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Resumo— Este trabalho apresenta express̃oes gerais exatas
para a taxa de cruzamento de ńıvel e a duraç̃ao média de des-
vanecimento de combinadores por seleção, ganho-igual e raz̃ao-
máxima com dois ramos, operando sobre canais ricianos não-
idênticos e correlacionados. Resultados nuḿericos s̃ao obtidos e
analisados para um sistema de diversidade espacial com antenas
omnidirecionais espaçadas horizontalmente na estação móvel.
Observa-se que, quando as antenas são perpendicularesà direção
do movimento, a duraç̃ao média de desvanecimentóe fracamente
dependente do espaçamento entre antenas e do fator riciano,
sendo quase id̂entica àquela referente à condiç̃ao de ramos
independentes. Por outro lado, quando as antenas são paralelas
à direção do movimento, a taxa de cruzamento de nı́vel pode ser
reduzida abaixo do valor obtido para sinais de desvanecimento
independentes. Neste caso, em havendo componente de linha de
visada, a duraç̃ao média de desvanecimento tamb́em pode ser
reduzida em relaç̃ao à condiç̃ao de independ̂encia.

Palavras-Chave— Duração média de desvanecimento,
correlação, métodos de combinaç̃ao de diversidade, taxa de
cruzamento de ńıvel, canais ricianos de desvanecimento.

Abstract— General exact expressions for the level crossing
rate and average fade duration of dual-branch selection, equal-
gain, and maximal-ratio combiners operating over non-identical
correlated Ricean channels are derived. Sample numerical results
are discussed by specializing the general expressions to a space-
diversity system with horizontally spaced omnidirectional anten-
nas at the mobile station. When the antennas are perpendicular
to the direction of the vehicle motion, the average fade duration
is loosely dependent on the antenna spacing and on the Ricean
factor, being almost identical to that of the independent fading
condition. When the antennas are parallel to the direction of the
vehicle motion, the level crossing rate can be reduced below the
value obtainable for independent fading signals. In this case, if
a line-of-sight component exists, a further improvement in the
average fade duration over the independent condition may be
also achieved.

Keywords— Average fade duration, correlation, diversity-
combining methods, level crossing rate, Ricean fading channels.

I. I NTRODUCTION

Level crossing rate (LCR) and average fade duration (AFD)
are widely used performance measures of wireless diversity
systems. Although in practical systems the branch signals are
often correlated to each other, no general exact expressions for
the LCR and AFD of diversity-combining schemes operating
over correlated fading channels have been published in the
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literature, apart from the bivariate balanced Rayleigh case [1].
Results on Ricean fading also exist [2], [3], but with a
restrictive assumption, in which the processes described by
the time derivatives of the branch envelopes are independent
from each other as well as from the branch envelopes. In
general, this is not true for correlated fading: although the
envelope at theith branch is indeed independent from its time
derivative, the latter is usually correlated to the envelope and
to the time derivative of the envelope at thejth branch,i 6= j,
as correctly shown in [1]. Allowing for this general scenario,
we provideunrestricted, exact expressions for the LCR and
AFD of dual-branch selection (SC), equal-gain (EGC), and
maximal-ratio combining (MRC) operating overnon-identical
correlated Ricean channels. For Rayleigh fading, our results
specialize to those presented in [1].

The paper is organized as follows. In section II, the system
model and preliminary concepts are introduced. Some key sta-
tistics involving the branch envelopes and their time derivatives
are derived in sections III and IV. Relying upon these statistics,
the general exact LCR and AFD expressions are presented in
section V. Section VI discusses some numerical results by
specializing the general expressions to a space-diversitysys-
tem with horizontally spaced omnidirectional antennas at the
mobile station. The main results of the paper are summarized
in section VII.

II. SYSTEM MODEL AND PRELIMINARIES

The received Ricean signal at theith branch,i ∈ {1, 2},
can be represented in complex formZi as

Zi = Rie
jΘi = Xi + jYi (1)

where the in-phase componentXi = Ri cos Θi and the qua-
drature componentYi = Ri sin Θi are independent Gaussian
random variables (RVs),E{Xi} = mXi

, E{Yi} = mYi
, and

Var{Xi} = Var{Yi} = σ2
i . (E{·} and Var{·} denote mean

and variance, respectively.) The envelopeRi follows the Rice
distribution with Rice factorki = (m2

Xi
+ m2

Yi
)/(2σ2

i ), and
0 ≤ Θi ≤ 2π is a random phase. Furthermore,X1, Y1, X2,
andY2 are jointly Gaussian RVs.

