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Abstract— Game theory is a set of mathematical tools suitable
to the modeling and optimization of problems involving agents
with con�icting interests competing for limited resources. It
applies well for a number of problems in wireless communication,
including power control. In this work, some basic concepts
on game theory are presented and a general framework for
the decentralized power control problem in wireless systems
is constructed. Finally, a new algorithm based on a simple
prediction method is developed and compared to the classical
distributed power control.
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I. INTRODUCTION

THE main objective of a wireless communication system
is to provide reliable communication to the users, i.e.,

the system has the task of to satisfy QoS (Quality of
Service) requirements. Such requirements may be assumed
to correspond to target signal-to-interference-plus-noise ratios
(SINRs) [1]. Then, in power-controlled systems, each
transmitter usually tries to provide a determined SINR to its
correspondent receiver.

The application of game-theoretic tools to the power control
problem in wireless systems is attractive and powerful due
to the need of self-optimization and distributiveness. Game
theory is a tool for analyzing the interaction of decision
makers with conflicting objectives and limited resources. In
recent years, it has been applied to problems in wireless
communication, mainly to the power control problem [2], [3],
[4], [5].

In this work, we construct a general framework to
the decentralized power control problem by means of a
game-theoretical approach. In Section II, some basics on game
theory are presented. Section III brings the mathematical
development of a general solution to the problem, which has
as special configuration the well-known Distributed Power
Control (DPC) algorithm [6]. In Section IV, a simple and
efficient prediction method is used to compose an algorithm
which is a good alternative to DPC algorithm, since it
approximates the general solution better than DPC. In order
to compare the performance of both DPC and proposed
algorithms, computational simulations in a cellular system
environment are performed in Section V. Conclusions of this
work are given in Section VI.
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II. BASICS ON GAME THEORY

Game theory is composed by a set of mathematical concepts
dedicated to the study of situations where interdependent
players (decision makers) make decisions according to the
actions of the other players. The basic unit of game theory
is the game, which has three basic elements: a set of players,
a set of possible actions for each player, and a set of objective
functions mapping action profiles into real numbers.

Players are the elements found in conflict. Each player has
decision rights only over its own decision variables. Players
are assumed to be rational, which means they decide for the
strategy with the best individual game outcome.

Actions or decisions of players are confined to their strategy
space, that is, the set of possible actions. Strategies may be
pure (deterministic) or mixed (stochastic). In this work, only
pure strategy spaces are considered.

The satisfaction of each player is represented by its objective
function. This is a special element in a game, since the
objective function of a player must correspond to its interest
with respect to the optimization process to be carried out.
Objective functions can be classified as cost functions or utility
functions. The concept of cost function refers to the pay back
of the player as a result of its actions. Utility functions take
the place of cost functions when one refers to satisfaction
measures of players instead of their pay back.

Game theory can be divided in two classes: noncooperative
game theory and cooperative game theory. Noncooperative
game theory studies situations where players interact, however
negotiations (or agreements) are not possible or allowed. In
cooperative game theory, such negotiations are allowed. In this
work, only concepts of noncooperative game theory are used.

Games can also be classified in static games and dynamic
games. In general, a game where players act simultaneously
is static. When the order of player’s actions is relevant to the
outcome of a game, such game is dynamic.

Finally, a game where the gains of a player represent
losses to the other players is called a zero-sum game. In
zero-sum games, as the name suggests, the sum of the cost
functions of all players is identically zero. Even if this sum
is equal to a nonzero constant, the game can be treated
within the framework of zero-sum games without any loss
of generality. However, in other cases, the gains of a player
do not correspond to losses to the other players, i.e., the sum
of the cost functions of all players is not a constant. Such
games are called nonzero-sum games. A detailed discussion
about noncooperative games can be found in [7].
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III. DISTRIBUTED POWER CONTROL GAME

A number of works has been dedicated to the formulation of
the power control problem as a game [2], [3], [4]. All of them
define the transmitters as the set of players and the (convex)
set of possible power values as strategy space. Then, transmit
power is the decision variable. Furthermore, only nonzero-sum
noncooperative static games are considered.

