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Abstract—The use of array beamforming in modern wireless 
communication systems has been increasingly investigated, due 
to their potential in rejecting interference and improving the 
system capacity.  The so-called blind algorithms have been 
considered in such application in order to avoid training 
procedures and improve the overall transmission throughput. 
Most works in the field consider circular signals and classical 
linear signal processing framework. However, the alternative 
scenario of Widely Linear Processing was shown to be more 
suitable under other circularity conditions, particularly in 
rectilinear modulations schemes. This paper deals with blind 
algorithms for array beamforming in a Widely Linear 
Processing framework. We consider the well-known CMA and 
NCMA algorithms and derive corresponding Widely Linear 
formulations with optimized performance. In addition, we 
show that their implementation requires less computational 
cost than the original CMA and NCMA. Simulation results 
confirm that both proposed algorithms perform better than 
their strictly linear counterparts.  

Keywords-widely linear processing; blind algorithms; 
CMA; NCMA; beamforming 

I.  INTRODUCTION 
Array beamforming techniques are considerably 

important in modern communication systems especially due 
to the recent increase in demand for wide-band mobile 
communication. In practical scenarios, serious 
communications problems are related to interference among 
systems and multipath fading effects. Antenna arrays using 
adaptive beamforming techniques can reject interfering 
signals and these capabilities can be exploited to improve 
the capacity of communication systems. 

Conventionally, an adaptive array is employed with the 
aid of a training sequence known to both the transmitting 
and receiving ends. This training session, however, can be 
rather costly or even unrealistic in certain applications such 
as asynchronous wireless networks. To improve the overall 
throughput of a transmission system, a training period is 
avoided by performing blind recovery on the receiver side.  

During the last decade, blind adaptive algorithm has 
received considerable interest for its application in mobile 
communication systems [1]. The constant modulus criterion 
[2], [3], ranks among the most widely employed methods 
for blind signal restoration and it can be used with constant 
modulus as well as with non-constant modulus such as the 
QAM signals. Godard [2] and Treicheler and Agee [3], 
based on the constant modulus criterion, introduced the 

well-known constant modulus algorithm (CMA), which is 
extremely simple to implement and converges to minima 
close to the Wierner beamforming. However, CMA is 
commonly noisy, presents slow convergence and can 
erroneously converge to a local minimum. To overcome 
those disadvantages, Hilal and Duhamel [4] developed the 
Normalized CMA (NCMA), which provides fast 
convergence using a calculated optimal step-size. 

Concurrently, it has been shown that under some 
circularity situations the Widely Linear Processing (WLP), 
proposed by Brown and Crane in 1969 [5], presents 
enhanced performance in comparison to the usual Strictly 
Linear Processing (SLP) in some important problems 
related to array processing [6], [7], [8]. 

Some authors [9] address the constant modulus criterion 
applied to equalizers and widely linear processing showing 
the ability to perfect recovery of the symbols in the absence 
of noise introducing the widely linear version of CMA. 

In the present paper, we propose suitable modifications 
into the NCMA in order to achieve an alternative version of 
this algorithm in the context of the widely linear processing 
(NCMA-WL). Also, we introduce optimized versions of 
CMA-WL and NCMA-WL, based upon restrictions on the 
desired signal. These modifications provide less 
computational cost without lose of performance.  

This paper is composed of the following sections: 
Section II presents the mathematical basis of the widely 
linear processing. Section III includes a brief review of the 
CMA and NCMA algorithms. The proposed algorithms, 
including a computational cost study, are reported in section 
IV.  Finally, section V presents simulation results and 
performance evaluation in the context of blind beamforming. 
Conclusions and future trends are stated in section VI. 

II. WYDELY LINEAR PROCESSING 
In [10], Pincibono and Chevalier proposed the joint use 

of the received signal and its complex conjugate for the 
optimal filter derivation. From there, the filter output is: 

  y(k) = w1
Hx(k) + w2

Hx*(k)                     (1) 

where w1   and  w2  are complex filters, the parameters of 
which are obtained minimizing the mean square error 
(MSE): 

                        [ ]2)()()( kyksEk D −=ε ,                     (2) 

where sD(k) is the desired signal.  
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From the orthogonality principle, in order to reach the 
minimum of cost function expressed by (2), it is necessary 
and sufficient that the Wiener filter coefficients are such that 
the error ε is orthogonal to the samples of the filter input 
vector, that is, orthogonal to all vector elements of x and x*. 
Then, E[y*x] = E[sD

*x] and E[y*x*] = E[sD
*x*]. 

