO (Single-Input
Single-Output) communication system model employed in this
work is shown in fig. 1. The channel is modelled by a linear
Moving-Average (MA) filter followed by a polynomial filter,
i.e., a Wiener model. The equalizer structure is composed by
a polynomial filter followed by a linear MA filter, i.e., an
Hammerstein model. We are also going to use a complete
and a diagonal Volterra filter structure for the equalizer. The
transmitted i.i.d. sequence {a(n)} can take the value of any
constellation symbol with equal probability. The output of the
linear part of the channel u(n) can be expressed by:

u(n) =
∑N−1

i=0 a(n− i)hi = hT s(n),

where h = [h0 h1 . . . hN−1]
T is the impulse response of

the linear part of the channel, N is the length (memory) of
h and a(n) = [a(n) a(n − 1) . . . a(n − N + 1)]T is the
vector containing the transmitted sequence. It is important to
note that u(n) is not an accessible signal. The received signal
x(n) can be expressed as in (1) where c = [c0 c1 . . . cL−1]

T

is the vector containing the weights of the nonlinearity of the
channel, L is the length (order) of the nonlinear part of the
channel, u(n) = [1 u(n) u2(n) . . . uL−1(n)]T is the vector
containing the inputs of the nonlinear part of the channel and
υ(n) is an additive white Gaussian noise (AWGN) component.

x(n) =
∑L−1

i=0 ciu
i(n) + υ(n) = cT u(n) + υ(n). (1)

The output of the nonlinear part of the equalizer z(n) and
the final output of the equalizer y(n) are given by eqs. (2) and
(3), respectively:

z(n) =
∑P−1

i=0 gix
i(n) = gT x(n), (2)
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Fig. 1. Simplified structure of the system.

y(n) =
∑M−1

i=0 z(n− i)wi = wT z(n), (3)

where P is the length (order) of the nonlinear part of
the equalizer, g = [g0 g1 . . . gP−1]

T is the tap-weight
vector of the nonlinear part of the equalizer, x(n) =
[1 x(n) x2(n) . . . xP−1(n)]T is the vector containing
the inputs of the nonlinear part of the equalizer, M is the
length (memory) of the linear part of the equalizer, w =
[w0 w1 . . . wM−1]

T is the tap-weight vector of the linear part
of the equalizer and z(n) = [z(n) z(n−1) . . . z(n−M +1)]T

is the vector containing the inputs of the linear part of the
equalizer.

We can also write the equalizer output in a compact way,
by substituting (2) in (3):

y(n) =
∑M−1

i=0

∑P−1
j=0 gjwix

j(n− i)⇒ (4)

y(n) = gT X(n)w,

where X(n) = [x(n) x(n− 1) . . . x(n− P + 1)]. If we call
p(n) = X(n)w, we can also express the equalizer output by:

y(n) = gT p(n). (5)

Equations (3) and (5) will be used in the development of
the algorithms by optimizing the two equalizer filters g and
w in a alternating way. This approach will be developed in
the next section and it supposes the independency between
the filters to find two different expressions for the adaptation
of g and w. The algorithms will be also developed by an
approach that adapts the equalizer filters jointly. This approach
consider the equalizer as having a Volterra filter structure. We
will test a complete and a diagonal Volterra filter to compare
their different performances. From (4), we can express the
equalizer output by:

y(n) = rT x̃(n), (6)

where x̃(n) = [1 x(n) x2(n) . . . xP−1(n) 1 x(n −
1) x2(n−1) . . . xP−1(n−1) · · · 1 x(n−M +1) x2(n−
M+1) . . . xP−1(n−M+1)]T and r = [r0 r1 . . . rPM−1]

T =
g⊗w (⊗ represents the Kronecker product). The vector r can
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also be expressed by rj+iP = gjwi, where 0 ≤ j ≤ P − 1
and 0 ≤ i ≤M − 1. The vector r contains the coefficients of
the linear and the nonlinear parts of the equalizer and it is a
particular case of the Volterra filter (diagonal Volterra).