The output envelopeR for each diversity-combining scheme
is

R =







max{R1, R2} SC
R1 + R2√

2
EGC

√

R2
1 + R2

2 MRC

(2)
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and the LCRNR(r) and the AFDTR(r) of R at level r are
given by

NR(r) =

∫
∞

0

ṙfR,Ṙ(r, ṙ)dṙ (3)

TR(r) =
FR(r)

NR(r)
(4)

wherefR,Ṙ(·, ·) is the joint probability density function (PDF)
of R and its time derivativeṘ and FR(·) is the cumulative
distribution function (CDF) ofR.

III. STATISTICS OFṘ CONDITIONED ONR1, R2, Θ1, Θ2

In this section, we derive the statistics ofṘ conditioned on

Z ,[X1 Y1 X2 Y2]
T or, equivalenty,

,[R1 cos Θ1 R1 sinΘ1 R2 cos Θ2 R2 sinΘ2]
T

as required. First, note from (1) that the time derivativeṘi of
Ri can be expressed in terms of the time derivativesẊi of Xi

and Ẏi of Yi as

Ṙi = Ẋi cos Θi + Ẏi sin Θi (5)

Thus, sinceẊ1, Ẏ1, Ẋ2, and Ẏ2 are jointly Gaussian RVs
[4], Ṙ1 and Ṙ2 are also jointly Gaussian RVs conditioned
on Z. Using (5), it is easy to show that the conditional
meanṁi(Z) = E{Ṙi|Z}, varianceσ̇2

i (Z) = Var{Ṙi|Z}, and
covarianceσ̇2

ij(Z) = Cov{Ṙi, Ṙj |Z}, i 6= j ∈ {1, 2}, are
obtained as

ṁi(Z) =E{Ẋi|Z} cos Θi + E{Ẏi|Z} sin Θi (6a)

σ̇2
i (Z) =Var{Ẋi|Z} cos2 Θi+

Var{Ẏi|Z} sin2 Θi + Cov{Ẋi, Ẏi|Z} sin 2Θi (6b)

σ̇2
ij(Z) =Cov{Ẋi, Ẋj |Z} cos Θi cosΘj+

Cov{Ẋi, Ẏj |Z} cos Θi sin Θj+

Cov{Ẏi, Ẋj |Z} sin Θi cos Θj+

Cov{Ẏi, Ẏj |Z} sin Θi sin Θj (6c)

The conditional statistics E{Ẋi|Z}, E{Ẏi|Z},
Var{Ẋi|Z}, Var{Ẏi|Z}, Cov{Ẋi, Ẏi|Z}, Cov{Ẋi, Ẋj |Z},
Cov{Ẋi, Ẏj |Z}, Cov{Ẏi, Ẋj |Z}, andCov{Ẏi, Ẏj |Z} required
in (6) are a crucial step for solving the problem addressed
here and, to the best of the authors’ knowledge, they have not
been published yet. We derive them in the appendix. Now,
knowing from (2) that

Ṙ =







Ṙ1, R1 ≥ R2, and Ṙ2, R1 < R2 SC

Ṙ1 + Ṙ2√
2

EGC

R1Ṙ1 + R2Ṙ2
√

R2
1 + R2

2

MRC

(7)

Ṙ is also a Gaussian RV conditioned onZ. The corresponding
PDF is

fṘ|R1,R2,Θ1,Θ2
(ṙ|r1, r2, θ1, θ2) =

1
√

2πσ̇2(z)
exp

[

−
(ṙ − ṁ(z))2

2σ̇2(z)

]

(8)

where z = [r1 cos θ1 r1 sin θ1 r2 cos θ2 r2 sin θ2]
T ,

with the conditional meanṁ(Z) = E{Ṙ|Z} and variance
σ̇2(Z) = Var{Ṙ|Z} obtained by means of (7) in terms of the
conditional branch statistics (6) as

ṁ(Z) =







ṁ1(Z), R1 ≥ R2, and ṁ2(Z), R1 < R2 SC
ṁ1(Z) + ṁ2(Z)

√
2

EGC

R1ṁ1(Z) + R2ṁ2(Z)
√

R2
1 + R2

2

MRC

(9a)

σ̇2(Z) =







σ̇2
1(Z), R1 ≥ R2, and σ̇2

2(Z), R1 < R2 SC
σ̇2

1(Z) + σ̇2
2(Z) + 2σ̇2

12(Z)

