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Speaker Verification with SVM and DGMM
Tales Imbiriba, Rafael Marinho, Adalbery Castro and Aldebaro Klautau

Abstract— The Gaussian mixture model (GMM) is the main
technique used in speaker recognition systems. However, in tasks
other than speaker recognition, GMM is often outperformed
by modern classifiers, such as support vector machines (SVM).
This work seeks a better understanding of the reasons for
discriminative classifiers not being as successful in speaker
recognition as in other applications. This is done by comparing
GMM and a novel technique called discriminative GMM, which
is similar to SVM in many aspects. Simulation results using the
IME corpus show that both SVM and DGMM can improve the
performance compared to GMM, and indicate that a proper
model selection is essential to make them competitive in speaker
verification.

I. I NTRODUCTION

The Gaussian mixture model (GMM) is the main technique
used in speaker recognition systems. The GMM is trained
throughgenerativelearning, which is often outperformed by
moderndiscriminativelearning techniques [1], [2]. However,
applying discriminative learning to speaker recognition has
proven to be a tricky task [3]. Powerful techniques, such as
support vector machines (SVM) sometimes perform poorly in
speaker recognition, when compared to GMM. Such results
puzzle researchers that work in machine learning problems
other than speaker recognition, where SVM often often out-
perform GMM by a comfortable margin (see, e.g., [4]).

This work tries to achieve a better understanding of this
issue. Instead of seeking the best results for a specific task,
it addresses, for example, the problems that led us to obtain
poor results for SVM in [5]. The approach we take is to
compare generative and discriminative learning, by contrasting
GMM and a similar classifier, calleddiscriminative GMM[4].
Besides being a novel technique, applying DGMM to speaker
verification sheds some light on SVM because both are dis-
criminative learning techniques.

Another contribution of this work is to continue promoting
the adoption of the IME 2002 corpus1, which is a Brazilian
Portuguese corpus for speaker recognition. It has been made
available free of charge to several research groups by the Sig-
nal Processing Group at IME (http://www.ime.eb.br/∼labvoz/),
and is a very useful resource for researchers working in
speaker recognition. Since now, most of the research in speaker
recognition in Brazil is conducted with proprietary (and rela-
tively small) datasets. The IME corpus provides an opportunity
to change this situation, and promote the comparison of
results obtained by different groups given that, besides the
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corpus, there are good open source softwares for speaker
recognition [5].

This paper is organized as follows. In Section 2 we dis-
cuss the frame-based architecture for speaker verification, a
formalism that helps to understand the role of classifiers in
this application. Section 3 discusses classifiers, with emphasis
on contrasting GMM and DGMM, two Bayes classifiers that
differ in the training procedure. Experimental results are
presented in Section 4, which is followed by the conclusions.

II. T HE FRAME-BASED ARCHITECTURE FORSPEAKER

VERIFICATION

Speaker recognition is the process of automatically recog-
nizing who is speaking, and can be split into speaker identifica-
tion and speaker verification. Speaker identification determines
which registered speaker provides a given utterance from
amongst a set of known speakers. Speaker verification is a
binary problem, in which the system accepts or rejects the
identity claim of a speaker. This work deals exclusively with
verification.

The speaker recognition problem is closely related to the
conventional supervised classification. Hence, we start by
providing few related definitions. In such framework, one is
given a training set {(x1, y1), . . . , (xN , yN )} containingN
examples, which are independently and identically distributed
(iid) samples from an unknown but fixed distributionP (x, y).
Each example(x, y) consists of a vectorx ∈ XL of dimension
L, called instance, and alabel y ∈ {1, . . . ,Y }. A classifier is
a mappingF : XL → {1, . . . ,Y }. Of special interest are
binary classifiers, for whichY = 2, and for mathematical
convenience, sometimes the labels arey ∈ {−1, 1}. Some
classifiers are able to provideconfidence-valued scoresfi(x)
for each classi = 1, . . . , Y . Commonly, these classifiers use
the max-wins ruleF (x) = arg maxi fi(x). When these are
binary classifiers, only a single scoref(x) ∈ R is needed. For
example, ify ∈ {−1, 1}, the final decision can be simply the
sign of the score, i.e.,F (x) = sign(f(x)).