If we model the equalizer as a complete Volterra filter, its
output can be written as expressed next:

y(n) =

P−1∑

i=0

M−1∑

n1=0

M−1∑

n2=0

· · ·

M−1∑

np=0

b(i,n1,···,np)

i∏

j=1

x(n− nj), (7)

where b(i,n1,···,np) are the Volterra coefficients, M is the
memory of the model and P is the order. We can express
(7) in a vectorial form:

y(n) = bT x̆(n), (8)

where b is a vector containing the Volterra coefficients and
x̆(n) = [x̆T

1 (n) x̆T
2 (n) · · · x̆T

P (n)]T is the vector containing
all the inputs of the Volterra filter. The input vector x̆(n) is
obtained from the vector x̆1(n) = [x(n) x(n− 1) . . . x(n−
M +1)]T , by using the relation x̆P (n) = x̆1(n)⊗ · · ·⊗ x̆1(n)
(P − 1 times the Kronecker product).

Unified Notation: A New Approach

We can simplify the above notation by defining an unified
notation that describes the equations (3), (5), (6) and (8). To
do so, we must write for the equalizer output:

y(n) = qT t(n), (9)

where q is the equalizer coefficients and t(n) is the vector
containing the equalizer inputs. We can see (9) as general
equation for y(n) where the vectors q and t(n) depend on the
technique used. Table I shows these values for the techniques
studied here. This unified notations described in (9) will guide
us to develop different techniques using the same mathematical
model.

TABLE I

UNIFIED NOTATION

Approach q t(n)

Separated - g Adaptation g p(n)

Separated - w Adaptation w z(n)

diagonal Volterra r x̃(n)

Volterra b x̆(n)

It should be highlighted that, using this unified notation, the
output of the equalizer y(n) is linear with respect to coeffi-
cients of the the filters. That means that the techniques that
use linear structures can be applied directly in the nonlinear
filter structures considered in this work.

III. ADAPTIVE BLIND NONLINEAR EQUALIZATION

The unified notation described by eq. (9) is used in this
section to develop the algorithm expressions for the different
approaches. The first one considers the independency of the
filters g and w to adapt them separately and in a alternating
way by using the eqs. (3) and (5). The other two uses eqs. (6)
and (8) to adapt the filters r or b.

Before studying nonlinear blind equalization by using the
CMA, we will first apply the Least Mean Square (LMS)
algorithm in the considered equalizer structures. This will
guide us to develop the nonlinear CMA and to compare the
trained and the blind algorithms.

A. LMS Adaptation

To develop the LMS expression using the different ap-
proaches, we may take the gradient of the Minimum Mean
Square Error (MMSE) cost function with relation to q (eq.
(9)). The MMSE cost function is given by:

JMMSE = E{|e(n)|2} = E{|d(n)− y(n)|2},

where d(n) is the desired signal. By taking the stochastic
gradient of JMSE with respect to q, we may find the LMS
adaptation expression for the three approaches:

q(n + 1) = q(n) + µe(n)t∗(n), (10)

where q and t are given in Table I. The step-size parameter µ

is not necessarily the same in all approaches.
The LMS-Separated technique adapts the g and w filters

separately and in an alternating way. The equalizer adaptation
using the LMS-Separated technique is the less complex, with
an order of complexity of O(M+P ), and it is done alternating
the adaptations of g and w. t is the less complex of the
approaches, with an order of complexity of O(M + P ). The
order of complexity of the LMS-Diagonal Volterra and LMS-
Volterra are O(M.P ) and O(MP+1−M

M−1 ), respectively.

B. Nonlinear CMA

We may develop the techniques to equalize adaptively
and blindly nonlinear channels by applying the CMA to the
considered structures. For the development of the CMA with a
Hammerstein, a diagonal Volterra and a Volterra structure, we
will proceed the same way as explained earlier. That means
we take the stochastic gradient of the CM cost function, given
by:

JCM = E{(R− |y(n)|2)2}, (11)

with relation to q, where R is a constant given by E{|a(n)|4}
E{|a(n)|2} .

Thus, by using the Stochastic Gradient Descent approach,
we find an unified CMA adaptation equation for all the
approaches:

q(n + 1) = q(n) + µy(n)(R− |y(n)|2)t∗(n). (12)
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The values of q and t in Table I defines the different
techniques. Again, the step-size parameter µ is not necessarily
the same in equations for the different techniques. In the CMA-
Separated technique, the adaptations of g and w are also done
in an alternating way. The order of complexity of these CMA
techniques is the same of LMS techniques. It is important to
remark that adaptive blind algorithms to perform equalization
of nonlinear channels are not very common in the literature.