Differences between such works are found with respect to
objective functions. Most previous works relative to the power
control problem formulated as a game fall in two classes with
respect to the objective functions: those dependent only on
intrinsic properties of the channel (SINR, transmit power) [4]
and those dependent also on lower layer decisions such as
modulation and coding [2], [3].

We formulate the problem as a static multi-stage
nonzero-sum noncooperative game, as in [5]. In order to avoid
studies conditioned to some system configurations, the adopted
objective functions are not dependent on system parameters,
such as modulation and coding.

We denote GK = [Nj , {Pj}, {cj}] the static multi-stage
nonzero-sum noncooperative power control game with K

stages. The adopted strategy based on such kind of game
is justified by the fact that users (players) do not cooperate
and gains of a user do not correspond to losses of the others
users. The game is composed by K stages, where each stage k

corresponds to an actuation of the power control algorithm,
which is discrete and has k as its discrete time index.

The transmitters constitute the set of players, with Nj =
{1, 2, ..., N} as their index set; the continuous set of power
values Pj = [pmin, pmax] is the strategy set of player j; and
cj is the cost function of player j, j ∈ Nj . We emphasize
that the jth player has control only over its own power pj ,
which is selected such that pj ∈ Pj . The power vector p(k) =
[p1(k), ..., pN (k)] ∈ P is the outcome of the stage k of the
game in terms of the selected power levels of all the players,
where P = P1 £ ¢ ¢ ¢ £ PN . The vector consisting of the
elements of p(k) other than the jth element is denoted by
p¡j(k).

As discussed before, one may assume that QoS requirements
are represented by target SINRs. Then, the power control
task can be seen as the tracking of a target SINR through
power decisions. An intuitive cost function which preserve
such characteristics is the squared error between the target
SINR and the actual SINR. Note that it is imposed a penalty
to the player which obtain SINR values far from the target
SINR. Thus, the strategy of each player j in a time instant k

of the game GK is defined below:

min
pj(k+1)∈Pj

cj

¡
pj(k + 1), p¡j(k + 1)

¢
=

|½t − ½j(k + 1)|2,
(1)

where ½t is a fixed target SINR and ½j(k + 1) is the SINR of
player j at the time instant k + 1, expressed as:

½j(k + 1) =
pj(k + 1)gj(k + 1)

Ij(k + 1)
, (2)

where gj(k + 1) is the channel gain and Ij(k + 1) is the
interference-plus-noise power perceived by the receiver j, that
is:

Ij(k + 1) =

N∑

i=1

(pi(k + 1)gi(k + 1)) + ¾2, i 6= j, (3)

where ¾2 is the average AWGN power.
Then, at the time instant k, each player has as objective

to determine its own power level at the next time instant
in such a manner that the squared error between the target
and the actual SINRs is minimized. Note that the channel
gain and the interference-plus-noise power have positive
and continuous values. Furthermore, the transmit power that
optimizes individual cost function depends on the transmit
powers of all other transmitters. Therefore, it is necessary to
determine a set of powers where each player is satisfied with
the cost that it has to pay, given the power selections of other
players. Such an operating point is called equilibrium point.

A suitable solution to this problem is the Nash Equilibrium
Point. The Nash Equilibrium concept offers a predictable,
stable outcome of a game where multiple agents with
conflicting interests compete through self-optimization and
reach a point where no player wishes to deviate from.
Formally, a power vector p¤(k) = [p¤1(k), ..., p¤N (k)] is a Nash
Equilibrium Point of GK if, for each j ∈ Nj , it holds:

cj

¡
p¤j (k + 1), p¤

¡j(k + 1)
¢
· cj

¡
pj(k + 1), p¤

¡j(k + 1)
¢
.