Contrasting to classifiers, in speaker recognition systems,
the input is a matrixX = {xt}, X ∈ X T×Q, which
corresponds to a segment of speech parameterized by the
front endstage [6]. The numberT of rows is the number of
frames(or segments) of speech, andQ (columns) represents
the number of parameters of each frame. IfT is fixed (say,T =
1000 frames),X could be turned into a vector of dimension
L = T × Q, and one would end up with a conventional
classification problem. However, in text-independent speaker
verification, any comparison between elements of two such
vectors could fail, because they would eventually represent
different sounds. Hence, verification systems often adopt a
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frame-basedarchitecture2(see, e.g., [5]), which is similar to,
but does not exactly match a conventional classifierF .

The frame-based verification system is a mappingG :
X T×Q → {−1, 1}, where−1 and 1 correspond to speaker
rejection and acceptance, respectively. More specifically,

G(X) = sign(g(X)− λ),

where g(X) is a score, typically provided by amodel cor-
responding to the claimed identity, andλ is a threshold that
allows to tradeoff the false rejection and false acceptance rates.
In this architecture,g(X) is calculated by invoking repeatedly
a conventional classifier that returns a confidence-valued score
f(xt), i.e., g(X) =

∑T
t=1 f(xt) or, eventually

g(X) =
T∑

t=1

log(f(xt)),

as in the case of adopting GMMs for computingf(x).
There are many learning algorithms for training classifiers

(see, e.g., [8]). Roughly speaking, all of them can be used
in frame-based speaker verification. The next sections discuss
some of the most prominent classifiers, and pros and cons of
their adoption in this application.

III. C LASSIFIERS FORFRAME-BASED VERIFICATION

GMM, which is a special case of a Bayes classifier, is the
most popular classifier for speaker verification. However, in
many other tasks, GMM is outperformed by other classifiers.
Among these competitors, of special interest are the ones
based onkernel learning, such as SVM [9]. Notice that a
Bayes classifier is called by some authors a “kernel” classifier
(see, e.g., page 188 in [8]). However, by kernel classifier we
mean the ones obtained through kernel learning, as defined,
e.g., in [10].

In spite of the good performance achieved by kernel meth-
ods (and other discriminative techniques) in several tasks [10],
adopting it in speaker verification remains a challenge. For
example, GMM outperformed SVM in some of our pre-
liminary experiments [5]. Such conclusion puzzles machine
learning experts, but speech verification has idiosyncrasies that
require better understanding for the successful adoption of
discriminative learning. This work is a small step towards this
goal. To make the simulations manageable, it deals exclusively
with SVM, which is the most popular kernel classifier, and two
Bayes classifiers: GMM and DGMM. We start by discussing
SVM and afterwards we conduct a thorough review of Bayes
classifiers.

A. SVM

SVM (and other kernel methods) can be related to regular-
ized function estimation in a reproducing kernel Hilbert space
(RKHS) [11]. One wants to find the functionf that minimizes

1
N

N∑
n=1

L(f(xn), yn) + λ||f ||2HK , (1)

2An alternative architecture is discussed in [3], [7].

whereHK is the RKHS generated by the kernelK, f = h+b,
h ∈ HK, b ∈ R andL(f(xn), yn) is a loss function.

The solution to the optimization problem described in
Equation 1, as given by therepresentertheorem [12], is

f(x) =
N∑

n=1

ωnK(x,xn) + b. (2)

This expression indicates that SVM and related classifiers are
example-based[10], i.e., f is given in terms of the training
examplesxn. In other words, assuming a Gaussian kernel
K(x,x′) = e−γ||x−x′||2 , the mean of a Gaussian is restricted
to be a training examplexn.