2
EGC

R2
1σ̇

2
1(Z) + R2

2σ̇
2
2(Z) + 2R1R2σ̇

2
12(Z)

R2
1 + R2

2

MRC

(9b)

IV. JOINT STATISTICS OFR1, R2, Θ1, Θ2

As mentioned before, the RVsX1, Y1, X2, andY2 follow
a multivariate Gaussian PDF [5] given by

fX1,Y1,X2,Y2
(x1, y1, x2, y2) =

1

(2π)2
√

detb
exp

(

−
(z− m)b−1(z− m)T

2

)

(10)

z = [x1 y1 x2 y2]
T , with the mean vectorm and the

covariance matrixb presented in (17d) and (17b), respectively
(see appendix). By means of a simple transformation of
variables, the joint PDF ofR1, Θ1, R2, andΘ2 is obtained as

fR1,R2,Θ1,Θ2
(r1, r2, θ1, θ2) =

r1r2

(2π)2
√

detb
exp

(

−
(z− m)b−1(z− m)T

2

)

(11)

z = [r1 cos θ1 r1 sin θ1 r2 cos θ2 r2 sin θ2]
T .

V. SECOND-ORDER STATISTICS

Making the appropriate transformation of variables to
obtain fR,Ṙ(·, ·) from (8) and (11), as in [1, Eq. (8)]
for SC and in [6, Eqs. (12) and (17)] for EGC and
MRC, the general exact LCR of dual diversity over non-
identical correlated Ricean channels can be evaluated from
(3)—integrating with respect tȯr first—as in (12), where
z = [r1 cos θ1 r1 sin θ1 r2 cos θ2 r2 sin θ2]

T . The CDF ofR
in terms of (11) is trivial for SC, and can be obtained directly
from [6, Eqs. (10) and (16)] for EGC and MRC as in (13).
Using (12) and (13) into (4), the AFD is attained.

VI. N UMERICAL RESULTS

The expressions derived above are general and can be
applied to any type of diversity (space, frequency, polariza-
tion, time etc.). In this section, sample numerical resultsare
discussed assuming a space-diversity system with horizontally
spaced omnidirectional antennas at the mobile station, as
sketched in Fig. 1. In this figure,d, v, and 0 ≤ α ≤ π/2
denote the antenna spacing, the vehicle speed, and the angle
between the antenna axis and the direction of the vehicle
motion indicated by the straight solid arrow, respectively.
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XXII SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇ̃OES - SBrT’05, 04-08 DE SETEMBRO DE 2005, CAMPINAS, SP

NR(r) =







∫ 2π

0

∫ 2π

0

∫ r

0
NR1,R2,Θ1,Θ2

(r, r2, θ1, θ2)fR1,R2,Θ1,Θ2
(r, r2, θ1, θ2)dr2dθ1dθ2

+
∫ 2π

0

∫ 2π

0

∫ r

0
NR1,R2,Θ1,Θ2

(r1, r, θ1, θ2)fR1,R2,Θ1,Θ2
(r1, r, θ1, θ2)dr1dθ1dθ2 SC

∫ 2π

0

∫ 2π

0

∫ √

2r

0

√
2NR1,R2,Θ1,Θ2

(
√

2r − r2, r2, θ1, θ2)fR1,R2,Θ1,Θ2
(
√

2r − r2, r2, θ1, θ2)dr2dθ1dθ2 EGC
∫ 2π

0

∫ 2π

0

∫ r

0
r√

r2
−r2

2

NR1,R2,Θ1,Θ2
(
√

r2 − r2
2, r2, θ1, θ2)fR1,R2,Θ1,Θ2

(
√

r2 − r2
2, r2, θ1, θ2)dr2dθ1dθ2 MRC

(12a)

NR1,R2,Θ1,Θ2
(r1, r2, θ1, θ2) ,

∫
∞

0

ṙfṘ|R1,R2,Θ1,Θ2
(ṙ|r1, r2, θ1, θ2)dṙ

=
σ̇(z)
√

2π

{

exp

[

−
1

2

(
ṁ(z)

σ̇(z)

)2
]

+

√
π

2

ṁ(z)

σ̇(z)
erfc

(

−
1
√

2

ṁ(z)

σ̇(z)

)}

(12b)

FR(r) =







∫ 2π

0

∫ 2π

0

∫ r

0

∫ r

0
fR1,R2,Θ1,Θ2

(r1, r2, θ1, θ2)dr1dr2dθ1dθ2 SC
∫ 2π

0

∫ 2π

0

∫ √

2r

0

∫ √

2r−r2

0
fR1,R2,Θ1,Θ2

(r1, r2, θ1, θ2)dr1dr2dθ1dθ2 EGC
∫ 2π

0

∫ 2π

0

∫ r

0

∫
√

r2
−r2

2

0
fR1,R2,Θ1,Θ2

(r1, r2, θ1, θ2)dr1dr2dθ1dθ2 MRC

(13)

α

d

antenna 1 antenna 2

v

Fig. 1. Antenna configuration.