(4)

A. Existence and Uniqueness of GK Equilibrium

Necessary and sufficient conditions for the existence of a
Nash Equilibrium Solution are given by Theorem 1.

Theorem 1: For each j ∈ Nj let Pj be a closed, bounded
and convex subset of a finite-dimensional Euclidian space, and
the cost functional cj : P1 £ ¢ ¢ ¢ £ PN −→ R be jointly
continuous in all its arguments and strictly convex in pj for
every pi ∈ Pi, i 6= j. Then, the associated nonzero-sum game
admits a Nash Equilibrium.

Proof: A proof of Theorem 1 can be found in [7].
The strategy set Pj = [pmin, pmax] is a closed, bounded

and convex subset of the Euclidian space R, for all j. Thus,
in order to prove the existence of a Nash Equilibrium Solution
to the presented nonzero-sum game, it is necessary to verify
the continuity of the cost function cj with respect to all its
arguments and if it is strictly convex in pj for all pi ∈ Pi,
i ∈ Nj , i 6= j. Then, from (1) and (2), we obtain:

cj = ½t
2−2½t

·
gj(k + 1)

Ij(k + 1)

¸
pj(k+1)+

·
gj(k + 1)

Ij(k + 1)

¸2

p2
j (k+1).

(5)
We conclude from (3) and (5) that the cost function cj is

continuous with respect to all its arguments. The cost function
strict convexity is considered in the following.
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B. Nash Equilibrium Point of GK

The necessary optimality condition for a differentiable
function is that its first-order derivative be equal to zero. The
partial derivative of the cost function cj with respect to pj is
given below:

∂cj

∂pj(k + 1)
= −2½t

·
gj(k + 1)

Ij(k + 1)

¸
+2

·
gj(k + 1)

Ij(k + 1)

¸2

pj(k+1),

(6)

∂cj

∂pj(k + 1)
= 0 =⇒ pj(k + 1) = ½t

Ij(k + 1)

gj(k + 1)
. (7)

The sufficient optimality condition for a two-time
differentiable function is that its second-order derivative be
different from zero. The second-order partial derivative of cj

with respect to pj is shown below to be strictly positive. Then,
the strict convexity of cj is formally guaranteed:

∂2cj

∂p2
j (k + 1)

= 2

·
gj(k + 1)

Ij(k + 1)

¸2

> 0. (8)

Therefore, the presented game admits a unique Nash
Equilibrium Solution, given by (7). Furthermore, (8)
guarantees that this solution minimizes the cost function cj

for all j ∈ Nj .

C. Stability Analysis of the Nash Equilibrium Point

An important characteristic of an equilibrium solution is
the stability. A Nash Equilibrium Solution is stable with
respect to a determined deviation of a player, i.e., a choice
different from the Nash Equilibrium Solution, if an iterative
process converges to the originally satisfatory solution (Nash
Equilibrium Point). The following definition can be used to
carry out a stability analysis [7], [8].

Definition 1: A Nash Equilibrium Solution u¤
j , j ∈ M =

{1, ¢ ¢ ¢ ,m} is stable with respect to the deviation scheme Υ
if it may be obtained as:

u¤
j = lim

k→∞
uj(k), (9)

uj(k + 1) = arg min
uj∈Uj

Jj(uj(k + 1), uΥk

¡j ), (10)

where u is the decision variable, uΥk

¡j is the deviation of players
except player j in the time instant k, and J is the objective
function.

