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Combined PARAFAC-Subspace Approach to Blind
Multiuser Equalization

A. L. F. de Almeida, G. Favier, J. C. M. Mota

Abstract— This paper presents a tensor decomposition known
as PARAFAC (Parallel Factors) and propose a new blind
multiuser equalization approach for wireless communication
systems, employing an antenna array and oversampling at
the receiver. First, a tridimensional PARAFAC approach for
modeling the received signal is proposed, the 3 dimensions
being space, time and oversampling dimensions. Then, a blind
multiuser receiver performing multiuser signal separation and
equalization is formulated, combining PARAFAC modeling and
a subspace method. The key difference of the proposed approach
compared to most of existing ones is on the fact that the
inherent tensor structure of the received signal is exploited. The
proposed PARAFAC receiver has two blind-processing stages.
In the first one, co-channel user signals are separated in the
tensorial domain using an alternating least-squares algorithm.
In the second stage, a subspace method is used to independently
equalize each user sequence. Simulation results are provided to
illustrate the performance of the proposed receiver. Our results
show that the PARAFAC receiver performs closely to the MMSE
(Minimum Mean Square Error) and ZF (Zero Forcing) receivers.

Keywords— PARAFAC, blind multiuser equalization,
oversampling, wireless communications, frequency-selective,
alternating least squares, subspace.

I. INTRODUCTION

The development of advanced signal processing techniques
for wireless communications is an attractive research topic.
In multiuser (mobile) wireless communication systems, the
main task of receiver signal processing is to identify the
parameters of the propagation channel and/or to recover the
useful transmitted information in the presence of co-channel
interference, intersymbol interference and additive noise.
The blind multiuser equalization problem is an attractive
research topic in the area of signal processing for wireless
communications. It consists in recovering the information
transmitted by several co-channel users with the assumption
of a frequency-selective channel and without the knowledge
of training sequences. Most of receiver algorithms deal with
matrix (two-dimensional or 2-D) models for the received
signal, exploiting its space and time dimensions as well
as structural (problem-specific) properties of the transmitted
signals (finite-alphabet, constant-modulus, etc..) for signal
separation and equalization [1], [2], [3]. Without these
additional considerations, it is well known that the low-rank
property of matrices is not enough to guarantee a unique model
for the received signal. This lack of inherent uniqueness is one
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of the limitations of a 2-D modeling for the received signal in
wireless communication systems.

Unlike the decompositions of 2-D arrays (matrices), which
is generally nonunique for any rank greater than one (for rank
one it is unique up to a scalar factor), the decomposition of 3-D
arrays (also called third-order tensors) can be unique up to a
scalar factor for low-enough ranks [4]. One of the most studied
low-rank decompositions of 3-D (or higher dimensional)
tensors is called PARAFAC (parallel factor) analysis, which
was developed by Caroll and Chang [5] and Harshman [6]
as a data analysis tool in psychometrics. It has also been
widely studied in the context of chemometrics [7]. In the
context of wireless communications, PARAFAC has recently
appeared as a powerful tool from a receiver signal processing
perspective, allowing us to identify channel parameters and to
recover user symbols without imperatively utilizing structural
properties/constraints. It is also worth noting that a 3-D
(tensorial) model for the received signal results from an
additional “axis”or dimension in the received signal model
instead of the usually considered space and time dimensions.
In wireless communications, this means that diversity can
also be exploited in this additional third dimension. Most
of research bringing PARAFAC to the context of signal
processing for wireless communications were carried out
by Sidiropoulos and his co-workers (see [8] and references
therein).