Some examplesxn may not be used in the final solution
(e.g., the learning procedure may have assignedωn = 0). We
call support vectorsthe examples that are actually used in the
final solution. For saving memory and computations in the test
stage, it is convenient to learn a sparsef , with few support
vectors.

In speaker verification, the number of support vectors can be
as high as 90% of the training set. There are several algorithms
for SVM training, but most of them provide a parameter to
influence the number of support vectors. In this work, the
“complexity” parameterC was adopted [10].

The next subsection discusses Bayes classifiers, for which
the number of Gaussians (equivalent to the number of support
vectors when SVM uses a Gaussian kernel) is specified before
training the classifier.

B. Generative and discriminative Bayes classifiers

Bayes classifiers are ideal to contrast generative and dis-
criminative learning applied to speaker verification. Through-
out this work, the nomenclature follows the one used in [13],
where3 P (y|x), P (x|y), P (y) andP (x) are calledposterior,
likelihood, prior and evidence, respectively, and are related
through Bayes’ rule

P (y|x) =
P (x|y)P (y)

P (x)
. (3)

Bayes classifiers attempt to select the label
arg maxy=1,...,Y P (x|y)P (y), which maximizes the posterior
probability. However, neitherP (y), nor P (x|y) is known,
hence the classifiers use estimatesP̂ (y) and P̂ (x|y) and
maximize

F (x) = arg max
y=1,...,Y

P̂ (x|y)P̂ (y). (4)

In most cases, the priorP (y) can be reliably estimated by
counting the labels in the training set, and we assume here
thatP̂ (y) = P (y). EstimatingP̂ (x|y) is more difficult. Hence,
classifiers typically assume a parametric distributionP̂ (x|y) =
P̂Θy

(x|y) called likelihood model, whereΘy describes the
distribution’s parameters to be determined (e.g., mean and
covariance matrix if the likelihood model is a Gaussian).

If P̂ (x, y) = P (x, y), this classifier achieves the optimal
(Bayes) error [13]. However, with limited data, one has to

3We useP to denote both probability mass functions and densities.
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carefully choose the model assumed for the likelihoods and
the algorithm for their estimation.

Different likelihood models have been adopted for Bayes
classifiers (see, e.g., [14]). Assuming individual diagonal co-
variance matricesΣyg for each Gaussian leads to the model
adopted for both GMM and DGMM classifiers:

P̂ (x|y) =
Gy∑
g=1

wygN (x|µyg,Σyg). (5)

The distinction between GMM and DGMM is their training
algorithms.

Training a Bayes classifier consists in estimating the para-
metersΘ of all its likelihood functionsP̂ (x|y). The conven-
tional way of estimatingΘ for all Bayes classifiers but DGMM
is through maximum likelihood estimation (MLE). Assuming
N iid training examples, MLE classifiers seek

Θg = arg max
Θ

Rg(Θ),

where

Rg(Θ) =
N∏

n=1

P̂ (xn|yn).

The Bayes classifiers trained with MLE are calledgenera-
tive [2] or informative[1]. The term generative is used because
if the estimatedP̂ (x, y) is “close” to the true distribution
P (x, y), we could useP̂ (x, y) to generate samples with
statistics similar to the ones of our original training set.
However, for the sake of classification, we do not need to keep
Θ. For example, one cannot generate samples out of a LDA
classifier after simplifying the expressions [1] that defineF .
In such cases, the term informative seems more appropriate.

By contrast, discriminative Bayes classifiers (and other
probabilistic classifiers, such as the relevance vector ma-
chine [10]) seek

Θd = arg max
Θ

Rd(Θ),

where

Rd(Θ) =
N∏

n=1

P̂ (yn|xn).