For both CMA and LMS algorithms, despite of the Volterra
approaches have only one adaptation equation, their com-
plexities are much bigger than for the separated approach.
Moreover, the high number of parameters to be adapted in
the Volterra approaches makes their convergence speeds slow,
once the bound of the step size is inversely proportional to the
equalizer length.

C. Step-size Normalization

For the equalization of linear channels, the employment of
the step-size normalization is often a good choice to increase
the convergence rate of the LMS-type algorithms. Due to this,
in this section we will develop normalized versions of the
techniques proposed in the last section. To do so, we will
make use of the NCMA, which is based on a particular choice
of the step-size. At each iteration we choose a step-size such
that the updated filter coefficients achieve the desired modulus
when applied to current data vector. In our case, the goal
is to define an unified optimization problem for the three
different approaches: the Separated, the Diagonal Volterra and
the Volterra. In the sequel, we will write the cost function and
the constraints associated with this cost function in an unified
way. Thus, the development of the three techniques is done
identically.

By using the unified notation, we can express the Normal-
ized CM (NCM) cost function as showed next:

JNCM = ‖δq(n)‖2 = ‖q(n + 1)− q(n)‖2.

The minimization of this cost functions must respect the
following energy constraint:

|qT (n + 1)t(n)|2 = R,

where R is the same constant of the CMA. The solution to this
optimization problem is developed in an identical way of the
development of the NCMA in a linear structure [8], leading
us to:

q(n + 1) = q(n)−
µ

‖t(n)‖2
y(n)(

√
R

|y(n)|
− 1)t∗(n),

where the values of q and t in Table I defines the different
techniques.

As well as for the LMS and CMA, the step-size parameter µ

is not necessarily the same for the different techniques and the
adaptations of g and w in the Separated approach are done in
an alternating way. The order of complexity of these NCMA
techniques is the same than for the LMS.

As we said, the NCMA is based on a particular choice of
the step-size. In case of the separated adaptation, to adapt the
nonlinear filter, at each iteration we choose a step-size such
that the updated g filter achieves the desired modulus when
applied to current data vector and to the non-updated w filter.
To adapt the linear filter, we have the opposite situation, the
step-size is chosen such that the updated w filter achieves the
desired modulus when applied to current data vector and to
the non-updated g filter. In the Volterra cases these choices
are trivial once there is only one filter to adapt.

D. RCMA Adaptation

Trying to produce a very fast-converging adaptive blind
algorithms at the expense of increased complexity, we may
develop RLS versions of the algorithms presented earlier for
equalization of Wiener channels. To do so, we will make use
of the NCMA, which, in this case, must recursively minimize
the following cost function:

φ(n) =

n∑

i=0

λn−i(|y(i)|2 −R), (13)

where λ ≤ 1 is the forgetting factor and the value y(n) is
given by y(i) = qT (n)t(i). That means that the filter we want
to minimize q is always indexed by n in equation (13) and
the filter inputs t by i. The definition of the different values
of y(n) in equation (13) was inspired in the definition of the
RLS cost function. These values define different cost functions
and, consequently, different algorithms.

The solution to this optimization problem is developed
in an identical way of the development of the Recursive
CMA (RCMA) in [8]. It can be summarized by the following
equations:

s(n) = ξ∗(n)t(n),

k(n) =
P(n− 1)s∗(n)

λ + s>(n)P(n− 1)s∗(n)
,

P(n) = λ−1 ·
[
P(n− 1)− k(n)s>(n)P(n− 1)

]
,

q(n) = q(n− 1) + k(n) ·
(
|ξ(n)|2 −R

)
,

where P(n) is initialized as P(0) = δ−1INq
, δ is a small

positive constant, INq
is the Nq-by-Nq identity matrix, Nq is

the length of q and ξ(n) = qT (n − 1)t(n) is the a priori
output estimation. Each cost function (eq. 13) is characterized
by a pair q-t which depends on the filter we want to minimize,
leading, for each case, to a different algorithm.