In this work, a new approach to the problem of blind
multiuser equalization of single-input multiple-output (SIMO)
wireless communication systems is introduced. The proposed
approach is based on the fact that the received signal can
be interpreted as a three-way array or tensor, when a
receiver antenna array is used together with oversampling.
We first show that the received signal can alternatively
be represented as a tridimensional (3-D) PARAFAC model,
the 3 dimensions being space, time and oversampling
dimensions. After presenting the model, we propose a new
blind multiuser equalization receiver combining PARAFAC
and Subspace decomposition approaches. We consider a
single-input multiple-output (SIMO) wireless communication
system employing a receiver antenna array together with
oversampling. The key difference of the proposed approach
compared to other existing ones, is on the fact that the
proposed blind multiuser receiver exploits the tensor structure
of the received signal instead of treating it as a matrix.
The PARAFAC receiver is divided into two processing
stages. In the first one, co-channel user signals are separated
in the tensorial domain using an alternating least-squares
algorithm. In the second stage, a subspace method is used to
independently equalize each user sequence. Simulation results
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are provided to illustrate the performance of the proposed
receiver with that of classical ones. Our results also show
that the PARAFAC receiver performs closely to the classical
MMSE (Minimum Mean Square Error) and ZF (Zero Forcing)
receivers.

This paper is organized as follows. In Section II, some
background on the PARAFAC decomposition is given.
Section III is dedicated to the signal modeling, where the
proposed PARAFAC model is introduced. In Section IV, the
proposed PARAFAC receiver for blind multiuser equalization
is formulated. Section V contains our simulation results for
performance evaluation. The paper is finalized in Section VI
with some conclusions and perspectives.

II. PARALLEL FACTORS (PARAFAC) DECOMPOSITION

For an I × J × K third-order tensor X , its Q-component
PARAFAC decomposition is given by

xi, j,k =
Q

∑
q=1

ai,qb j,qck,q. (1)

The standard PARAFAC model for a three-way (3-D) array
expresses the original tensor as a sum of rank-one three-way
factors, each one of which being an outer product of three
vectors. Using tensor notation the PARAFAC decomposition
of X can be stated as

X =
Q

∑
q=1

aq ◦bq ◦ cq, (2)

where the operator ◦ denotes the outer product. Figure (1)
illustrates the PARAFAC decomposition of tensor X . By
analogy with the definition of matrix rank, the rank of a
third-order tensor is defined as the minimum number of
rank-one three-way components needed to decompose X . The
fundamental difference when going from matrices to tensors
are their uniqueness. While rank-R matrix decompositions are
not unique for any R > 1, rank-R PARAFAC decompositions
are essentially unique for a great range of R > 1 [4].

The PARAFAC decomposition can also be represented in
matrix notation. Define an I ×R matrix A, J ×R matrix B
and K × R matrix C. Define also a set of J × K matrices
Xi . ., i = 1, · · · , I, a set of K × I matrices X. j ., j = 1, · · · ,J
and a set of I× J matrices X. .k, k = 1, · · · ,K. Based on these
definitions, the model (1) can be written in three different
ways. For each writing of the model a system of simultaneous
matrix equations exists. The three writings of the model are:

Xi . . = CDi[A]BT i = 1, · · · , I, (3)
X. j . = BD j[C]AT j = 1, · · · ,J, (4)
X. .k = ADk[B]CT k = 1, · · · ,K, (5)

where the operator Di[A] forms a diagonal matrix formed
from the i-th row of A. The matrices Xi.., i = 1, · · · , I, X. j.,
j = 1, · · · ,J, and X..k, k = 1, · · · ,K can be interpreted as slices
of the tensor along the first, second and third dimensions,
respectively. Stacking the matrix slices X..k, k = 1, · · · ,K into

= ∑
=

Q

q 1
qa

qb
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X

Fig. 1. Q-factor PARAFAC decomposition of a 3-D tensor.

a IJ×K matrix we have

X1 =






X..1
...

X..K




 =






AD1[B]
...

ADK [B]




CT = (B�A)CT . (6)

Similarly, stacking the matrix slices X. j., j = 1, · · · ,J, into a
JK × I matrix we have

X2 =






X.1.

...
X.J.




 =






BD1[C]
...

BDJ [C]




AT = (C�B)AT . (7)

Finally, stacking the matrix slices Xi.., i = 1, · · · , I, into a KI×
J matrix

X3 =






X1..

...
XI..




 =






CD1[A]
...