In GK, using the expression of interference-plus-noise
power in the Nash Equilibrium Point, respectively (3) and (7),
the following expression is obtained:

pj(k) = ½t
j

∑N

l=1 [pl(k)gl] + ¾2

gj

, (11)

where l 6= j and gj is the channel gain of player j, j ∈ Nj .
Then, from Definition 1, the Nash Equilibrium Point may be
written as follows:

p¤j = lim
k→∞

½t
j

∑N

l=1 [pl(k)gl] + ¾2

gj

. (12)

A special case of deviation corresponds to the situation
where players adjust their actions simultaneously in response
to the more recent actions of the other players, that is,
uΥk

¡j = u¡j(k). In GK, such situation is represented by
pΥk

¡j = p¡j(k), which corresponds to:

pj(k + 1) = arg min
pj∈Pj

cj(pj(k + 1), p¡j(k)) =⇒

pj(k + 1) = ½t
j

∑N

l=1 [pl(k)gl] + ¾2

gj

, l 6= j.
(13)

Thus:

lim
k→∞

pj(k + 1) = lim
k→∞

pj(k) = p¤j , ∀j ∈ Nj , (14)

assuring the stability of the Nash Equilibrium Point of GK

with respect to the situation where the players adjust their
transmit power in response to the status given in the previous
power control actuation.

In practice, such a deviation scheme is reasonable, since
values of channel gain and interference-plus-noise power at
time instant k + 1 are not available at the time instant k.
Consequently, at time instant k each player j has not
information about the transmit power choice of the other
players for time instant k + 1. Then, the Nash Equilibrium
Solution given by (7) is not realizable. However, from the
stability analysis, we conclude that the approximation given by
(15) makes (7) to converge to the Nash Equilibrium Solution
in an iterative process:

Ij(k + 1)

gj(k + 1)
≈

Ij(k)

gj(k)
. (15)

In fact, this Nash Equilibrium Solution approximation is
shown to be the well-known Distributed Power Control (DPC)
algorithm:

pj(k + 1) = ½t

Ij(k)

gj(k)
=⇒ pj(k + 1) =

½t

½j(k)
pj(k). (16)

The DPC algorithm as an approximation of the Nash
Equilibrium Solution motivates the use of more accurate
approximations in order to obtain better performance. Low
computational complexity and simple implementation are
characteristics of the DPC algorithm. Then, in the next section,
a simple prediction technique is employed to develop a
new power control algorithm which approximates the Nash
Equilibrium Solution more accurately than the DPC, however
keeping its desirable characteristics.

IV. TAYLOR SERIES-BASED POWER CONTROL
ALGORITHM

Values of I(k + 1) and g(k + 1) can be approximated
separately by making use of some past samples in a Taylor’s
Series [9]. Taylor’s Series is used to expand continuous
functions f(x) as follows:
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f(x) = f(x0) +
∞∑

n=1

f (n)(x0) ¢ (x− x0)
n

n!
, (17)

where the term f (n)(x) represents the nth derivative of f(x)
with respect to x. Due to (x − x0)

n and n!, when x and x0

are adjacent values, the higher order terms can be neglected
[10]. Thus, neglecting the derivative terms of second or higher
order, we obtain:

f(x) = f(x0) + f ′(x0) ¢ (x− x0). (18)

Now, we transform (18) into a difference equation. For this,
we assume that x0 is the current discrete time instant k and
x the next instant k + 1. Further, f ′(x0) is substituted by
f(k)− f(k − 1). Thus, we obtain:

f(k + 1) = 2 ¢ f(k)− f(k − 1). (19)

Therefore, we can use (19) in order to approximate the path
gain and the co-channel interference:

ĝj(k + 1) = 2 ¢ gj(k)− gj(k − 1), (20)

Îj(k + 1) = 2 ¢ Ij(k)− Ij(k − 1). (21)

So, using the approximations given by (20) and (21) in the
expression of the Nash Equilibrium Solution, (7), the transmit
power for instant k + 1 is defined by the following proposed
algorithm:

pj(k + 1) = ½t ¢

·
2 ¢ Ij(k)− Ij(k − 1)

2 ¢ gj(k)− gj(k − 1)

¸
. (22)

Note that when the estimations tend to correct values, that
is, ĝj(k+1) ≈ gj(k+1) and Îj(k+1) ≈ Ij(k+1), the SINR
tends to the target SINR:

½j(k + 1) =
gj(k + 1) ¢ pj(k + 1)

Ij(k + 1)
=⇒

½j(k + 1) =
gj(k + 1)

ĝj(k + 1)
¢ ½t ¢

Îj(k + 1)

Ij(k + 1)
≈ ½t.

