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Speaker Verification with SVM and DGMM
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Abstract—The Gaussian mixture model (GMM) is the main corpus, there are good open source softwares for speaker
technique used in speaker recognition systems. However, in tasksrecognition [5].

other than speaker recognition, GMM is often outperformed : : : : e
by modern classifiers, such as support vector machines (SVM). This paper is organized ?S follows. In Section 2 .We.dls
This work seeks a better understanding of the reasons for CUsS the frame-based architecture for speaker verification, a
discriminative classifiers not being as successful in speaker formalism that helps to understand the role of classifiers in
recognition as in other applications. This is done by comparing this application. Section 3 discusses classifiers, with emphasis
icil\gi'\r/lni?z:rdt 2 gg‘ﬁ'i;efnh;rzgugsgae‘i‘f: %‘fg[ﬂ%ﬁ"ﬁsﬁlﬁg'\ﬁs‘i’xg'iﬂe on contrasting GMM and DGMM, two Bayes classifiers that
IME corpus show that both SVM and DGMM can improve the differ in the tralmng proc_edu_re. Experimental results_ are
performance compared to GMM, and indicate that a proper Presented in Section 4, which is followed by the conclusions.
model selection is essential to make them competitive in speaker
verification.

Il. THE FRAME-BASED ARCHITECTURE FORSPEAKER

VERIFICATION
I. INTRODUCTION

The Gaussian mixture model (GMM) is the main technique Speaker recognition is the process of automatically recog-

. s ; -~ nizing who is speaking, and can be split into speaker identifica-
used in speaqu recog_nmon §ystgms. The GMM is tra|n%c(i)2n and speaker verification. Speaker identification determines
throughgenerativelearning, which is often outperformed by

o ! : which registered speaker provides a given utterance from

moderndiscriminativelearning techniques [1], [2]. However, e
: S : " amongst a set of known speakers. Speaker verification is a
applying discriminative learning to speaker recognition has : . .
Inary problem, in which the system accepts or rejects the

proven to be a t”CkY task [3]. PowerfL_JI techniques, such ?5entity claim of a speaker. This work deals exclusively with
support vector machines (SVM) sometimes perform poorly In rification

speaker recognition, when compared to GMM. Such results

puzzle researchers that work in machine learning problemsThe speaker recognition problem is closely related to the

other than speaker recognition, where SVM often often olfonventional supervised classification. Hence, we start by
perform GMM by a Comfortable’ margin (see, e.g., [4]) providing few related definitions. In such framework, one is

This work tries to achieve a better understanding of thig <" atraining set{(xi,y1),..., (xx,yn)} containing N
issue. Instead of seeking the best results for a specific ta, ﬁampleswmch are independently and identically distributed

it addresses, for example, the problems that led us to obt 'H) samples from an ur!known but fixed dISLmbu“.mx’y.)'
poor results for SVM in [5]. The approach we take is t ach exampléx, y) consists of a vectar € X of dimension

compare generative and discriminative learning, by contrasting calleqlms}';ar.lc;%nd alalbel y ff{l’(').f' '} 'AI C_Iat55|f|etr|s
GMM and a similar classifier, callediscriminative GMM[4]. a n;?przzlg%s'f'érs fo? {hérY ’_}'2 an?jps(;:rlam:';r?erﬁﬂnsat'z;?
Besides being a novel technique, applying DGMM to speak%fn gn'encel Iso&]et'm\(levslthe I;bel,s ] 11 SonI1e
verification sheds some light on SVM because both are di§- ven! ' ! : . gres {~1,1}.
o : . classifiers are able to providmnfidence-valued scorefs(x)
criminative learning techniques. _ o
Lo, . . . . for each clasg = 1,...,Y. Commonly, these classifiers use
Another contribution of this work is to continue promotmg[ .
: R o he max-wins ruleF(x) = arg max; f;(x). When these are
the adoption of the IME 2002 corpyswhich is a Brazilian | . = . :
- baqary classifiers, only a single scoféx) € R is needed. For
Portuguese corpus for speaker recognition. It has been made ; ' < :
. xample, ify € {—1, 1}, the final decision can be simply the
available free of charge to several research groups by the s'%n of the score, . (x) = sign f(x))
nal Processing Group at IME (http://www.ime.eb-dbvoz/), C ) ' I. fx B _g Xk ' .
and is a very useful resource for researchers working jn~°0ntrasting to classiiers, in speaker recognition systems,