Note that

Rd(Θ) =
N∏

n=1

P̂ (xn|yn)P̂ (yn)
P̂ (xn)

(6)

=
N∏

n=1

(
1 +

∑
j 6=yn

P̂ (xn|j)P̂ (j)

P̂ (xn|yn)P̂ (yn)

)−1

. (7)

It follows that discriminative procedures try not only to
maximize the likelihood of examples(x, y), but, at the same
time, minimize the likelihood of competing classesj 6= y.

Conventionally, theexpectation-maximization(EM) algo-
rithm [15] is used for training GMMs through MLE. As for
others generative-discriminative pairs of classifiers, training
a discriminative Bayes classifier is harder than a generative.
There are no closed-form solutions and iterative optimization
algorithms are needed. In this work, DGMMs are trained

with the algorithm proposed in [14], which is called herefast
extended EM(FEEM) algorithm.

Roughly speaking, if the modeling assumptions are correct,
adopting a generative classifier is more appropriate [16], [1],
[2]. In fact, if training data is scarce, generative classifiers
can achieve better performance than their discriminative coun-
terparts [2]. On the other hand, there is empirical evidence
showing that discriminative outperform generative classifiers
if the likelihood model is not correct (see, e.g., [1]) or the
estimated prior probabilities do not match the statistics of the
test set [16].

C. Comparing the Classifiers

A SVM with a linear kernel can be converted to a per-
ceptron, which avoids storing the support vectors and saves
computations during the test stage. However, for speaker
verification, the task posed to the classifier is very hard: to
disambiguate a speaker from the others based only on a short
segment (typically 20 to 40 milliseconds of speech) and one
often needs to adopt a non-linear kernel. Besides, the space
dimension is relatively low (typically Q=39) and sometimes
the SVM training algorithm does not properly converge with
the linear kernel. In this subsection, we assume Gaussian
kernels. The Gaussian kernel allows for a direct comparison of
SVM with GMM and DGMM, given that in all three cases the
training procedure seeks a linear combination of Gaussians.

In speaker verification, the priorŝP (y) for GMM and
DGMM are assumednon-informative, i.e., neglected in
Eq. (4). Hence, the score of thet-th frame, provided by
the model representing the speakery, would be f(xt) =
log P̂ (xt|y). However, it is well-know that it is beneficial
to use auniversal background model(UBM) [17], [3], and
typically the score

f(xt) = log P̂ (xt|y)− log P̂ (xt|ubm)

is the subtraction of the log-likelihoods obtained through two
convexlinear combinations (mixtures) of Gaussians, one for
the target speaker and the other for the UBM. SVMs using a
Gaussian kernel, as in Eq. (2), also output a score based on a
linear combination of Gaussians

f(xt) =
N∑

n=1

ωne−γ||xt−xn||2 + b.

but the weightsω do not need to obey probabilistic constraints.
On the other hand, the covariance matrix is restricted to beσ2I,
whereI is the identity matrix, which requires normalizing the
front end parameters [3].

Concerning the computational cost for training the clas-
sifiers, GMM is the best option because the EM algorithm
is fast and its memory requirement is very small. In the E-
step, EM goes over the whole training set just collecting
sufficient statisticsfor the M-step (see, e.g., [14]). DGMM
training can also exploit sufficient statistics, but requires
more computations. The FEEM algorithm incorporates some
speedup techniques [14] and leads to a training time around
2 to 3 times longer than GMM. SVM requires a much longer
training time, as it scales approximately withO(N2).
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Table I presents a summary of the most important features
for the three classifiers. The next section presents experimental
results achieved by them.

IV. EXPERIMENTAL RESULTS

In this section we discuss experimental results comparing
GMM, DGMM and SVM. We start by describing the IME
corpus, adopted for the simulations.

A. IME Corpus

The IME corpus is composed by 468 files4, corresponding
to 21.9 hours of recorded signal. For the sake of comparison,
the popular NIST-2001 corpus (http://www.ldc.upenn.edu) is
composed by 2350 (shorter) files, which correspond to 26.4
hours of speech. The utterances in the IME corpus were
collected from cellular and wired phone calls made by 75
speakers. The amount of files in each group is: 111 - cellular
/ test, 118 - cellular / train, 120 - wired / test and 123 - wired
/ train.