(23)

It is important to observe that the prediction method
employed to develop the new algorithm does not compromise
the desirable characteristics of a distributed power control
algorithm, such as low computational complexity and simple
implementation. The proposed algorithm requires only 2
multiplication operations more than DPC algorithm and a unit
of memory.

V. SIMULATION RESULTS

We now illustrate the performance of the proposed
algorithm, taking as an example some snapshots extracted
from the simulated CDMA system. DPC algorithm is also
considered.

Fig. 1 shows a sample of the Eb/N0 evolution achieved
by a given user in a typical snapshot for both the DPC and
the proposed algorithm. In this case, ten mobile stations are
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Fig. 1. Tracking of Eb/N0 target for the evaluated algorithms.

placed in the cell and the same system configuration and fading
realizations are used for both algorithms.

From Fig. 1, it is clearly observable that the proposed
algorithm (Fig. 1(b)) is able to stabilize the Eb/N0 around
the target (Eb/N0)t better than DPC algorithm (Fig. 1(a)). In
other words, the mean squared error (MSE) between the actual
and the target (Eb/N0)t values is smaller for the proposed
algorithm than for the conventional one.

Also for this snapshot and the same mobile station, path
gain prediction and interference prediction carried through
proposed algorithm are shown. Fig. 2(a) presents the behavior
of the path gain and the tracking performance of the path
gain prediction. Equivalently, Fig. 2(b) shows interference and
its prediction. It can be observed that prediction based on
Taylor’s Series achieves good performance for both path gain
and interference. The same behavior was observed in several
snapshots.

In practical systems, it is difficult to keep exactly the Eb/N0

at the target value, specially in high mobile speeds [11].
Therefore, we assume an Eb/N0 margin below the target
(Eb/N0)t in which signal quality is assumed acceptable. We
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Fig. 2. Comparison between predicted and correct values using the proposed
method.

simulate 5000 snapshots and calculate the average fraction of
time in which the achieved Eb/N0 is 1 dB below the target
(Eb/N0)t, for several system loads. In Fig. 3, we illustrate
how the superior tracking capability of the proposed algorithm
translates into a system-level advantage.

Through these experiments, it can be observed that the
employment of this power control algorithm allows for a
significant capacity gain when compared to the DPC. The
only payoff for this is the need of additional memory when
compared with conventional DPC.

VI. CONCLUSIONS

A game-theoretical approach was used to construct a general
framework to the distributed power control problem. This
problem was formulated as a static multi-stage nonzero-sum
noncooperative game, with the objective of tracking a given
target SINR through transmit power decisions. A unique Nash
Equilibrium Solution was obtained, but it was shown to be not
realizable.

The stability analysis of Nash Equilibrium Solution showed
that approximations of this equilibrium point may converge
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Fig. 3. Average fraction of time in which the Eb/N0 is 1 dB below the
(Eb/N0)t for both algorithms and several loads in a CDMA system.

in an iterative process to the original equilibrium point.
The conventional DPC algorithm was shown to be an
approximation of the Nash Equilibrium Solution.

A new decentralized power control algorithm was developed
by using a simple prediction method. The new algorithm
is also an approximation of the Nash Equilibrium Solution,
but is more accurate than DPC algorithm. The algorithm
preserves the desirable characteristics of a distributed power
control algorithm: low computational complexity and simple
implementation. It requires only 2 multiplication operations
more than DPC and a unit of memory. Computational
simulations in a cellular system environment were performed
and comproved the better performance of the proposed
algorithm compared to DPC algorithm with respect to the tasks
of tracking a target SINR and of guarantee of a minimum
SINR.
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