speaker recognition. Since now, most of the research in speakér MPUt dIS a matrixX = {th}, XhG XT*Q, .Wh(IijL )
recognition in Brazil is conducted with proprietary (and relgCCI"eSPONAs o a segment of speech parameterized by the

tively small) datasets. The IME corpus provides an opportuni¥ nt endstage [6]. Thefnumbe: of rowsl is the number of
to change this situation, and promote the comparison @mes(or segments) of speech, agl (columns) represents

results obtained by different groups given that, besides t number of parameters of each_framd? I5 fixed (sa_LyT —
1000 frames),X could be turned into a vector of dimension

The authors are with the Signal Processing Laboratory (LaPS), DEEE, = T x @, and one would en.d up V_Vith a conventional
UFPA, 66075-110, Bém, Paa, Brazil, http://www.laps.ufpa.br. Emails: classification problem. However, in text-independent speaker
{tales,rafael,adalbery,aldebd@deec.ufpa.br. A preliminary version of this At ;
work appeared at the workshop TIL/SBC'200%0SLeopoldo, Brazil. verification, any _comparlson between elements of two such

work supported by FAPERJ, Brazil, under grant number EYECtors could fail, because they would eventually represent

26/171.307/2001. different sounds. Hence, verification systems often adopt a

411



frame-basedarchitecturé(see, e.g., [5]), which is similar to, whereH is the RKHS generated by the kerrié) f = h+b,
but does not exactly match a conventional classifier h € Hi,beRandL(f(x,),y,) is a loss function.

The frame-based verification system is a mappiHg: The solution to the optimization problem described in
XT>Q — [-1,1}, where—1 and 1 correspond to speakerEquation 1, as given by thepresentettheorem [12], is
rejection and acceptance, respectively. More specifically,

N
G(X) = signg(X) — A), ) = 32 enlo )+ o)

where %(.X) tis t?] SC‘I"?’ t)(;p_igallyt/_tprovr;ggd bilh mo:ell dcct)r:- " This expression indicates that SVM and related classifiers are
responding fo the ciaimed identity, ardis a thresho a example-basedl10], i.e., f is given in terms of the training

allows to tradeoff the false rejection and false acceptance ratgfampleSX In other words, assuming a Gaussian kernel
n- H

In this arc.hltectureg(.)'() is calculated by mvpkmg repeatedlylc x,x') = e=Ix=x'II” the mean of a Gaussian is restricted
a conventional classifier that returns a confidence-valued scol8 e 4 training example
n-

. o T
fxe), 1., 9(X) =324 f(x) or, eventually Some examplex,, may not be used in the final solution

T (e.g., the learning procedure may have assigngd- 0). We
g(X) = log(f(x¢)), call support vectorshe examples that are actually used in the
t=1 final solution. For saving memory and computations in the test
as in the case of adopting GMMs for compultiffigx). stage, it is convenient to learn a spargewith few support

There are many learning algorithms for training classifieMCtors.
(see, e.g., [8]). Roughly speaking, all of them can be used!n speaker verification, the number of support vectors can be
in frame-based speaker verification. The next sections disc@§shigh as 90% of the training set. There are several algorithms

some of the most prominent classifiers, and pros and consf@f SVM training, but most of them provide a parameter to
their adoption in this application. influence the number of support vectors. In this work, the

“complexity” parametetC' was adopted [10].
The next subsection discusses Bayes classifiers, for which

the number of Gaussians (equivalent to the number of support

GMM, which is a special case of a Bayes classifier, is thg,ctors when SVM uses a Gaussian kernel) is specified before
most popular classifier for speaker verification. However, Waining the classifier.

many other tasks, GMM is outperformed by other classifiers.
Among these competitors, of special interest are the ones
based onkernel learning such as SVM [9]. Notice that a B- Generative and discriminative Bayes classifiers
Bayes classifier is called by some authors a “kernel” classifierBayes classifiers are ideal to contrast generative and dis-
(see, e.g., page 188 in [8]). However, by kernel classifier wgiminative learning applied to speaker verification. Through-
mean the ones obtained through kernel learning, as defingdt this work, the nomenclature follows the one used in [13],
e.g., in [10]. wheré P(y|x), P(x|y), P(y) and P(x) are calledposterior,