CDK [A]




BT = (A�C)BT , (8)

where � is the Khatri-Rao (columnwise Kronecker) product.
Uniqueness of the PARAFAC decomposition was studied by
Harshman [6] and the proof was provided by Kruskal [4].
According to Kruskal, a trilinear PARAFAC decomposition
over R is unique, except for the trivial permutation and scaling
ambiguity. The uniqueness theorem is now revisited. Consider
a set of I matrices Xi . . = BDi[A]CT i = 1, · · · , I, where A ∈
RI×R, B ∈ RJ×R and C ∈ RK×R. If

kA + kB + kC ≥ 2(R+1), (9)

the matrices A, B and C are unique, up to common
permutation and scaling of columns. This means that, any
matrices A, B and C satisfying the model Xi . ., i = 1, · · · , I,
are linked to A, B and C by

A = AΠ∆1, B = BΠ∆2, C = CΠ∆3, (10)

where Π is a permutation matrix and ∆1, ∆2 and ∆3 are
diagonal matrices satisfying the condition

∆1∆2∆3 = I. (11)

III. SIGNAL MODELING

Let us consider a linear and uniformly-spaced array of M
antennas receiving signals from Q co-channel users. Assume
that the signal transmitted by each co-channel user is subject
to frequency-selective multipath propagation and arrives at
the receiver via L specular paths. The length of the channel
impulse response is K symbols long. At the output of each
receiver antenna, the signal is sampled at a rate that is P
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times the symbol rate. Due to temporal oversampling, the
resolution of the pulse-shaping filter response is increased by
a factor P. Such an increase in the temporal resolution is
interpreted here as an addition of a third axis (or dimension)
to the received signal, called here the oversampling dimension.
Let us organize the P oversamples of the signal received
at the m-th antenna at the n-th symbol period in a vector
xm(n) = [xm(n)xm(n + 1/P) · · ·xm(n + (P− 1)/P)]T ∈ CP. Its
discrete-time baseband representation in absence of noise can
be factored as

xm(n) =
Q

∑
q=1

L

∑
l=1

blqam(θlq)
K−1

∑
k=0

g(k− τlq)sq(n− k), (12)

blq is the fading envelope of the l-th path of the q-th user,
am(θlq) is the phase response of the m-th antenna-element to
the l-th path of the q-th user, θlq being the associated direction
of arrival. Similarly, τlq denotes the propagation delay (in
multiples of the symbol period T ) and

g(k− τlq) =








g(k− τlq)
g(k− τlq +1/P)

...
g(k− τlq +(P−1)/P)








(13)

represents the k-th component of the oversampled
pulse-shaping filter response evaluated at delay τlq. The
channel length K is such that K ≥ max(τlq). This condition
guarantees that all multipath energy is captured in our
frequency-selective channel impulse response model. Finally,
sq(n) is the information symbol transmitted by the q-th
user at the n-th time symbol period. Depending on the type
of signal processing used at the receiver, we may utilize
either the above parametric channel model, with explicit
description of angles and delays (narrowband assumption),
or a non-parametric one, when we are not interested in
characterizing angle and delay parameters of the channel. In
this work we focus on the parametric model, which means
that all the multipath parameters of all users are captured in
our tensor models. Define

al,q = [a1(θlq)a2(θlq) · · ·aM(θlq)]
T ∈ CM (14)

and

Gl,q = [g(0− τlq) · · ·g(K −1− τlq)] ∈ CP×K (15)

as the spatial and temporal responses of the channel to the l-th
multipath of the q-th user, l = 1, . . . ,L, q = 1, . . . ,Q. In order to
rewrite (12) in a more compact form, let us concatenate the LQ
spatial and temporal responses into equivalent matrices A =
[a1,1 · · ·al,q · · ·aL,Q] ∈ CM×LQ and G = [G1,1 · · ·Gl,q · · ·GL,Q]
∈CP×KLQ, and define b = [b11 · · ·blq · · ·bLQ] ∈CLQ as a vector
of multipath gains. Define also the overall channel impulse
response matrix H ∈ CP×KLQ as

