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Abstract— A new unconditionally stable finite difference 

time domain (FDTD) technique is discussed. The method 
employs the locally one dimensional (LOD) operator splitting 
technique. The resulting LOD-FDTD method is 
computationally more efficient than the conventional FDTD, 
and presents a computational cost similar to the ADI-FDTD. 
The proposed LOD-FDTD is expanded in terms of the Crank-
Nicolson scheme that is unconditionally stable and second 
order accurate. We illustrate the application of this new 
technique to the modeling of integrated optical waveguides. 
 
Keywords— Finite difference time domain, FDTD, locally 

one-dimensional technique, LOD, Crank-Nicolson, waveguides. 
 

I. INTRODUCTION 
The finite-difference time-domain (FDTD) is a very 

popular method for the analysis of transient electromagnetic 
fields in a myriad of communication devices [1,2]. Even 
though the FDTD method has been successfully employed 
for communication devices in the microwave and mm-wave 
range, its computational performance for optical 
communication devices is seriously hampered by the 
Courant-Friedrich-Levy (CFL) stability condition [2]. The 
CFL condition imposes a stringent bound in the time step 
size, with a direct impact on the simulation of 
electromagnetic devices which are large with respect to the 
wavelength of operation. 

New approaches have recently appeared in the literature 
aiming at circumventing this problem, such as the 
alternating direction implicit FDTD (ADI-FDTD) scheme 
introduced by Namiki [3] in two dimensions (2-D) based on 
the formalism first developed by [4,5]. The ADI-FDTD 
method is not restricted by the Courant stability criterion 
and therefore it allows much larger time steps compared to 
the conventional FDTD approach. Zheng [6] and Namiki [7] 
later extended ADI-FDTD to three-dimensions (3-D). Even 
though ADI-FDTD presents unconditional stability, 
numerical dispersion studies have shown that the accuracy 
of the ADI-FDTD is degraded with the use of large time 
steps beyond the CFL limit [8]-[10]. This problem was 
mitigated by Rao [11] with a new ADI-FDTD approach 
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based on the envelope of the field. Since then, FDTD 
methods that are not restricted by the CFL stability 
condition have become increasingly popular for the 
investigation of electromagnetic problems. 

This paper introduces a new unconditionally stable FDTD 
approach based on the locally one dimensional (LOD) 
operator splitting technique [12], denoted here as LOD-
FDTD. Similarly to the ADI-FDTD, the LOD-FDTD 
reduces considerably the computational effort since much 
larger time steps can be utilized. Furthermore, the LOD 
technique greatly simplifies the expansion of the discrete 
formalism [12].  

This paper is organized as follows. Section II presents the 
derivation of the LOD-FDTD formalism. Section III 
addresses the validation of the method via a comparison 
against conventional FDTD and ADI-FDTD results. Finally, 
some conclusions and perspectives for future work are 
outlined in Section IV. 

 

II. LOD-FDTD FORMALISM 
For simplicity, we consider here TE modes in 2-D. 

Maxwell’s equations in this case can be written as [3]: 
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The LOD-FDTD utilizes the same basic principles of the 

conventional LOD technique introduced in [12], by which a 
multidimensional equation is split out in successive steps 
along separate coordinates. In each step, only one space 
dimension is considered.  

The LOD-FDTD applied to eqs. (1)-(3) will result in two 
different propagation sub-steps. The splitting is achieved as 
follows: 
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where (4) and (5) are utilized in the first sub-step, while (6) 
and (7) in the second. Next, the finite difference 
discretization is carried out via the Crank-Nicolson (CN) 
scheme [13]. Equation (4) is discretized as follows: 
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Eq. (5) is discretized as: 
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Substituting (9) and (10) into (8), results: 
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The second sub-step is obtained by similarly expanding 
eqs. (6) and (7). This results in: 
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III. NUMERICAL RESULTS 
This section presents a performance analysis of the 

present formalism against the conventional FDTD and the 
ADI-FDTD. For this purpose, we use the parameter CFLN 
(Courant-Friedrich-Levy number) to denote the ratio 

between the actual time step and the maximum time step 
allowed by the CFL stability condition in conventional 
FDTD, i.e., 
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The simulations were first performed in free space, where 

c is speed of light in vacuum. The discretization parameters 
in this case are listed in Table I.  
 
 

TABLE I: FREE SPACE SIMULATION PARAMETERS. 

Lx Ly 
Number of 
points in x 

Number of 
points in y 

687 cm 687 cm 100 to 400 * 100 to 400 * 

* The number of points varied from 100 to 400 in the simulations. 
 
A soft-source is introduced at the center of the 
computational domain as follows: 
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where T=9.4ns. 
 