In spite of the good performance achieved by kernel metlikelihood, prior and evidence respectively, and are related
ods (and other discriminative techniques) in several tasks [1f{rough Bayes’ rule
adopting it in speaker verification remains a challenge. For P(xly) P(y)
example, GMM outperformed SVM in some of our pre- Plylx) = —2¥2 W) ©)
liminary experiments [5]. Such conclusion puzzles machine P(x)
learning experts, but speech verification has idiosyncrasies tBayes  classifiers attempt to select the label
require better understanding for the successful adoption & max,_; _y P(x|y)P(y), which maximizes the posterior
discriminative learning. This work is a small step towards thisrobability. However, neitherP(y), nor P(x|y) is known,
goal. To make the simulations manageable, it deals exclusiveynce the classifiers use estimatésy) and P(X|y) and
with SVM, which is the most popular kernel classifier, and twgmaximize
Bayes classifiers: GMM and DGMM. We start by discussing . .
SVM and afterwards we conduct a thorough review of Bayes F(x) = arg e P(x|y)P(y). 4
classifiers. '

IIl. CLASSIFIERS FORFRAME-BASED VERIFICATION

In most cases, the prioP(y) can be reliably estimated by
counting the labels in the training set, and we assume here
A. SVM that P(y) = P(y). EstimatingP(x|y) is more difficult. Hence,
SVM (and other kernel methods) can be related to regulzyjagsifiers typically assume a parametric distribum?ilx\y) =
ized function estimation in a reproducing kernel Hilbert space, (x|y) called likelihood model, wher®, describes the
(RKHS) [11]. One wants to find the functighthat minimizes distribution’s parameters to be determined (e.g., mean and
covariance matrix if the likelihood model is a Gaussian).

N
1 - . - . .
v ZL(f(Xn),yn) + /\||f||3{)c, (1) If P(x,y) = P(x,y), this clas_sme_r _ach|eves the optimal
ne1 (Bayes) error [13]. However, with limited data, one has to
2An alternative architecture is discussed in [3], [7]. 3We useP to denote both probability mass functions and densities.
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carefully choose the model assumed for the likelihoods amdth the algorithm proposed in [14], which is called héast
the algorithm for their estimation. extended EMFEEM) algorithm.

Different likelihood models have been adopted for Bayes Roughly speaking, if the modeling assumptions are correct,
classifiers (see, e.g., [14]). Assuming individual diagonal cadopting a generative classifier is more appropriate [16], [1],
variance matrice&,, for each Gaussian leads to the moddR]. In fact, if training data is scarce, generative classifiers
adopted for both GMM and DGMM classifiers: can achieve better performance than their discriminative coun-
terparts [2]. On the other hand, there is empirical evidence
showing that discriminative outperform generative classifiers
if the likelihood model is not correct (see, e.g., [1]) or the

estimated prior probabilities do not match the statistics of the
The distinction between GMM and DGMM is their trainingtest set [16].

algorithms.

Training a Bayes classifier consists in estimating the pa
meters© of all its likelihood functionsP(x|y). The conven- _ }
tional way of estimating for all Bayes classifiers but DGMM A SVM with a linear kernel can be converted to a per-
is through maximum likelihood estimation (MLE). Assuming?&Ptron, which avoids storing the support vectors and saves

Gy
P(xly) = " wygN (x|, Syy). (5)
g=1

(o Comparing the Classifiers

N iid training examples, MLE classifiers seek computqtions during the test stage. However, for speaker
verification, the task posed to the classifier is very hard: to
O = arg max RI(©), disambiguate a speaker from the others based only on a short
segment (typically 20 to 40 milliseconds of speech) and one
where N often needs to adopt a non-linear kernel. Besides, the space
RI(0) = H p(xnlyn)~ dimension is relatlvelyllow (typically Q=39) and sometlmgs
vt the SVM training algorithm does not properly converge with