In this case, for isotropic scattering, it is known that [1]

µa(τ) = J0(2πfDτ) (14a)

µc(τ) = J0

(

2π

√

(fDτ)2 + (d/λ)
2

+ 2fDτ(d/λ) cos α

)

(14b)

νa(τ) = νc(τ) = 0 (14c)

µa = 1, µ̇a = 0, µ̈a = −2(πfD)2 (14d)

µc = J0 (2πd/λ) , µ̇c = −2πfDJ1 (2πd/λ) cos α (14e)

µ̈c = (2πfD)2
[
J1 (2πd/λ)

2πd/λ
cos 2α − J0 (2πd/λ) cos2 α

]

(14f)

νa = ν̇a = ν̈a = νc = ν̇c = ν̈c = 0 (14g)

whereJk(·) is the Bessel Function of the first kind andkth
order andfD = v/λ is the maximum Doppler shift in Hz for
a carrier wavelengthλ.

Figs. 2–4 show the LCR of SC, EGC, and MRC against the
antenna spacing at levelr/

√

σ2
1 + σ2

2 = −20dB, for ki = 0, 5
and power imbalance factorδ , σ2

2/σ2
1 = 1, 9. For simplicity,

mY1
= mY2

= 0 is assumed. As expected, the introduction
of a line-of-sight component reduces the LCR for all diversity
schemes in comparison to the Rayleigh condition, by increa-
sing the mean level of the input signals. Forki = 0, as noted
in [1], the LCR decreases as the antenna spacing increases,
becoming oscillatory and convergent towards the independent-
fading performance. Also note that the LCR increases with
the antenna angle and with the power imbalance. A minimum
LCR is achieved atd/λ ≈ 0.25 for antennas arranged parallel

to the direction of the vehicle motion (α = 0). In contrast,
for ki = 5, the LCR is no more oscillatory and does not
change monotonically with the antenna angle. Its minimum is
achieved at a higher antenna spacingd/λ ≈ 0.6 irrespective
of α.

The corresponding AFD curves are shown in Figs. 5–7. Also
here the performance is observed to improve aski increases.
For ki = 0, as noted in [1], the AFD increases as the antenna
angle decreases and, when the antennas are perpendicular to
direction of the vehicle motion (α = π/2), the AFD is loosely
dependent on the antenna spacing and almost identical to that
of the independent-fading case, except for very small antenna
spacings. On the other hand, note that forki = 5 the AFD can
be reduced below the value obtained for independent fading
signals whenα = π/2.

The effect of the power imbalance over the AFD for
switched (SC) and addition (EGC and MRC) methods differ
considerably. Though being deleterious for SC except for very
small antenna spacings, the power imbalance is surprisingly
observed to reduce the AFD for EGC and MRC when the
antennas are parallel to the direction of the vehicle motion.
Furthermore, when the antennas are perpendicular to the
direction of the vehicle motion, the AFD curves are loosely
dependent on the power imbalance for MRC and EGC but not
for SC.

To the best of the authors’ knowledge, the conclusions
drawn from the above discussion are new.

VII. C ONCLUSIONS

General exact expressions for the level crossing rate and
average fade duration of dual-branch selection, equal-gain,
and maximal-ratio combiners operating over non-identical
correlated Ricean channels were derived. Sample numerical
results were presented by specializing the general expressions
to a space-diversity system with horizontally spaced omnidi-
rectional antennas at the mobile station. When the antennas
are perpendicular to the direction of the vehicle motion, the
average fade duration is loosely dependent on the antenna

203
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spacing and on the Ricean factor, being almost identical to
that of the independent fading condition. When the antennas
are parallel to the direction of the vehicle motion, the level
crossing rate can be reduced below the value obtainable for
independent fading signals. In this case, if a line-of-sight
component exists, a further improvement in the average fade
duration over the independent condition may be also achieved.
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APPENDIX

In this appendix, we derive the meanM = E{Ż|Z} and
covarianceΛ = E{ŻŻT |Z} − E{Ż|Z}E{ŻT |Z} matrices of
Ż = [Ẋ1 Ẏ1 Ẋ2 Ẏ2]

T conditioned onZ = [X1 Y1 X2 Y2]
T .

