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Resumo — Este artigo apresenta uma técnica de 
compressão de imagem na qual a implementação da 
transformada wavelet em banco de filtros é adaptada à 
imagem em consideração. Para isso, ajustam-se os filtros de 
forma a reduzir a energia da distorção da imagem para uma 
dada taxa de compressão. As restrições de reconstrução 
perfeita do banco de filtros são satisfeitas utilizando-se uma 
parametrização angular para os pesos dos filtros. Isto permite 
a utilização de algoritmos simples para otimização sem 
restrições. Resultados obtidos com duas figuras em escala de 
cinza ilustram a melhoria de qualidade na imagem 
reconstruída utilizando a técnica proposta.  

Palavras-Chave — Processamento de imagens, 
compressão de imagens, transformadas wavelet adaptativas, 
bancos de filtro em quadratura espelhada  

Abstract — This article presents an image compression 
technique in which the filter bank implementation of the 
wavelet transform is adapted to the image under 
consideration. For this purpose, the filters are adjusted in 
order to reduce the energy of the image distortion for a given 
compression rate. The perfect-reconstruction restrictions on 
the filter bank are enforced by employing an angular 
parameterization for the filter weights. In this manner, simple 
algorithms for unconstrained optimization can be used in the 
process. Results obtained with two grayscale pictures 
illustrate the quality improvement for the reconstructed 
image achieved by using the proposed technique. 

Keywords — Image processing, image compression, 
adaptive wavelet transform, quadrature-mirror filter banks.  

I.  INTRODUCTION 

The wavelet transform is a tool for joint space-scale 
analysis that has been widely used in several image 
compression applications [3], [7], such as fingerprint image 
compression [6], medical image compression [1] and 
mobile/portable applications [9]. In this context, it has been 
shown that performance improvements may be obtained by 
adapting the transform with respect to the image under 
analysis [5], [8]. 

In this article, the concept of wavelet adaptation is 
exploited to improve the performance of image 
compression algorithms based on standard wavelet 
thresholding.  For this purpose, a technique based on a 
restriction-free parameterization of the wavelet filter bank 
is proposed to adjust the filter weights in order to reduce 
the energy of the reconstruction error.  

A. Notation 

• X: Matrix that characterizes the image to be 
compressed.  

• T: Matrix of wavelet coefficients of X for a given 
number of decomposition levels in the filter bank. 

• TC: Matrix of wavelet coefficients after compression. 

• XR: Image matrix reconstructed from TC. 

• E = (X – XR): Reconstruction error matrix. 

• JY = trace(YYT): Energy of a given matrix Y, defined 
as the sum of the square of its elements.  

II. THE PROPOSED COMPRESSION TECHNIQUE 

Let T be the matrix of wavelets coefficients resulting 
from the decomposition of an image matrix X by a two-
dimensional wavelet filter bank, as depicted in Figures 1 
and 2. The standard hard-thresholding compression 
algorithm consists of keeping only the largest coefficients 
of T (in absolute value), the other ones being set to zero. 
The modification proposed in this article is aimed at 
adjusting filters H and G to reduce the energy of the image 
distortion caused by such a procedure.  

Let {h(k)} and {g(k)} be the weighting sequences of the 
lowpass and highpass filters H and G of the filter bank 
(Figure 1), each filter with 2k weights, such that the transfer 
functions of the filters are: 
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If the filter bank is constrained to be orthonormal, 
nonlinear restrictions on {h(k)} and {g(k)} must be satisfied 
in the adjustment of the filters [11]. However, this problem 
can be circumvented by employing the parameterization 
proposed by Sherlock and Monro [4,10, 14]:  
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where sk and ck denote the sine and the cosine of an 
arbitrary angle θk, respectively. 

Henrique Mohallem Paiva, Gerência de Engenharia Mecânica, Empresa 
Brasileira de Aeronáutica, EMBRAER, São José dos Campos, SP, Brasil.  
Roberto Kawakami Harrop Galvão, Divisão de Engenharia Eletrônica, 
Instituto Tecnológico de Aeronáutica,ITA, São José dos Campos, SP, Brasil. 
E-mails: henrique.paiva@embraer.com.br, kawakami@ele.ita.br.  
Research work supported by CNPq (research fellowship and PRONEX grant 
015/98), FAPESP (grant 03/09433-5) and EMBRAER. 

248



XXII SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES - SBrT’05, 04-08 DE SETEMBRO DE 2005, CAMPINAS, SP 

To ensure the orthonormality of the filter bank, the 
weights of filter G are obtained by alternating flip of the 
weights of filter H [11]. 
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In such a formulation, any set of k independent angles 
θ 0, θ 1, ...,θ k-1 leads to a valid orthonormal filter bank 
system with filters of length 2k, and any such system can be 
expressed in terms of at least one such set of angles.  