H = G(diag(b)⊗ IK) ∈ CP×KLQ, (16)

which is nothing but the temporal response matrix scaled by
the complex multipath gains. The operator diag(·) forms a
diagonal matrix out of its vector argument. Considering that
a block of N transmitted symbols is processed at the receiver,

= ∑
=

Q

q 1

M

N

p••X qA qS][HpD

Fig. 2. Proposed PARAFAC decomposition for the 3-D received signal tensor.

we define S = [ST
1 · · ·S

T
Q]T ∈ CKQ×N a block-Toeplitz matrix

concatenating Q Toeplitz symbol matrices, each one of
which having its first row and column equal to s(r)

q =

[sq(1)sq(2) · · · sq(N)] and s(c)
q = [sq(1)0 · · · 0]T , respectively.

In absence of noise, the received signal is a 3-D tensor
X ∈ CM×N×P that can be expressed as a set of M × N
space-time slices X. . p, each one of which admitting the
following factorization:

X. . p = (AΨ)Dp (H)(ΦS) , p = 1, · · · ,P, (17)

where

Ψ = ILQ ⊗1T
K ∈ CLQ×KLQ, (18)

Φ = IQ ⊗1L ⊗ IK ∈ CKLQ×KQ, (19)

are constraint matrices, composed of 1’s and 0’s. The term
1K being a “all ones”column vector of dimension K × 1
and the operator ⊗ defines the Kronecker product. The
operator Dp (H) takes the p-th row of its matrix argument
and forms a diagonal matrix out of it. Note that (17) follows
a tridimensional (3-D) PARAFAC model. With respect to the
PARAFAC decomposition in Section II, Equation (17) can be
interpreted as the p-th matrix slice of a (M,N,P)-dimensional
tensor X . According to (17), the received tensor is completely
characterized by a set of three matrix components AΨ, H
and ΦS. This tensor model is a PARAFAC model having a
constrained structure, the constraints being given by matrices
Ψ and Φ. According to (3), the received signal tensor can
also be expressed as a set of P × M matrix slices X.n . =
HDn

(
(ΦS)T

)
(AΨ)T , n = 1, . . . ,N or as a set of N × P

matrix slices Xm . . = (ΦS)T Dm (AΨ)HT , m = 1, . . . ,M. The
three unfolded matrices Xi=1,2,3, containing the full tensor
information, are defined as X1 = [XT

. .1 · · ·X
T
. .P]T ∈ CMP×N ,

X2 = [XT
.1 . · · ·X

T
.N .]

T ∈ CPN×M and X3 = [XT
1 . . · · ·X

T
M . .]

T

∈ CNM×P, respectively. Figure 2 illustrates the PARAFAC
decomposition of the 3-D received signal tensor as a Q-user
sum of three-way factors, the q-th three-way factor being
decomposed in terms of Aq = Aq ⊗1T

K , Wq and Sq = 1L ⊗Sq.

IV. COMBINED PARAFAC-SUBSPACE ALGORITHM

The proposed blind receiver algorithm is divided in two
processing stages. In the first stage, co-channel user signals
are separated in the 3-D (space × time × oversampling)
domain using an alternating least squares (ALS) algorithm that
is similar in spirit to the one proposed in [7]. In the second
stage, the symbol sequences are independently recovered in the
time-domain using a single-user equalization algorithm based
on subspace decomposition [9]. Our receiver can be thought
of as a blind multiuser equalizer where user separation and
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Fig. 3. Block-diagram of the PARAFAC receiver.

equalization are decoupled. Figure 3 depicts the block-diagram
of the proposed PARAFAC receiver.

