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Abstract — Quantum polarisation is an important property that has 

extensively being used for quantum communication purposes. In this 

work, initially, the mixture of an unpolarised two-mode state and a 

two-mode pure state is analysed. Such mixture is controlled by a single 

parameter, the degree of purity. The quantum polarisation of the two-

mode mixed state is discussed using quantum Stokes parameters. 

After, a quantum key distribution set-up using geometric rotating of 

the quantum polarisation of coherent light pulses is proposed and 

analysed using both pure and mixed states.   
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I. INTRODUCTION 

Quantum polarisation is an important and useful 
property that permits the designing and implementation of 
protocols of quantum communication. The firsts quantum 
key distribution (QKD) set-ups were implemented using 
single-photon light polarisation [1-3]. The main problem in 
those set-ups was the hardness to keep the polarisation 
unchanged during channel propagation. More recently, long 
distance QKD using polarisation of bright coherent pulses 
was proposed and successfully implemented [4,5]. Such 
scheme has the advantage of reaching high bit rates, since 
single-photon pulses and detectors are not used. Basically, 
in the scheme using bright pulses the information is 
modulated in S3 Stoke parameter, hence, it requires phase 
modulators. However, it is also possible to implement a 
similar QKD scheme where the information is carried in the 
S1 and S2 parameters. In this case, instead of phase 
modulators, polarisation rotators are used, since only linear 
polarisation states are employed. In this work, a set-up for 
QKD employing geometric rotating of bright coherent 
pulses is proposed. Initially the set-up is analysed using only 
pure states. In this case, the error rate depends only on the 
quantum uncertainty of the states. However, pure states are 
not easy to produce or maintain. Hence, a mixed polarised 
state is also analysed. The mixed state is a mixture of an 
unpolarised state and a pure state and the mixture is 
controlled by a unique parameter, the degree of purity. 1The 
effect of the use of the mixed state analysed in the QKD set-
up is considered. Since the error probability depends also on 
the purity of the quantum states used, one can obtain a direct 
relationship between the error probability and the quantum 
purity degree of polarisation. This work is outlined as 
follow: In Section II, the main concepts of quantum 

                                                 
This work was supported by the Brazilian agency CNPq. Rubens Viana 
Ramos is with Dept. of Teleinformatic Engineering, UFC, Campus do Pici, 
bloco 710, C.P. 6007, 60455-760, Fortaleza. Email: rubens@deti.ufc.br. 

polarisation used in this work are reviewed. In Section III, 
the mixture of two-mode unpolarised and pure states is 
introduced and analysed. In Section IV, the quantum key 
distribution set-up employing geometric rotating of bright 
coherent pulses is proposed and the use of the mixture of 
two-mode unpolarised and pure states in that system is 
studied. At last, in Section 5 the conclusions are presented.  

  
II. QUANTUM POLARISATION AND QUANTUM STOKES 

PARAMETERS  

 The most used mathematical tool when quantum 
polarisation is considered, is the quantum version of the 
Stokes parameters [6,7]: 
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Equation (5) and its cyclic versions imply that it is not 
possible to know, with total accuracy, any pair of Stokes 
parameters simultaneously. In order to apply a phase shift φ 
between two linearly polarised modes, the unitary operator  

( )1̂5.0exp SiU φφ =  is used. When applied, for example, to 

two-mode coherent states, 
yx βα , , the output modes are 

y
i

x
i ee 22 , φφ βα − . On the other hand, a geometric rotating 

of θ in the polarisation is achieved by the application of the 
unitary operator ( )3

ˆexp SiU θθ = . When applied, for example, 

to two-mode coherent states, 
yx 0,α , the output modes are 

( ) ( )yx θαθα sin,cos . For this linearly polarised light, the 

mean values and the variances of the Stokes parameters are: 
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 Hence, quantum polarisation cannot be represented by only 
a point on the Poincaré sphere. An interesting question is 
how good we can distinguish between two linear 
polarisation states having a dephasing of θ between them. 
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Fig. 1 – Optical set-up for QKD employing multi-photon pulses.    
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This measure is given by the dot product and, without loss 
of generality, let us consider one of the polarisations the 
linear horizontal state. The dot product is then given by: 
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So, D=0 implies perfectly distinguishable polarisation 
states, while D=1 implies indistinguishable states.  