In order to better organize the simulations, we converted
the original 11-digit file names (e.g., 12151110051.wav) into
names such as id001.cel.train.man.RJ.cn.42.wav, where a dot
separates the information fields. These fields represent a
unique speaker ID, cellular or wired phone, train or test,
gender, speaker geographical origin, recording conditions,
speaker’s age and file extension.

The D41ESC Dialogic board was used to collect all ut-
terances. According to its documentation, this board supports
8-bit PCMµ and A-laws. However, the speech files are stored
in the Microsoft RIFF format as 8-bit PCM linear5. One would
expect 12 or more bits per sample when expanding from the
logarithmic to a linear scale [18]. Besides this problem, silence
represents a relatively high percentage of the total amount of
data. Figure 1 compares the histograms of speech samples
from all utterances in the NIST 2001 and IME corpora. One
can see that silence is much more frequent in the IME than
in the NIST corpus.

Hence, we tried to eliminate silence from the utterances
using a simple voice activity detector (VAD) that is based
on the signal energy. The VAD routine generates a label
file, indicating where silence occurs. Then, to avoid problems
when calculating derivatives of the parameters, we run the
front end using the whole utterance, and cut off the frames
corresponding to silence based on the VAD label file.

B. Performance Results

In [5] we presented results using the IME corpus for several
front ends. Here we adopt the same experimental setup, but
use exclusively 12 perceptual linear prediction (PLP) parame-
ters, plus the energy and two first derivatives (the so-called
PLPEDA39). We restrict the simulations even more by using
only the utterances for the “wired” phone calls (discarding the
“cellular” utterances). Even this restricted scenario is enough

4In fact, the IME corpus originally has 472 files, but 4 are corrupted.
5The 20-th byte of a Microsoft RIFF file (WAV) indicates the kind of PCM:

6 means A-law, 7 isµ-law and 1 is linear PCM. The IME corpus uses 1.
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Fig. 1. NIST (discrete representation using vertical lines) and IME (contin-
uous curve) normalized histograms of speech samples. NIST has a peak of
0.1 around zero, while IME almost reaches 0.5.

for stressing the pitfalls of applying discriminative learning to
speaker verification.

The first point to consider is that the training algorithm tries
to find the best classifierF , while the overall goal is to find
the best systemG. The two are obviously related, as indicated
in Figures 2 and 3, which show the error rate per frame and
the equal error rate(EER) [5], respectively. In these figures,
the abscissa is the number of frames in the training set. The
results were obtained adopting 20 Gaussians for both GMM
and DGMM, based on the conclusions in [5]. One can see that,
as discussed in [2], generative can outperform discriminative
classifiers when the training data is scarce. Our results indicate
that this behavior also happens for SVM.

As mentioned, the task of learningF is very hard: dis-
ambiguate a speaker from the others based only on a short
segment. Besides, the space dimension is relatively low, i.e.,
there are relatively few parameters and a strong overlap of the
classes in the input spaceXL. These two facts impact specially
the SVM classifier, which performed poorly with an average
EER of 3% when the training set had 1500 frames, which is
higher than the GMM and DGMM as shown in Figure 3. The
next subsection discusses some issues related to this situation.
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TABLE I

COMPARISON OFGMM, DGMM AND SVM.

GMM DGMM SVM
Dependency onN (training examples) O(N) O(N) O(N2)
Support multiclass problems yes yes no
Optimization criterion Rg(Θ) Rd(Θ) Eq. (1)
Low memory footprint through sufficient statistics yes yes no
Is the numberG of Gaussians pre-specified? yes yes no
Gaussian means restricted to be training instances?no no yes
Same (pre-specified) variance for all Gaussians ? no no yes
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Fig. 2. The error (%) per frame for GMM and DGMM.