o . . the linear kernel. In this subsection, we assume Gaussian
The Baygs cIaSS{flers trained with MLE_arg callgenera- yomels. The Gaussian kernel allows for a direct comparison of
tive [2] or informative[1]. The term generative is used becausg\/,v| with GMM and DGMM, given that in all three cases the

if the eStimatedIIDd(x,y) is “close” to the true diStlrib“tio_”htraining procedure seeks a linear combination of Gaussians.
P(x,y), we could useP(x,y) to generate samples with o gpeayer verification, the prior®(y) for GMM and

statistics similar to the ones of our original training SehoMM  are assumednon-informative i.e., neglected in
However, for the sake of classification, we do not need to keEQ] (4). Hence, the score of theth fram1e provided by

O. qu_ example,_ one cannot generate samples out of a LA, 1\5del representing the speakgrwould be f(x;) —
classifier after simplifying the expressions [1] that defifie log P(x.|y). However, it is well-know that it is beneficial

In such cases, the term informative seems more appropria{g. use auniversal background modéUBM) [17], [3], and
By contrast, discriminative Bayes classifiers (and Oth‘?)ypically the score

probabilistic classifiers, such as the relevance vector ma-

chine [10]) seek F(x¢) = log P(x|y) — log P(x¢|ubm)
0¢ = arg max R(0), is the subtraction of the log-likelihoods obtained through two
© convexlinear combinations (mixtures) of Gaussians, one for
where the target speaker and the other for the UBM. SVMs using a
d B A Gaussian kernel, as in Eqg. (2), also output a score based on a
R(0) = 1_[1 P(yn[xn)- linear combination of Gaussians
" N
Note that Flxi) = anew\\xﬁxnlf +b.
N - ~ n=1
P(xn|yn)P(yn)
RYO) = H T (6) but the weightsy do not need to obey probabilistic constraints.
n=1 " . On the other hand, the covariance maitrix is restricted to’ie
N N AN - . ; ; ; ) : .
_ H <1 . Zj?éy” P(X,LJ])P(j)> @) }/:/Sr?tr(;:js Ft)l;?;g]zrzg:)s/ r[g?trlx, which requires normalizing the
n=1 P(xn|yn)P(yn)

Concerning the computational cost for training the clas-
It follows that discriminative procedures try not only tosifiers, GMM is the best option because the EM algorithm
maximize the likelihood of examplex, y), but, at the same is fast and its memory requirement is very small. In the E-
time, minimize the likelihood of competing classgs- y. step, EM goes over the whole training set just collecting
Conventionally, theexpectation-maximizatiodEM) algo- sufficient statisticfor the M-step (see, e.g., [14]). DGMM

rithm [15] is used for training GMMs through MLE. As fortraining can also exploit sufficient statistics, but requires
others generative-discriminative pairs of classifiers, trainimgore computations. The FEEM algorithm incorporates some
a discriminative Bayes classifier is harder than a generatigpeedup techniques [14] and leads to a training time around
There are no closed-form solutions and iterative optimizatiéhto 3 times longer than GMM. SVM requires a much longer
algorithms are needed. In this work, DGMMs are trainetlaining time, as it scales approximately with( N?2).
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Table | presents a summary of the most important features
for the three classifiers. The next section presents experimental  °*|
results achieved by them. o4t

IV. EXPERIMENTAL RESULTS 0al

In this section we discuss experimental results comparing ozsl
GMM, DGMM and SVM. We start by describing the IME
corpus, adopted for the simulations.

A. IME Corpus

The IME corpus is composed by 468 fitegorresponding Y,
to 21.9 hours of recorded signal. For the sake of comparison, s s e 020 0204 0e 08 g
the popular NIST-2001 corpus (http://www.ldc.upenn.edu) is
composed by 2350 (shorter) files, which correspond to 26.4
hours of speech. The utterances in the IME corpus were o ]
collected from cellular and wired phone calls made by 75 [l
speakers. The amount of files in each group is: 111 - cellular | .
/ test, 118 - cellular / train, 120 - wired / test and 123 - wired
/ train.

In order to better organize the simulations, we converted
the original 11-digit file names (e.g., 12151110051.wav) into
names such as id001.cel.train.man.RJ.cn.42.wav, where a dot
separates the information fields. These fields represent a
unique speaker ID, cellular or wired phone, train or test,
gender, speaker geographical origin, recording conditions,
speaker’s age and file extension.