A. User separation stage:

For the received signal tensor X , the user separation stage
is represented by the trilinear alternating least squares (ALS)
algorithm that consists in estimating three matrices A, B and
C. In the presence of additive Gaussian noise, these matrices
optimize a maximum likelihood criterion formulated as a
set of three independent nonlinear least squares minimization
problems:

Ĉ = argmin
C

‖X1 − (B�AΨ)ΦC‖2

Â = argmin
A

‖X2 − ((ΦC)T �B)(AΨ)T‖2 (20)

B̂ = argmin
B

‖X3 − (AΨ� (ΦC)T )BT‖2

where X1 (MP × N), X2 (PN × M) and X3 (NM × P) are
matrices formed from the slices of the received signal tensor
along the first, second and third dimensions, respectively.
Disregarding scaling and permutation ambiguities, these
matrices are linked to the matrices Ĥ, Ĝ and Ŝ in the following
way:

Ĥ = Â, Ĝ = B̂T, Ŝ = T−1Ĉ, (21)

where T is a KQ×KQ square ambiguity matrix that will be
found in the second stage of the receiver. The i-th iteration
of the ALS algorithm consists of three steps: 1) update Ĉi
conditioned on Âi−1 and B̂i−1; 2) update Âi conditioned
on B̂i−1 and Ĉi; 3) update B̂i conditioned on Âi and Ĉi.
These three updating steps are repeated until convergence
of the algorithm. Several initialization strategies exist. Here,
we initialize Â0 = A + δEa and B̂0 = B + δEb, where Ea
and Eb are matrices whose entries are randomly generated
from a normal distribution with δ = 0.01. In practice, a good
initial guess for Â0 and B̂0 can be obtained, for example,
from prior information (or imprecise knowledge) about the
spatial geometry of the receiver antenna array as well as from
knowledge about the temporal structure of the pulse-shaping
filters. If no prior knowledge is available, initialization can
be done from the matrix slices of the received signal via
generalized eigenvalue decomposition methods. Other more
sophisticated initialization strategies exist but they are beyond
the scope of this work.

B. Equalization stage:

At the end of the first stage of the receiver, we are left with
matrices Â = Ĥ, B̂ = ĜT−1 and Ĉ = TŜ. In order to estimate
the transmitted sequences we must determine the ambiguity
matrix T. According to (21), the transmitted sequences can be
recovered by solving Ĉ = TŜ, i.e.,






Ĉ1
...

ĈQ




 =






T1
. . .

TQ











Ŝ1
...

ŜQ




 . (22)

The ambiguity matrix T is block-diagonal, i.e. T =
BlockDiag(T1 · · ·TQ), which means that users’ symbol
sequences can be independently recovered by solving a set of
smaller system of equations Ĉq = TqŜq, q = 1, . . . ,Q, each
one of which being a single-input multiple-output (SIMO)
blind equalization problem. In other words, the PARAFAC
approach decouples a multiuser equalization problem into
Q equivalent single-user equalization problems. The K × K
square (non-singular) ambiguity matrix Tq, q = 1, . . . ,Q, can
be interpreted as an equivalent SIMO channel with K impulse
responses of length K each. Several strategies exist that can
be used to blindly estimate Tq and Sq, q = 1, . . . ,Q. Here we
use the subspace algorithm proposed by Moulines et al. [9],
in which Tq is found by minimizing the following quadratic
cost function

tq = argmin
tq

tH
q F (Uq)F (Uq)

H tq (23)

under the constraint ‖tq‖ = 1, for each q = 1, . . . ,Q, where
tq = vec(Tq) and F (Uq) is a block-Toeplitz matrix formed
from a basis of the noise subspace Uq (associated with the
smallest left singular vectors) of a convolution matrix formed
from Cq. For reasons of space, we report the interested reader
to [9] for further details. After estimation of Tq, we calculate
Ŝq = T−1

q Ĉq for each q = 1, . . . ,Q.

V. SIMULATION RESULTS

The average bit-error-rate (BER) performance of the
proposed blind PARAFAC multiuser equalization receiver has
been evaluated through computer simulations, considering
Q = 2 co-channels users. The signal transmitted by each user
arrives at the receiver via L = 2 independent Rayleigh-faded
multipaths. The multipaths of the first user are parameterized
by [θ11 , θ21] = [0◦ , 30◦], [τ11 , τ21] = [0 , T ] and [β11 , β21] =
[1 , 1], while those of the second user are parameterized by
[θ12 , θ22] = [−20◦ , 50◦], [τ12 , τ22] = [0 , T ] and [β12 , β22] =
[1 , 1]. The length of the channel impulse response is K = 2
symbols. For all the simulations and receivers, the number of
receiver antennas is M = 2, the oversampling factor is P = 2
and the number of received binary-phase shift keying (BPSK)
symbols processed is N = 50. BER results are plotted as a
function of the signal-to-noise ratio (SNR) per receiver antenna
and are drawn from 1000 independent Monte Carlo runs.

