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Abstract - This work is based on the Self-
Teleportation of Fields Method. This method 
consists on the cancellation of an incident wave by 
a negative copy of itself. However, this cancellation 
is not perfect when one applies the spatial and 
temporal discretization of the FDTD Method [1]. 
This error comes from phase difference between 
the incident and the copied waves. This work 
describes how to minimize this error by the use of 
the Non-Uniform Grids Method. From the 
achieved results, it is observed that the more 
refined the grid is, the more attenuated the incident 
wave will be, in despite of the increasing. 
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I. Introduction 
 
     In the simulation of electromagnetic devices using 
the FDTD Method it is necessary to avoid reflected 
waves by the domain�s boundaries. This is obtained by 
absorbing boundary condition (ABC) methods. The 
current ABC methods are: the Mur�s method and the 
Perfectly Matched Layer (PML) method.  
     The ABC method developed by Mur [2] is based 
on radiation boundary conditions. This method 
provides a maximal attenuation of 40 dB and is easy to 
implement. 
     The ABC method developed by Berenger [3] and 
improved by Gedney [4] is based on anechoic 
chamber�s materials. It is called Perfected Matched 
Layer (PML) and provides much more attenuation 
than Mur�s method. However, it is hard to implement 
and demands a higher computational cost. 
     Over the years, improvements had been made in 
these methods without significantly changing their 
basis. However, more recently a new ABC method 
was developed by Diaz and Scherbatko [5, 6] and was 
called �Self-Teleportation of Fields�. This method is a 
new version of radiation boundary condition like 

Mur�s method and provides attenuation comparable 
with the same. 
     However in this method, many boundaries can be 
stacked, witch increases its attenuation capacity to that 
of PML method but with less complexity and 
computational cost. 
     This method consists in making a negative copy of 
the electric and magnetic fields at a position of FDTD 
grid at another position of same FDTD grid aiming at 
canceling the total field. 
     If these positions are coincident, it is possible to 
make a perfect cancellation by addition of the original 
fields to the copied fields with inverted signal. 
However, to avoid feedback instabilities, these 
positions cannot be coincident. For this position 
difference, the wave cancellation is not perfect, 
because there are amplitude and phase errors between 
the original and the copied fields. 
     The aim of this work is at applying the Non-
Uniform Grids Method [7 - 9] to divide the FDTD 
domain in such a way to bring these positions as close 
as possible to minimize the errors. This paper also 
analyzes the influence of this subdivision on the wave 
cancellation. 
 
 
 

II. Used methods   
 
     In the following there is a brief description of the 
two methods used in this work: the Self-Teleportation 
of Fields Method and the Non-Uniform Grid Method. 
 
 
II.a. Self-Teleportation of Fields Method [4, 5] 
 
     This method is a discrete version of Schelkunoff�s 
equivalence theorem. According to this theorem, the 
field outside a source region limited by an imaginary 
closed surface S can be obtained by introduction, over 
this surface, of electric current densities Ke and 
magnetic current densities Km, with the elimination of 
the original source. 
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     These current densities are chosen in such way that 
the fields inside S are zero and outside S are equal to 
the original ones. These currents are obtained by 
expressions (1) e (2). 
 

tote HnK ×= �    (1) 
 

totm EnK ×−= �    (2) 
 
where n�  is the outward normal to S. 
      
     The implementation of this method using FDTD 
consists in creating an imaginary plane S that acts as a 
buffer for the current densities Ke and Km and the 
creation of an imaginary plane S� that will dispose 
these mentioned current densities, as illustrated in 
Fig.1. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Illustration of equivalence theorem in FDTD Method. 
 
 
     If the surfaces S and S� are spatial and temporal 
coincident, and if we subtracted the original field from 
the copied one, we will have a perfect cancellation of 
the incident wave on this surface. However, due to the 
feedback of the fields in S to generate the current 
densities Ke and Km in S�, the surfaces S and S� cannot 
be coincident in FDTD Method. Usually, S� is located 
one cell apart of S and its fields are delayed one time 
step in the simulations. 
     These currents densities can be introduced into 
FDTD Method by equations (3) and (4). 