After some algebraic manipulations, we can write: 
 
  Rxx w1 + Cxx w2 = r                     (3) 

  Cxx w1 + Rxx
* w2= z                     (4) 

where Cxx = E[xxT], r = E[sD
*x] and z = E[sDx]. The optimal 

solution for the widely linear weights is: 

           w1 = [Rxx – Cxx(Rxx
*)-1Cxx

*]-1[r – Cxx(Rxx
-1)*z*]     

     w2 = [Rxx
* - Cxx

*Rxx
-1Cxx

*]-1[z* - Cxx
*Rxx

-1r].            (5) 

III. CONSTANT MODULUS ALGORITHM AND ITS 
NORMALIZED VERSION 

The Godard proposal [2], showed the heuristic weight 
optimization w as a way to maintain the constant modulus 
property of the transmitted data. From this technique, 
Treicheler and Agee [3] created the Constant Modulus 
Algorithm (CMA) for the modulations schemes as FM, 
PSK, GMSK whose the update equation is: 

               )()(]1)(([)()1( 2 kkykykk xww ∗−−=+ μ        (6) 

where μ  is the step-size. 
The Godard criterion penalizes the output samples y(k) 

that do not have the constant modulus characteristics. To 
prevent the update weights from diverging and to make the 
algorithm more stable the Normalized-CMA (NCMA) was 
introduced by Hilal and Duhamel [4] in order to maximize 
de convergence speed of the Godard algorithm leading to 
the NCMA update equation: 

        )
)(

11)(()(
)(

1)()1( 2

2
ky

kyk
k

kk −−=+ ∗x
x

ww .    (7) 

In this paper, for the sake of clearness, NCMA algorithm 
will be treated as Strictly Linear Normalized Constant 
Modulus Algorithm (NCMA-SL). 

IV. PROPOSED ALGORITHMS 
In this section, the main idea is to present modifications 

of the original CMA [3] and NCMA [4]. Firstly, we will 
deal with the generalized versions of CMA and NCMA in 
their widely linear sense. Following, the optimized versions 
of the algorithms for rectilinear signals are introduced, 
leading to Opt-CMA-R and Opt-NCMA-R algorithms. 
Finally, a brief discussion about the computational cost of 
these algorithms is performed. 

A. Generalized Version of CMA-WL and NCMA-W 
In order to propose the widely linear formulation of the 

CMA and NCMA algorithm, (1) can be re written in a 
synthetic form as  

                             xw ~~)( Hky =                                      (8) 
where ][ T∗= xxx ,~ is the new input vector and ][ T

21 www ,~ = is 
the widely linear weights vector. 

Considering the new input vector in (6) and (7), with 
some algebraic manipulations, it is possible to reach the 
Widely Linear Constant Modulus Algorithm (CMA-WL)  

                 )(~)(]1)(([)(~)1(~ 2 kkykykk xww ∗−−=+ μ      (9) 

and the Widely Linear Normalized Constant Modulus 
Algorithm (NCMA-WL) adaptation equations  
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B. Optimized CMA-WL and NCMA-WL for Rectilinear 
Desired Signal 
In the widely linear processing, when the desired signal 

is real, the terms r and z in (5) have the same value, 
implying that w1 = w2 = wWL, and consequently 

                          )(2)( xw H
WLky ℜ=                               (11) 

where ℜ is the real operator. 
Equation (11) can be written as  

                         )(2)( I
T
IR

T
Rky xwxw +=                       (12) 

where )( WLR ww ℜ= , )( WLI ww ℑ= , )(xx ℜ=R  )(xx ℑ=I  

and ℑ is the imaginary operator. 
Using these assumptions it is possible to derive the 

optimized version of the widely linear constant modulus 
algorithm (Opt-CMA-R) and of the widely linear normalized 
constant modulus algorithm (Opt-NCMA-R) for rectilinear 
signals. 

 
1) Opt-CMA-R 

 
Using the CMA cost function definition [3] 
                             22 )1( −= yJCMA

                              (13) 
it can be verified that the gradient of JCMA with respect to the 
weight vector wWL is given by  

 ∇JCMA = 2(|y|2 – 1)(2xxHw + xxTw*) = 2(|y|2 – 1)(2xy* + xy).   (14) 

                                       
Considering yy =∗ , y  real, 
                            xyyJCMA )1(6 2 −=∇ .                  (15) 

So, the updating equation becomes 

              )()(]1)(([6)()1( 2 kkykykk xww −−=+ μ       (16) 

As μ is generally an arbitrated value, highly dependent 
of the application, we can consider the Opt-CMA-R update 
equation as 
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              )()(]1)(([)()1( 2 kkykykk R xww −−=+ μ       (17) 
where μR is the step-size. 