Moreover, for the filter bank to correspond to a regular 
wavelet transform, the DC gain of the highpass filter G 
must be zero [11], which is achieved by imposing [10]: 
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A possible approach to take equation ( 4 ) into account 
in the filter adjustment process consists of using θ 0, θ 1, ..., 
θ k-2  as the free optimization parameters and imposing [4]: 
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Thus, it can be concluded that k-1 unconstrained 
angular parameters can be chosen to describe an 
orthonormal wavelet filter bank. As a result, filter 
adjustment can be carried out by using simple search 

algorithms for unconstrained optimization, such as the 
classical Simplex (flexible polyhedron) method [13,14], 
which is adopted in the present work. This local search 
algorithm is aimed at minimizing a given cost function (to 
be described below) on the region around a convenient 
starting point. Examples of adequate starting points are the 
sets of angles that characterize classical wavelet filters, 
such as those from the Daubechies or Symlet families [2], 
[11]. An algorithm for obtaining such an initial set of 
angles is described elsewhere [4].  

The cost function adopted for the filter adjustment 
process in this article is the energy of the removed wavelet 
coefficients (T – TC). The reason for such a choice will be 
now discussed.  

The relationship between the orthonormal filter bank 
input X and output T can be represented, in matrix-vector 
form, as T = W X WT [12], where W is an orthogonal 
matrix, that is, WT = W-1. Thus, the inverse operation 
(signal reconstruction) can be written as X = WT T W. 
Similarly, the relationship between XR and TC is given by 
XR = WT TC W. 

By defining the reconstruction error matrix as                    
E = (X – XR), it follows that: 

E = (WT T W – WT TC W) = WT (T – TC)W ( 6 ) 

 

 

 

 
Figure 1. Two-dimensional wavelet filter bank. A(j), DH(j), DV(j) and DD(j) denote the approximation and horizontal, 
vertical and diagonal details at resolution level j, respectively. Initialization is performed by setting A(0) = X, where X 
is the image matrix to be decomposed. H and G are lowpass and highpass filters, respectively. ↓↓↓↓2 is the downsampling 
operation. Superscripts (rows) and (columns) indicate that the operation is performed at each matrix row or column, 
respectively [11]. 
 

 
Figure 2. Wavelet decomposition of an image at first and second resolution levels. Matrix X characterizes the image to 
be decomposed and matrix T(j) stores the wavelet coefficients of X at resolution level j. 
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The energy JE of the reconstruction error can be 
calculated as  

JE = trace(E ET) =  

= trace([WT(T–TC)W][WT(T – TC)W] T) = 

= trace(WT(T – TC)WWT(T – TC)TW) =  

= trace(WT(T – TC) (T – TC)TW) 

( 7 ) 

Since W is an orthogonal matrix, then WTYW is a 
similarity transformation of a given matrix Y, and thus the 
eigenvalues of  Y and WTYW are the same. Since the trace 
is equal to the sum of the matrix eigenvalues it follows that 
trace(Y) = trace(WTY W). Thus, from ( 7 ), it follows that: 

JE =  trace((T – TC)(T – TC)T) ( 8 ) 

which shows that the energy of the reconstruction error     
(X – XR) is equal to the energy of the removed wavelet 
coefficients (T – TC). Thus, reducing the energy of the 
removed wavelet coefficients is equivalent to reducing the 
energy of the reconstruction error. 

Moreover, it should be noticed that, if the filter bank is 
constrained to be orthonormal, the total energy JT will be 
constant, regardless of the filter weights, because 

JT  = trace(TTT) =  

= trace(WXWT (WXWT)T) = 

= trace(WXWTWXTWT) = 

= trace(WXXTWT) = 

= trace(XXT) = JX 

( 9 ) 

where constant JX is the energy of the image matrix X 
under consideration. 

In short, the adjustment of the filters is aimed at 
reducing the error energy JE, or equivalently, the energy 
loss index υ = JE/JX for a given compression factor λ (ratio 
between the number of wavelet coefficients that are kept in 
the thresholding process and the total number of 
coefficients). 

III.  RESULTS AND DISCUSSION 

The images presented in Figure 3 will be employed to 
illustrate the technique described above. All programs used 
in these examples were developed under the Matlab 6.1 
platform with functions from the Wavelet and Optimization 
Toolboxes.  