Classically, a light pulse is unpolarised if its Stokes 
parameters vanish. When considering quantum light, that 
condition (in average) is necessary but not sufficient. In fact, 
from a quantum optics point of view, a light beam can be 
considered unpolarised if its observable properties remain 
unchanged after an application of a geometric rotating 
and/or a phase shift between the two linearly polarised 
components. These conditions are mathematically described 
by [8]: 

[ ] [ ] 0ˆ,ˆ, 13 == SS ρρ  

  
The most general form of an unpolarised state was given in 
[9,10]: 
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where pn is the probability distribution of the photon number 
considering both modes.  
 

III. MIXTURE OF UNPOLARISED AND PURE 

QUANTUM LIGHT STATES  

Let us now consider the controlled mixture of unpolarised 
and pure states: 
 

( ) ( ) ( ) ( )PM ρξξρξρ −+= 1 , 

 
where ρ(M) represents the two-mode unpolarised state given 
in (10) and ρ(P) is any two-mode pure state. The parameter ξ 
controls the mixture and, hence, ξ is a kind of degree of 
purity. The state (10)-(11) is similar to the state introduced 
in reference [11], the differences are the mixed state used in 
the mixture and only single-mode states were considered 
there. If we consider single-photon pulses, (10)-(11) can be 
of the type: 
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that has a similar mathematical structure of a mixed qubit 
state. The application of a geometric rotating or phase shift 
between the modes in (11) produces the following state: 
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since the application of a geometric rotating or phase shift 
does not change the unpolarised part. The Stokes 
parameters’ average and variance of states (11) are given by 
[11]: 
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where Vi is the variance given by ( ) ( ) 22 ρρ ii SS − . 

Furthermore, ( )( ) 0=M

iS ρ  and ( )( ) ( )( ) == M

i
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i SV ρρ 2 . 
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value of the variance ( )( )ξρiV  is obtained when ξ=0. 

Hence, the presence of the unpolarised part increases the 
uncertainty of the Stokes parameters and the polarisation 
becomes less defined.  
 

IV. QUANTUM KEY DISTRIBUTION USING TWO-MODE 

COHERENT STATES AND POLARISATION ROTATION  
 
Quantum key distribution set-ups using single-photon 

pulses, in 1550 nm telecommunication window and for long 
distances, up to the moment, have presented a quite low 
effective data transmission rate. Aiming to overcome this 
problem, a different set-up employing the polarisation of 
multiphoton pulses was proposed [4,5]. In this scheme, the 
information is modulated in the Stokes’ parameter S3. For 
the optical set-up proposed here, and shown in Fig. 1, the 
information is modulated in the Stokes’ parameters S1 and 
S2. 
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(18) 

(19) 

 
Fig. 2. Codification C1 and C2 for the protocol of quantum key distribution. (17) 

In Fig. 1, C is a circulator, PBS is a polarisation beam 
splitter and RA and RB are polarisation rotators. The 
functioning of the QKD set-up shown in Fig. 2 is as follows: 
The transmitter, Alice, produces a bright coherent pulse 
with polarisation |0〉 (|αx,0y〉 ⇒ 〈S1〉=|α|2 and 〈S2〉=〈S3〉=0). 
This pulse is sent to the receiver, Bob. At this last, a 
geometric rotating of φB is applied and the optical pulse, 
having now polarisation |φB〉 (|αxcos(φB),αxsin(φB)y〉 ⇒ 
〈S1〉=|α|2cos(2φB) and 〈S2〉 =|α|2sin(2φB) and 〈S3〉=0) is 
reflected back to Alice by the mirror. When the optical pulse 
arrives at Alice’s place, it suffers a second geometric 
rotating of φA and, according to its final polarisation |φB+φA〉 
(|αxcos(φB+φA),αxsin(φB+φA)y〉 ⇒ 〈S1〉=|α|2cos(2(φB+φA)) and 
〈S2〉=|α|2sin(2(φB+φA)) and 〈S3〉=0), the pulse will be, or not 
be, split by the polarisation beam splitter (PBS), that 
resolves its input pulse in the polarisations linear horizontal 
|0〉 and vertical |π/2〉. The set of possible values of φA and φB 
is kπ/2+jδ, where δ=(π/2)/W, where W, an odd number, is 
the number of words of the code. Besides that, j∈{0, 1, 
2,…, W-1}, k = 0 for Alice and k = 0 or 1 for Bob. Two 
extra codification are used: 
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The codification C1 and C2 can be seen in Fig. 2. 
 