As well as for the case of linear channels, the RCMA can
improve the convergence speed and the steady-steady error of
the CMA and NCMA-type algorithms, which, in some cases,
may not have acceptable values.
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IV. SIMULATION RESULTS

The proposed techniques were tested by means of compu-
tational simulations and they successfully performed adaptive
blind equalization of nonlinear channels. The simulation sce-
nario parameters used in the simulations are shown in Table
II. The linear channel impulse response h and the nonlinear
channel polynomial coefficients c are the same of [9]. All the
Mean Squared Error (MSE) curves were obtained via Monte
Carlo simulations using 100 independent data realizations.

TABLE II

SIMULATION PARAMETERS

Linear Channel h = [1 0.5 − 0.2]T

Nonlinear Channel c = [0 1 0.3 0.1]T

SNR 30 dB

M 4

P 6

Modulation BPSK
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Fig. 2. BER curves for the CMA and LMS algorithms.

Fig. 2 shows the Bit Error Rate (BER) for the CMA and
LMS adaptations (LMS in training mode). The separated
approach has shown to be the better for both cases and the
Diagonal Volterra approach the worst. To better analyze the
convergence of the algorithms, fig. 3 shows MSE evolution of
CMA and LMS algorithms using the separated and the Volterra
approaches. The first remark we must do is the convergence
of both CMA approaches. Moreover, we can see in Table III,
which shows the number of parameters of the equalizer for all
approaches, that the Volterra approaches have a bigger number
of parameters than Separated approach. The big number of
parameters makes the Volterra convergence speed slow, as we
can see in the fig. 3. The large number of information of the
Volterra approaches is prejudicial to the performance of the
CMA. With relation to the CMA, the LMS has an error level
of approximately 5dB smaller for the Separated approach and
3dB for the Volterra approach.

TABLE III

NUMBER OF PARAMETERS OF THE EQUALIZER

Technique Nq

Separated 10

Volterra diagonal 24

Volterra 258
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Fig. 3. MSE curves for the CMA and LMS algorithms.

The next results are related to the Normalized algorithms.
Fig. 4 shows the BER for the NCMA and NLMS algorithms
(NLMS in training mode). The separated approach has shown
to be the better for both algorithms, the Diagonal Volterra
the worst for the NCMA and the Volterra the worst for the
NLMS. In this case, the BER performances are not as different
as in the case of the LMS-type algorithms. In addition, we
can see in the MSE curves of the algorithms (fig. 5) their
very similar performances and the 4dB gain provided by the
NLMS-Separated technique in relation to the others.
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Fig. 4. BER curves for the NCMA and NLMS algorithms.

Similar results were obtained for the RLS-type algorithms.
In fig. 6, we can be see the BER for the RCMA and RLS algo-
rithms (RLS in training mode). Again, the separated approach
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Fig. 5. MSE curves for the NCMA and NLMS algorithms.

has shown to be the best for both algorithms. Finally, in fig.
(7) we must also remark the convergence of all approaches and
the better performance of the Separated approach with respect
to the Diagonal Volterra for the RLS algorithm. The RCMA
and the RLS have an error level approximately equal in the
Diagonal Volterra approach, and the RLS has a 5dB gain in
MSE in the separated approach.
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Fig. 6. BER curves for the RCMA and RLS algorithms.

V. CONCLUSIONS

This works brings some important contributions. The first
one is the proposition of adaptive blind algorithms for equal-
ization of Wiener channels that have shown to correctly
recover the symbols passed throw the tested channel. Another
important contribution was the comparison of different struc-
tures to adapt the equalizer. This was possible due to a unified
notation introduced, in which the output of the equalizer is
linear with respect to coefficients of the the filters. That means
that the techniques that use linear structures were applied
directly in the nonlinear filter structures considered in this
work. The best simulations results were obtained when we
adapt the linear and the nonlinear filters separately and in
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Fig. 7. MSE curves for the RCMA and RLS algorithms.

an alternating way. We also developed NCMA and RCMA
techniques for the equalization of Wiener channels. They also
have shown to correctly recover the symbols passed through
the tested channel and, once again, the best simulations results
were obtained by the Separated approach.

As perspectives of this work, we must tested the algorithms
in other kinds of channels and use Volterra models jointly
with other approaches developed in our research group [9]. As
an example we can cite the application of the Parallel Factor
(PARAFAC) analysis decomposition in systems modelled by
Volterra series and other kind of diversity, as multiple sensors,
redundancy induced by a linear precoder, oversampling etc.
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