The compression factor used was λ = 5%. In order to 
choose the most appropriate wavelet filters to use as 
starting point for the adjustment process, three different 
possibilities were tested, namely the Daubechies wavelet 
filters db4 (k = 4), db6 (k = 6) and db8 (k = 8) [2]. In each 
case, three to five decomposition levels were tested in the 
filter bank. 

 

(a)  

 
(b) 

 
Figure 3. Images to be compressed.  (a) 130 x 202 pixels 
(b) 160 x 300 pixels. 

A. Figure 3(a) 

Table 1 depicts the compression results obtained by 
processing Figure 3(a). 

Table 1. Results obtained by processing Figure 3(a) 
using wavelet filters db4, db6 and db8, with three to five 
resolution levels, for a compression factor λλλλ = 5%. 
 

Wavelet filter: db4 db6 db8 

Resolution 
Levels Energy loss index υ (%) 

3 0.264 0.241 0.234 

4 0.151 0.124 0.123 

5 0.077 0.057 0.057 

Table 1 shows that the best result (υ = 0.057 %) was 
obtained with db6 and five resolution levels. The 
reconstructed image for this case is presented in Figure 
4(a). The db8 wavelet filters with five resolution levels 
provided the same result in terms of energy loss index, but 
the db6 wavelet filters were preferred because their smaller 
number of weights leads to a smaller computational effort.  

The adjustment procedure was applied to the db6 
filters by using the flexible polyhedron algorithm to adjust 
k-1 = 5 angular parameters. The resulting reconstructed 
image is depicted in Figure 4(b). Figure 5 presents a 
comparison of the weights of the lowpass filter H (Figure 
1) before and after the adjustment. 

A comparison of Figure 4(a) and (b) shows that the 
adjustment procedure does improve the quality of the 
reconstructed image. In quantitative terms, the energy loss 
index υ decreases from 0.057 % to 0.050%. 
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(a) 

  
(b) 

Figure 4. Reconstructed image after a compression 
using (a) fixed and (b) adjusted db6 wavelet filter, five 
resolution levels and λλλλ = 5%. The obtained energy loss 
indexes are (a) υυυυ = 0.057 % and (b) 0.050%. 
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Figure 5. Filter weights hi

(6) of low-pass filter H as a 
function of index i before and after the adjustment.   

B. Figure 3(b) 

Table 2 depicts the compression results obtained by 
processing Figure 3(b). 

 
Table 2. Results obtained by processing Figure 3(b) 
using wavelet filters db4, db6 and db8, with three to five 
resolution levels, for a compression factor λλλλ = 5%. 
 

Wavelet filter: db4 db6 db8 

Resolution 
Levels Energy loss index υ (%) 

3 0.098 0.107 0.113 

4 0.046 0.043 0.041 

5 0.025 0.020 0.018 

Table 2 shows that the best result (υ = 0.018 %) was 
obtained with db8 and five resolution levels. The 
reconstructed image for this case is presented in Figure 
6(a).  

The adjustment procedure was applied to the db8 
filters by using the flexible polyhedron algorithm to adjust 
k-1 = 7 angular parameters. The resulting reconstructed 
image is depicted in Figure 6(b). Figure 7 presents a 
comparison of the weights of the lowpass filter H (Figure 
1) before and after the adjustment. 

A comparison of Figure 6(a) and (b) shows that the 
adjustment procedure does improve the quality of the 
reconstructed image. In quantitative terms, the energy loss 
index υ decreases from 0.018 % to 0.009%. 

(a) 

 
(b) 

 

Figure 6. Reconstructed image after a compression 
using (a) fixed and (b) adjusted db8 wavelet filter, five 
resolution levels and λλλλ = 5%. The obtained energy loss 
indexes are (a) υυυυ = 0.018 % and (b) 0.009%. 
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Figure 7. Filter weights hi

(8) of low-pass filter H as a 
function of index i before and after the adjustment.   
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IV.  CONCLUSIONS 

This article presented a wavelet-based compression 
method that is adapted to the image under analysis. For this 
purpose, an index related to the reconstruction error is 
employed as the cost function in a local optimization 
procedure. In order to circumvent the problems associated 
to the perfect-reconstruction restrictions on the filter bank 
implementation of the discrete wavelet transform, a 
trigonometric parameterization was employed, allowing the 
use of simple search algorithms for unconstrained 
optimization. The flexible polyhedron algorithm was 
chosen to accomplish this task. It should be noted that the 
solution found in this manner is not guaranteed to be a 
global minimum of the cost function. However, as shown 
in the examples used for illustration, the local search 
procedure does lead to perceptible improvements in the 
reconstructed image. 

Future works could exploit the filter adaptation 
strategy described in this work in combination with 
techniques for optimizing the structure of wavelet packet 
trees [8,12].  
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