 
 
 
 
 
 
 
 
 
Hence, in order to implement an understandable 
communication between Alice and Bob, both of them must 
know in advance which values of polarisation rotation (j’s 
value) they must apply in each optical pulse and which 
coding is being used for each particular pulse, C1 or C2. 
These information are provided in advance for both users 
[4,5], that is, Alice and Bob must share in advance a bit 
sequence that will indicate j value and C code used for each 
pulse sent. Further, as can be seen in Fig. 2, the bits are 
encoded such that neighbours polarisation states represent 
different bits. If the eavesdropper tries to identify the 
polarisation state sent by Alice measuring the photon 
number in both modes, the independence of the photon 
number distribution of both modes guarantees the security 
[4,5]. In fact, the security of the system is based on (8), 
where δ must be low enough in order to make D close to1. 
A brute force attack is also possible. Since the optical pulse 

is assumed to have too many photons, Eve can split it in 
2W+1 parts (the number of different possible values for the 
polarisation angle φB and one more that Eve amplifies and 
sends to Alice) and she uses the same apparatus used by 
Alice, for each split part, applying a different value for φA in 
each of them. If Eve has perfect detectors, the following 
cases are possible: 
 
1) Eve has detection in both detectors. In this case she 
knows that the phase applied is wrong.  
2) Eve has no detection at all. In this case she does not gain 
any information. 
3) Eve has detection in only one detector. In this case there 
are two possibilities:  
      3.1) The polarisation angle applied is correct. 
      3.2) The polarisation angle applied is wrong but one of 

the modes arriving at the photodetectors has zero 
photons.  

 
If the optical pulse sent by Alice has a photon number much 
larger than the number of words (number of different 
phases) of the code used by Alice and Bob, Eve will, with 
high probability, get the correct phase applied by Alice. 
However, since it is assumed that Eve does not know which 
codification is being used, C1 or C2, she will not obtain any 
useful information.  
   Let us now suppose that Alice is not able to produce 
pure states, but she can produce mixed states of the type 
given in (14). So the question that arises is: How much error 
will be introduced for Eve and Bob? If instead of pure two-
mode coherent states, two-mode mixed states are used, then, 
one the following states will arrive at the Alice’s PBS input, 
depending on the previous shared bit sequence: 
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since, according to (14), the mixed part and the degree of 
purity are not affected by the local unitary operations 
realised during the pulse propagation from Alice to Bob and 
back to Alice. From (17), where it should have vacuum state 
there is, according to the previous shared bit sequence, one 
of the states: 
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(20) 

Hence, the presence of the mixed part introduces, for Alice 
using ideal detectors, an error rate (probability of having 
one or more photons in the mode) given by: 
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Obviously, if p0=1 and pi=0 ∀ i ≠ 0, the error rate vanishes.  
   

V. CONCLUSIONS 

 
The quantum polarisation of a mixture of an 

unpolarised two-mode state and a two-mode pure state was 
analysed using quantum Stokes parameters. Such mixture is 
controlled by a single parameter, the degree of purity. It was 
demonstrated that the introduction of the unpolarised part 
makes the total state less polarised. After, a quantum key 
distribution set-up employing geometric rotating of 
polarisation of a bright coherent light was proposed. The 
set-up was described using pure and mixed states. In this 
last case, a relation between the error rate and the degree of 
purity of the mixed states used was found.  
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