The D41ESC Dialogic board was used to collect all ut-
terances. According to its documentation, this board supports
8-bit PCM . and A-laws. However, the speech files are stored
in the Microsoft RIFF format as 8-bit PCM linéaiOne would Fig. 1. NIST (discrete representation using vertical lines) and IME (contin-
expect 12 or more bits per sample when expanding from Y% Sve) 1emalEeq e o speee sampies NI has & peak o
logarithmic to a linear scale [18]. Besides this problem, silence
represents a relatively high percentage of the total amount of
data. Figure 1 compares the histograms of speech samples
from all utterances in the NIST 2001 and IME corpora. Ongy stressing the pitfalls of applying discriminative learning to
can see that silence is much more frequent in the IME thaBeaker verification.
in the NIST corpus.

Hence, we tried to eliminate silence from the utteranczgs

0.05 Il

(a) Normalized histogram.

0

L L L L L L L L L L L
-5000 -4000 -3000 -2000 -1000 0 1000 2000 3000 4000 5000

(b) Zoom.

The first point to consider is that the training algorithm tries
using a simple voice activity detector (VAD) that is base find the best classifieF’, while the overall goal |s_to _flnd
on the signal energy. The VAD routine generates a lab e best systery. The two are obviously related, as indicated

file, indicating where silence occurs. Then, to avoid problerﬁ% Figures 2 and 3, which show the error rate per frgme and
when calculating derivatives of the parameters, we run tfthe equal. error rate(EER) [5], respectlv_e ly. In th(_as.e figures,
front end using the whole utterance, and cut off the fram%esiu?tzs\?\:fs (I)Sbttgi?lendur;(?s;;ti(:gfr;(r)n gsal';;;r;en;r?(';'%%tieé&&e
corresponding to silence based on the VAD label file. and DGMM, based on the conclusions in [5]. One can see that,
as discussed in [2], generative can outperform discriminative
B. Performance Results classifiers when the training data is scarce. Our results indicate
In [5] we presented results using the IME corpus for severdiat this behavior also happens for SVM.
front ends. Here we adopt the same experimental setup, buhg mentioned, the task of learning is very hard: dis-
use exclusively 12 perceptual linear prediction (PLP) paramgmpiguate a speaker from the others based only on a short
ters, plus the energy and two first derivatives (the so-callgdgment. Besides, the space dimension is relatively low, i.e.,
PLPEDAS9). We restrict the simulations even more by usinfere are relatively few parameters and a strong overlap of the
only the utterances for the “wired” phone calls (discarding thgasses in the input spade’. These two facts impact specially
“cellular” utterances). Even this restricted scenario is enoughe svM classifier, which performed poorly with an average

P . , EER of 3% when the training set had 1500 frames, which is
In fact, the IME corpus originally has 472 files, but 4 are corrupted. . . .
5The 20-th byte of a Microsoft RIFF file (WAV) indicates the kind of pcm:Nigher than the GMM and DGMM as shown in Figure 3. The
6 means A-law, 7 ig:-law and 1 is linear PCM. The IME corpus uses 1. hext subsection discusses some issues related to this situation.
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TABLE |
COMPARISON OFGMM, DGMM AND SVM.

GMM || DGMM SVM
Dependency onV (training examples) O(N) O(N) || O(N?)
Support multiclass problems yes yes no
Optimization criterion RI©) [ RYO) || Eq. (1)
Low memory footprint through sufficient statisticy yes yes no
Is the numbelG of Gaussians pre-specified? yes yes no
Gaussian means restricted to be training instanges?o no yes
Same (pre-specified) variance for all Gaussians|? no no yes

Sample Complexity Equal Error Rate
T T 35 T T

—— dgmm —%— dgmm
—©- gmm —©- gmm

30

N
a
T

Average Error per Frame(%)

g
& ]
w
20 - 15F -
s |
15 L L L L L L 0.5 L L L L I i
200 400 600 800 1000 1200 1400 1600 200 400 600 800 1000 1200 1400 1600
Number Of frames Number Of frames
Fig. 2. The error (%) per frame for GMM and DGMM. Fig. 3. Equal error rate (%) for GMM and DGMM.
C. The Importance of Model Selection for SVM DGMM present a higher degree of robustness, while SVM