C. The Importance of Model Selection for SVM

A classical way of performing model selection is through
cross-validation (CV), typically with 10 folds. The folds are
disjoints, that is, each vectorx belongs to only one fold. In
many situations, the error using such validation sets provide a
good indication of generalization capability [8]. Unfortunately,
this is not true for a typical CV applied speech processing
scenarios. For example, training a verification system with
CV over the framesxt of the training set, would lead to
overly optimistic error rates for the validation set, because the
impostors in this set are the same used in the training. This
can be circumvented by a careful partition of the training, test
and validation sets, such that impostors (negative examples)
in the validation do not coincide with the ones in the training
set.

Another problem is that, typically, the training set should
use only framesxt from an unique utterance or conversation
(for example, recorded over a single phone call). On the other
hand, for testing, one has to use frames obtained in a differ-
ent recording situation (e.g., channel mismatch). Ideally, the
validation set, for performing model selection when training a
classifier, should have frames from the target speaker (positive
examples) with conditions (mismatch, etc.) similar to the one
found during test. When that is not the case, GMM and
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Fig. 3. Equal error rate (%) for GMM and DGMM.

DGMM present a higher degree of robustness, while SVM
often fails, overfitting the training data and leading to relatively
high error rates in the test set (this can be interpreted under
the light of the structural risk theory [10].

In order to study this situation, we conducted an experiment
where the validation set was made the same as the test set.
Note that this is not the same as testing with the training
set. The validation was simply used to choose the number of
Gaussians (for GMM and DGMM),C and γ for SVM. The
results showed that SVM was able to outperform both GMM
and DGMM. It should be noticed that this test was conducted
only for the sake of interpreting the results, but neither test or
validation data can be used during training when one is trying
to estimate the generalization capability.

D. The Importance of Input Space Dimension for SVM

It is well-know that SVM achieves good performance when
the input space has a high dimension (L is large). Therefore,
a simple experiment was conducted, in which the numberL
of features was increased from 39 to 87, by concatenating a
stream of 48 mel-frequency cepstrum coefficients (MFCC) [6].
The results are shown in Figure 4, which indicates the EER
when varying the number of frames that compose the training
sequence. It can be seen that SVM catches up GMM when
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Fig. 4. The EER (%) for GMM and SVM when using 87 features (39 PLPs
and 48 MFCCs).

1300 frames are used, and ends up with a slightly better result.
In spite of its simplicity, the experiment reinforces the

idea that SVM and other discriminative classifiers need larger
training sets when compared to generative ones. Besides,
Figure 4 shows that SVM benefits more than GMM of a
larger input space dimension in this particular experiment.
Additional simulations should be done in order to draw more
general conclusions. It should be noticed that MFCC and PLP
are relatively similar front ends [14], so there is no much
complementary information between them.

V. CONCLUSIONS

In this work the adoption of DGMM in speaker verification
is discussed. Simulation results using the IME corpus showed
that DGMM e SVM can improve the performance when com-
pared to GMM. The preliminary results showed that DGMM
outperformed GMM, while SVM could be made to reach the
same results as GMM when the number of parameters was
increased from 39 to 87. However, the main goal was not to
achieve improvements in accuracy, but get insight about the
pitfalls of applying discriminative learning to speaker verifica-
tion. This is done by comparing GMM and its discriminative
counterpart, the DGMM, which is similar to SVM and other
kernel methods in many aspects, especially when they use
the Gaussian kernel. Besides, simulations with SVM revealed
some aspects of its adoption in speaker recognition.

Among many factors, such as the training set size and input
space dimension, the one that impacts discriminative learning
the most, is the model selection stage. A proper model selec-
tion is essential, for example, to make SVM competitive in
speaker verification. Generative classifiers are more robust to
overfitting and require less care when choosing the validation
set. Future research points towards comparing GMM, DGMM
and SVM using the whole IME corpus, increasing the number
of front end parameters, mixing utterances from cellular and

wired phone calls, and testing different ways of performing
model selection.
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