2) Opt-NCMA-R 
 

According to [4] and considering (11), in order to 
determine an optimal value to the step-size in the CMA 
update equation (6) it is necessary to define two types of 
errors: 

• The a priori error provided at time k by the 
previous filter 

 1)()()()(1)()(
22

1 −+=−= kkkkkyke WL
HH

WL wxxw      (18) 

• The a posteriori error  provided at time k by the 
new filter 

 1)1()()()1()(
2

2 −+++= kkkkke WL
HH

WL wxxw         (19) 

The objective is to find the step-size 
optμ for which  

       0)(2 =ke ,  k∀                     (20) 

Rewriting (6) in terms of )(2 ke , the condition (20) 
implies a modified expression for the optimized step-size, 
expressed by 

     222 ))()()(( kykykEopt
∗+μ  

              01))()()(()(2 =++− ∗ kykykykEoptμ             (21) 

where             

            2

2
)()()()( kkkkE H xxx ==  .                          (22) 

Solving (21) in 
optμ  the optimal value of the step-size is 

                  
)1)()(()(2

1)(
2 −

−
=

kykykE
ky

optμ                       (23) 

By substituting (23) in (6) we get the update expression 
for Opt-NCMA-R 
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where y(k) is given by (11). 

C. Computational Cost study 
 

As far as the computational effort is concerned, different 
ways have been performed with the only purpose of 
evaluating the performance of the code. Several 
computational cost indicators are available in the literature, 
and the most usual are related to code execution time 
(software) or number of internal operations (hardware). 
Here, the choice was do this evaluation based on utilized 
hardware resources, measuring the computational cost 

through the number of operations: sum and multiplications 
of real numbers, inversions and trigonometric operations 
(i.e., sine, cosines, tangent, etc. and the inverses). 

The computational cost is directly related with the 
number of the taps of the filter wWL. Considering that wWL 
has M taps, Table I shows the computational cost of the 
presented algorithms.  

According to the data presented in Table I, we can 
observe that the proposed Opt-CMA-R algorithm requires 
less computational resources than its counterpart CMA-SL. 
Precisely, the optimized algorithm needs only half of the 
multiplications and sums used in the strictly linear 
algorithm.  

In the case of NCMA-SL and Opt-NCMA-R, a slight 
reduction in multiplications and sums could be noted. 
However, a large impact in the computational cost comes 
from the reduction in the number of inversions and 
trigonometric operations.  

A well-known fact about the implementation of 
trigonometric functions in hardware is the need of use of 
recursive devices as CORDIC (COordinate Rotation DIgital 
Computer) [11], which implement this kind of function 
based on vectoring and rotation operations, or by mapping 
these functions into memories like Look-up Tables [12]. 
CORDIC devices, in addition to require large amounts of 
embedded logic, also demand fairly long run times, which 
can derail their use in systems operating at high symbol 
rates.  Look-up Tables, on the other hand, imply the use of 
memories, which also involve a large consumption of logic. 

 

V. SIMULATION RESULTS 
 

The objective of this set of simulations is to compare the 
performance of the proposed algorithms (Opt-CMA-R and 
Opt-NCMA-R) with their strictly linear counterparts (CMA-
SL and NCMA-SL). The comparison between the algorithms 
Opt-CMA-R and CMA-SL was named Case Study 1, 
whereas the comparison between Opt-NCMA-R and 
NCMA- SL, Case Study 2. 

For both cases studies it was considered an array of 
uniformly spaced linear antennas (ULA) composed of M = 2 
omnidirecional elements spaced of half a wavelength. Three 
signals impinge the array: one desired signal (sD) and two 
interfering signals (s1 and s2). This setup leads to the array to 
operate on a under parameterized manner, i.e. with more 
incident signals than antennas. 

Table II summarizes the signals characteristics. 

 

TABLE I: COMPUTATIONAL COST COMPARISON 

Algorithm Multiplications Sum Inversions Trig. 
CMA-SL 8M+6 8M 0 0 

Opt-CMA-R 4M+3 4M 0 0 
NCMA-SL 8M+8 7M+1 4 3 

Opt-NCMA-R 5M+1 5M+1 1 0 
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TABLE II: SIGNAL CHARACTERISTICS FOR SIMULATIONS 

Signal DOA (°) Modulation SNR (dB) 

sD 
– 90 to +90 

ΔDOA = 1 BPSK 10 

s1 – 45 8-PAM 10 
s2 + 45 8-PAM 10 

 
In order to represent an I/Q imbalance over the signal s2 , 

we consider this signal formed by the following expression: 
 
                

( )
( )( )QiI SCjS

C

As 1
11 22 −−

+−
=               (25) 

 
where A  is the signal amplitude, C is the circularity 
coefficient, SI and SQ are the in-phase and quadrature 
component, respectively, with 0 ≤ SI  ≤ 1 and 0 ≤ SQ  ≤ 1. In 
this way, sD and s1 are rectilinear and s2 changes from 
rectilinear to circular over the simulations. The parameters 
used to evaluate both case studies were the equivalent SNR 
and the gain. The equivalent SNR was calculated using the 
inverse of function Q, which is defined by 
 