) , o often fails, overfitting the training data and leading to relatively
A classical way of performing model selection is throughigh error rates in the test set (this can be interpreted under

cross-validation (CV), typically with 10 folds. The folds arg o light of the structural risk theory [10].

d|SJomt§, th_at is, each vector belongs to on!y one fold. I order to study this situation, we conducted an experiment
many_sngan_ons, the error using such v_a_lldanon Sets providg@ere the validation set was made the same as the test set.
good indication of generalization capability [8]. Unfortunately e that this is not the same as testing with the training
this is not true for a typical CV applied speech processingy The yalidation was simply used to choose the number of
scenarios. For example, training a verification system Wi@aussians (for GMM and DGMM)_' and~ for SVM. The

CV over the framese; of the training set, would lead 10 o 1ts showed that SVM was able to outperform both GMM
overly optimistic error rates for the validation set, because “&ﬁd DGMM. It should be noticed that this test was conducted
impostors in this set are the same used in the training. ThiSy for the sake of interpreting the results, but neither test or

can be circumvented by a careful partition of the training, gk jijation data can be used during training when one is trying
and validation sets, such that impostors (negative examplﬁ?)estimate the generalization capability

in the validation do not coincide with the ones in the training
set.

Another problem is that, typically, the training set shoul®: The Importance of Input Space Dimension for SVM
use only frames:; from an unique utterance or conversation It is well-know that SVM achieves good performance when
(for example, recorded over a single phone call). On the othte input space has a high dimensidni¢ large). Therefore,
hand, for testing, one has to use frames obtained in a diffarsimple experiment was conducted, in which the nuniber
ent recording situation (e.g., channel mismatch). Ideally, tloé features was increased from 39 to 87, by concatenating a
validation set, for performing model selection when training stream of 48 mel-frequency cepstrum coefficients (MFCC) [6].
classifier, should have frames from the target speaker (positiMee results are shown in Figure 4, which indicates the EER
examples) with conditions (mismatch, etc.) similar to the onghen varying the number of frames that compose the training
found during test. When that is not the case, GMM amgkequence. It can be seen that SVM catches up GMM when
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Fig. 4. The EER (%) for GMM and SVM when using 87 features (39 PLP48]
and 48 MFCCs).
[l

1
1200
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200 400 600 800

1 1
1000 1400 1600

1300 frames are used, and ends up with a slightly better resblﬁ]
In spite of its simplicity, the experiment reinforces th
idea that SVM and other discriminative classifiers need larg
training sets when compared to generative ones. Besides]
Figure 4 shows that SVM benefits more than GMM of &4
larger input space dimension in this particular experimenyis
Additional simulations should be done in order to draw more
general conclusions. It should be noticed that MFCC and PIHI%]
are relatively similar front ends [14], so there is no muc
complementary information between them.

12
2l

(17]

V. CONCLUSIONS (18]

In this work the adoption of DGMM in speaker verification
is discussed. Simulation results using the IME corpus showed
that DGMM e SVM can improve the performance when com-
pared to GMM. The preliminary results showed that DGMM
outperformed GMM, while SVM could be made to reach the
same results as GMM when the number of parameters was
increased from 39 to 87. However, the main goal was not to
achieve improvements in accuracy, but get insight about the
pitfalls of applying discriminative learning to speaker verifica-
tion. This is done by comparing GMM and its discriminative
counterpart, the DGMM, which is similar to SVM and other
kernel methods in many aspects, especially when they use
the Gaussian kernel. Besides, simulations with SVM revealed
some aspects of its adoption in speaker recognition.

Among many factors, such as the training set size and input
space dimension, the one that impacts discriminative learning
the most, is the model selection stage. A proper model selec-
tion is essential, for example, to make SVM competitive in
speaker verification. Generative classifiers are more robust to
overfitting and require less care when choosing the validation
set. Future research points towards comparing GMM, DGMM
and SVM using the whole IME corpus, increasing the number
of front end parameters, mixing utterances from cellular and
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wired phone calls, and testing different ways of performing
model selection.
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