Numerical results for the CPU time required for the 
conventional FDTD, the ADI-FDTD from [3], and the 
present LOD-FDTD are shown in Fig. 1(a)-(c). These 
results show the overall CPU time required to simulate the 
same structure for different grid cell sizes. These results 
show that, in this case, the LOD-FDTD CPU time cost with 
CFLN=6 is equivalent to the conventional FDTD using the 
same discretization parameters. For a CFLN=7, the LOD-
FDTD presents a smaller time cost than the conventional 
FDTD. When compared to the ADI-FDTD, the time costs 
are similar, with a slight disadvantage for the LOD-FDTD. 
However, it is important to notice that the ADI-FDTD 
scheme utilized here [3] exhibits increasing numerical 
dissipation for larger CFLN, which degrades the simulation 
results of long waveguide structures. This problem, 
however, is not present in the proposed LOD-FDTD, as 
illustrated next. It is worth  mentioning that operator 
splitting techniques, such as ADI and LOD, cause the 
method to become implicit. Consequently, the solution of 
two tri-diagonal linear systems is required in each iteration 
[4]. In explicit methods, such as FDTD, this is not 
necessary, resulting in lower computational cost for same 
CFLN as shown in Fig. 1(a).  
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(a) 

 

 

(b) 

 
(c) 

Fig. 1: Comparison of the computational effort for the conventional FDTD 
and the ADI-FDTD methods with the present LOD-FDTD. (a) CFLN=1, 
(b) CFLN=6, and (c) CFLN=7. 

Next, field propagation along the z-varying three-layer 
integrated optical waveguide illustrated in Fig. 2 is 
simulated in order to demonstrate the efficiency and 
versatility of the proposed LOD-FDTD. The pertinent 
parameters relative to the computational domain and 

waveguide structure are listed in Tables II and III, 
respectively. We compare the simulation results obtained 
with LOD-FDTD against ADI-FDTD and standard FDTD. 

 

 
Fig. 2: Longitudinally varying three layer waveguide.  

 
 

TABLE II: COMPUTATIONAL DOMAIN PARAMETERS 

x zN N×  ( )x mµ∆  ( )z mµ∆  
400 4000×  0.01 0.01 

 
 

TABLE III: PHYSICAL AND GEOMETRICAL PARAMETERS RELATIVE TO 
SLAB WAVEGUIDE STRUTURE. (λ = 1.55µ m ). 

( )mλ µ  w ( )mµ  1n  2n  

1.55 0.5 3.4 3.1 
 
 

The simulation results obtained for bending angle θ=16o 
are shown in Fig. 3(a), (b), and (c) for the ADI-FDTD, 
LOD-FDTD, and standard FDTD respectively. The initial 
pulse profile E0 is assumed as the fundamental mode of the 
planar waveguide multiplied by a time sinusoid given 
by: 0 sin( )zH E Tω= ⋅ , where 1.55 mλ µ= .  

We note that the ADI-FDTD result presents a strong 
numerical dissipation for CFLN=5. On the other hand, the 
LOD-FDTD result with CFLN=7 does not show numerical 
dissipation, and yet it agrees quite well with the 
conventional FDTD. As a result, the proposed LOD-FDTD 
scheme appears to be as a good alternative for the 
simulation of electromagnetic structures where obeying the 
CFL criterion would otherwise make the simulation too 
costly.  

 
 

 
(a) 
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(b) 

 
(c) 

Fig. 3: Evolution of the fundamental mode along a longitudinally varying 
three layer waveguide. The tilting angle θ=16º. (a) ADI-FDTD with 
CFLN=5, (b) present LOD-FDTD with CFLN=7, (c) Standard FDTD 
CFLN=1. The tilting occurs at Lz/8. 

IV. CONCLUSIONS 

 
This paper introduced a novel FDTD formalism for the 
time-domain simulation of electrically large electromagnetic 
structures. This method employs the locally one-
dimensional (LOD) technique in conjunction wit the Crank-
Nicolson (CN) discretization. The resulting LOD-FDTD is 
able to produce more efficient simulations than the 
conventional FDTD in structures requiring stringent time 
steps from the CFL criterion. For the same discretization 
parameters, the CPU time cost of the present LOD-FDTD 
formalism was slightly worse than that obtained with a 
conventional ADI-FDTD. However, this latter scheme 
exhibits numerical dissipation that can degrade the results 
for long integration times.  

The authors are currently working on the extension of the 
LOD-FDTD to investigate electromagnetic metamaterials 
exhibiting anisotropic and frequency dispersive behavior. 
Higher-order approaches in terms of the envelope 
approximation and extension to 3-D are also under 
consideration.  
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