In Figure 4, we compare the results of the blind
PARAFAC receiver with those of previously proposed blind
subspace-based receivers. For the multiuser case, the blind
PARAFAC receiver is compared with the blind subspace
algorithm proposed by Van der Veen et al. [3], which
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Fig. 4. Performance of the PARAFAC receiver, compared with the blind
subspace receiver of [3]. M = 2, P = 2 and N = 50.
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Fig. 5. BER versus SNR. L = 2, K = 2, (M,P) = (2,2).

combines a subspace method with the exploitation of the
Finite-Alphabet (FA) property of the transmitted symbols
for multiuser space-time equalization. This receiver is called
“Subspace+FA”in the figure. It can be seen that the proposed
PARAFAC receiver outperforms the Subspace+FA receiver in
the multiuser frequency-selective scenario with L = 2 and
K = 2. For the a single-path flat fading scenario (K=L=1)
scenario (only the first multipath of each user is present), the
performance improvement of the proposed PARAFAC receiver
over the Subspace+FA one is also verified (5dB for 10−2

target BER). As a reference for comparison, the performance
of the PARAFAC receiver is also compared with those of
the Zero Forcing (ZF) and Minimum Mean Square Error
(MMSE) receivers. For both the ZF and MMSE receivers,
perfect knowledge of all multipath parameters is assumed.
We assume (M,P) = (2,2) for all the receivers. Figure 5
shows that the iterative PARAFAC-subspace receiver is close
to the ZF/MMSE one, with a performance gap of only 3 dB
approximately.

Discussion

Some interesting similarities and differences between the
Subspace+FA algorithm of [3] and the PARAFAC-Subspace
algorithm exist. Note that both the Subspace+FA algorithm
and the PARAFAC-Subspace algorithm perform multiuser
signal separation and equalization in two processing stages.
The Toeplitz structure of the users’ symbol matrices are
also exploited in both cases, in the blind equalization
stage. However, in our PARAFAC receiver multiuser signal
separation is done prior to equalization while in Subspace+FA
receiver of [3], equalization precedes multiuser signal
separation. In the latter case, multiuser signal separation is
only made possible due to the exploitation of the Finite
Alphabet (FA) property of symbols. Note, however, that our
PARAFAC receiver does not require the FA property as a
necessary condition for the separation of users’ signals, which
is done by exploiting the tensor structure of the received signal
instead. To conclude, the fundamental difference between the
proposed PARAFAC approach and the other existing ones
is that space and oversampling dimensions are treated as
two different dimensions, resulting in a 3-D structure for
the received signal, allowing one to benefit from PARAFAC
uniqueness for information recovering.

VI. CONCLUSIONS AND PERSPECTIVES

In this work, we have presented a tensor approach for
modeling the received signal in wireless communications
systems employing receive antenna arrays and oversampling.
The PARAFAC approach models the received signal as
a 3-D tensor, the dimensions being space, time and
oversampling dimensions. Based on this modeling approach,
a new blind multiuser equalization receiver combining
PARAFAC and subspace decomposition methods was
proposed for multiuser signal separation and equalization.
The proposed PARAFAC-Subspace receiver operates in a
two-stage approach, performing multiuser signal separation in
the tensorial domain, followed by an equalization stage in the
temporal domain. The performance of the proposed PARAFAC
receiver has been evaluated through computer simulation. The
results have shown that the combined PARAFAC-Subspace
approach performs closely to the MMSE (Minimum Mean
Square Error) and ZF (Zero Forcing) receivers. Future
directions of this work include a deeper study on the
identifiability conditions of the proposed PARAFAC tensor
model as well as the exploitation of the Finite Alphabet (FA)
property of symbols within the multiuser signal separation
stage of the proposed PARAFAC receiver.
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