 

ds
KE

t
H m−×∇−=
∂
∂µ   (3) 

 

ds
KH

t
E e−×∇=

∂
∂ε    (4) 

 
whereds  is the area element. 
 
 

II.b. Non-Uniform Grids Method [7 - 9] 
 
     For an accurate numerical computation, the grid 
discretization should have a maximum value. This 
value depends on the device�s geometry to be 
analyzed. Therefore, the most refined the grid is, the 
most accurate the result will be. However, this 
refinement increases the necessary memory and 
increases the processing time. 
     To avoid this problem, and still obtain a good 
result, is to make this refinement only in some 
essential areas, such as discontinuities, edges and 
others. This technique reported in [10, 11], is called 
�Subgridding� Method. 
     However, if we want to increase the resolution only 
one direction, axis y for example, we need to apply the 
�Non-Uniform Grids� Method. 
    In FDTD, the Non-Uniform Grids equations are 
obtained by the Maxwell�s equations in the integral 
form, as shown in (5) and (6). 
 









⋅

∂
∂=⋅ ∫∫∫

ΣΓ

dsE
t

dlH ε   (5) 

 









⋅

∂
∂−=⋅ ∫∫∫

ΣΓ

dsH
t

dlE µ   (6) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Illustration of FDTD grid for TE mode. 
 
 
 
 
 
 
 
 
 

Fig. 3.  Illustration of Yee�s cell for TE mode. 
 
 
     The electric as well the magnetic fields can be 
obtained, in each case, by Faraday�s Law or by 
Ampere�s Law. Fig. 4 exemplifies how to calculate the 
Ez field by Ampere�s Law. 
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Fig. 4.  Illustration of Ampere�s law. 
 
 
     Using equation (5) in the cells of Fig. 2, we can 
calculate the electric fields in (7), (8) and (9) from 
cells 1, 2 and 3 respectively. 
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     Now, using (6) in the cells of Fig.2, we can 
calculated the magnetic fields in (10), (11) and (12) 
from cells 2, 3 and 4 respectively. 
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     To avoid divergence in FDTD Method, by the 
Courant condition, we have to chose the minimal size 

of the cells in the axis x and the minimal size in the 
axis y. With this, the Courant condition becomes (13). 
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     For ∆=∆x  and my /∆=∆ , the increase in the 
processing will be 
 

2
1'

2

maxmax
mNN +⋅=   (14) 

 
where Nmax is the maximum computational time for 

∆=∆x  and ∆=∆y . 
 
 
 

III. Numerical Results 
 
     This section presents simulations� results showing 
the cancellation of an incident wave after crossing a 
teleportation boundary for four kinds of Non-Uniform 
Grids. 
     Fig.5 shows how a gaussian pulse snapshot located 
at xx ∆=100  and yy ∆= 75 propagates to beyond 
the teleportation boundary. Located at yy ∆= 85 . 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5.  Cylindrical wave snapshot. 
 
 
 
     The results were obtained using a domain of 
{ }150200 ×  Yee cells with mmyx 1=∆=∆=∆  
of discretization. 
 
     Fig. 6 to Fig.9 show the magnitude of the Ez field 
after the ABC for four different wavelengths. The 
constant m  in the Figures represents the reduction 
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factor of one cell in the grid. The size of the non-
uniform cells is m/∆=δ . The term ∆/λ  is the 
normalization of wavelength by spatial lattice 
discretization and θ o is the wave incident angle in 
degrees. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 6. Magnitude of the absorbing Ez field. 

 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 7. Magnitude of the absorbing Ez field. 

 
 
 
 
 
 
 
 
   
 
 
 
 
 
 
 
 

 
Fig. 8. Magnitude of the absorbing Ez field. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9. Magnitude of the absorbing Ez field. 
 
 
 
 

IV. Conclusion 
      
     This work presented a brief description of the Self-
Teleportation of Fields Method and the Non-Uniform 
Grids Method, as well as its implementation using 
FDTD Method. By the results achieved, it is observed 
that the more refined the grid is, the more attenuation 
of incident wave will be, however this refinement 
increases the processing time as shown in (14). 
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