                               ( ) ( )∫
∞ −=
x

t dtexQ 2/2

2
1
π ,                     (26) 

 
and knowing that for an AWGN channel 

 

                         )2( SNRQSER = .                             (27) 

Finally, the gain is obtained by applying the following 
expression 

                                 
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

SL

OPT

SNR
SNR

G log10                            (28) 

 
where SNROPT  is the equivalent signal to noise ratio achieved 
at the output of the Opt-CMA-R or Opt-NCMA-R 
algorithms, and SNRSL is applied to the strictly linear ones. 
 

 

Figure 1.  Equivalent SNR for Opt-CMA-R  

 

A. Case Study 1: Opt-CMA-R 
 

For this Case Study, the step-size value was chosen 
taking into account the best results achieved for both CMA-
SL and Opt-CMA-R. The considered value was                   
μR = 0.0033.   

Fig. 1 shows the equivalent SNR for sD at the output of 
Opt-CMA-R. The algorithm provides efficient interference 
mitigation for sD DOA changing from –20o to +20o, where 
equivalent SNR reaches +10dB, which is the specified SNR 
at the input data at the simulations.  

For the other DOA’s the equivalent SNR fell below        
–10dB, which is a value underneath the noise level, i.e. 
showing an error situation. Those occurrences are 
independent on the s2 circularity coefficient.  

Fig. 2 represents the gain as defined in (28). In this case, 
despite the s2 circularity, Opt-CMA-R exhibits at least a 3 
dB gain over CMA-SL performance. Moreover for sD DOA  
between –20o to +20o, Opt-CMA-R presents a gain of 40dB 
related to CMA-SL. It should be noted that the Opt-CMA-R 
reaches this gain performance using less computational 
resources than CMA-SL, as was punctuated   in section IV. 

B. Case Study 2: Opt-NCMA-R 
 
The Case Study 2 compares the performances of 

NCMA-SL and Opt-NCMA-R algorithms. Fig. 3 and Fig. 4 
show the equivalent SNR for sD and the gain respectively. 

As can be seen in Fig. 3, although applied to an under-
parameterized array, Opt-NCMA-R provides efficient 
interference mitigation for sD DOA changing from –20o to 
+20o. Within that range equivalent SNR reaches +10dB, in 
accordance to the specified SNR at Table II.  

When sD DOA lays around –45o or +45o, the equivalent 
SNR fell below –50dB, that is a full error situation. This fact 
occurs due to the constellation superposition and it is 
independent of the s2 circularity coefficient.  

 

 

Figure 2.  Opt-CMA-R gain over CMA-SL 
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Figure 3.  Equivalent SNR for Opt-NCMA-R 

The results of Opt-NCMA-R gain over NCMA-SL are 
presented in Fig. 4. In this case, for sD DOA others than 
those where constellation superposition occurs, when s2 
circularity is unitary (C1 = 1), Opt-NCMA-R clearly 
exhibits a better performance than NCMA-SL. As done 
before with in the Opt-CMA-R, it is important to highlight 
that the Opt-NCMA-R reach this gain performance with less 
computational operations than NCMA-SL, as was 
mentioned in section IV. 

VI. CONCLUSIONS 
In this work we proposed modifications on adaptive blind 

algorithms CMA and NCMA in order to optimize their 
performances in cases where the involved signals are real. 
For this, we considered the application of the widely linear 
processing techniques and, based on the real characteristic of 
the signal, derived the optimal forms of those algorithms for 
rectilinear signals, leading to the new blind algorithms Opt-
CMA-R and Opt-NCMA-R. 

Analysis of the adaptation equations of the proposed 
algorithms allow to conclude that their implementation 
requires less computational cost, i.e., for real signals, using 
less hardware resources, these algorithm give better 
performance than that provided by the original CMA and 
NCMA.  

In order to compare the performances of the proposed 
Opt-CMA-R and Opt-NCMA-R algorithms with the original 
CMA and NCMA, we presented a set of simulations where 
the algorithms were applied at the output of an 
underparameterized array whose objective was to provide 
interference mitigation. It was shown that the both proposed 
algorithms performed better than their strictly linear 
counterparts.  

As future perspectives, the proposed algorithms Opt-
CMA-R and Opt-NCMA-R should be implemented in a real 
test platform in order to explore their capability on 
equalization   and   beamforming.  Such  effective   hardware 

 
Figure 4.  Opt-NCMA-R gain over NCMA-SL 

implementation must reveal the real computational cost 
reduction of the Opt-CMA-R and Opt-NCMA-R algorithms 
when compared with the original CMA and NCMA. 
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