To the best of the authors’ knowledge, these results are new.
Note thatẊ1, Ẏ1, Ẋ2, Ẏ2, X1, Y1, X2, and Y2 are jointly
correlated Gaussian variates and thatE{Ẋi} = E{Ẏi} = 0,
i ∈ {1, 2}. Correspondingly, from [7, pp. 495–496]

M = cb−1 (Z − m)
Λ = a − cb−1cT (15)

wherea, b, andc are the partitioned matrices of the covariance
matrix of [ŻT ZT ]

[
a c

cT b

]

= E

{[

Ż

Z

] [

Ż

Z

]T
}

−E

{[

Ż

Z

]}

E

{[

Ż

Z

]T
}

(16)
andm = E{Z} is the mean vector ofZ. In our case,

a =







−σ2
1µ̈a 0 −σ1σ2µ̈c −σ1σ2ν̈c

0 −σ2
1µ̈a σ1σ2ν̈c −σ1σ2µ̈c

−σ1σ2µ̈c σ1σ2ν̈c −σ2
2µ̈a 0

−σ1σ2ν̈c −σ1σ2µ̈c 0 −σ2
2µ̈a







(17a)

b =







σ2
1µa 0 σ1σ2µc σ1σ2νc

0 σ2
1µa −σ1σ2νc σ1σ2µc

σ1σ2µc −σ1σ2νc σ2
2µa 0

σ1σ2νc σ1σ2µc 0 σ2
2µa







(17b)

c =







0 σ2
1 ν̇a σ1σ2µ̇c σ1σ2ν̇c

−σ2
1 ν̇a 0 −σ1σ2ν̇c σ1σ2µ̇c

−σ1σ2µ̇c σ1σ2ν̇c 0 σ2
2 ν̇a

−σ1σ2ν̇c −σ1σ2µ̇c −σ2
2 ν̇a 0







(17c)

m = [mX1
mY1

mX2
mY2

]
T (17d)

where

µa(τ) =
Cov{Xi(t + τ), Xi(t)}

σ2
i

=
Cov{Yi(t + τ), Yi(t)}

σ2
i

(18a)

νa(τ) =
Cov{Xi(t + τ), Yi(t)}

σ2
i

(18b)

µc(τ) =
Cov{X1(t + τ), X2(t)}

σ1σ2
=

Cov{Y1(t + τ), Y2(t)}

σ1σ2
(18c)

νc(τ) =
Cov{X1(t + τ), Y2(t)}

σ1σ2
= −

Cov{Y1(t + τ), X2(t)}

σ1σ2
(18d)

i ∈ {1, 2}, ξ̇(τ) = d
dτ

ξ̇(τ), ξ̈(τ) = d2

dτ2 ξ̇(τ), ξ = ξ(0),
ξ̇ = ξ̇(0), and ξ̈ = ξ̈(0) (ξ = µa, νa, µc, νc). Note that
µ̇a = 0 from stationarity andνa = ν̈a = 0 from the Jake’s
model [4]. These are the null terms in (17c), (17b), and (17a),
respectively.

Replacing (17) into (15), it follows that

M =







M1 −M2 −σ1

σ2
M3 −σ1

σ2
M4

M2 M1
σ1

σ2
M4 −σ1

σ2
M3

σ2

σ1
M3 −σ1

σ2
M4 −M1 −M2

σ1

σ2
M4

σ1

σ2
M3 M2 −M1













X1 − mX1

Y1 − mY1

X2 − mX2

Y2 − mY2







(19a)

Λ =







σ2
1Λ1 0 σ1σ2Λ3 σ1σ2Λ4

0 σ2
1Λ1 −σ1σ2Λ4 σ1σ2Λ3

σ1σ2Λ3 −σ1σ2Λ4 σ2
2Λ1 0

σ1σ2Λ4 σ1σ2Λ3 0 σ2
2Λ1







(19b)

η−1 , µ2
c + ν2

c − µ2
a (19c)

M1 , η (µcµ̇c + νcν̇c) (19d)

M2 , η (νcµ̇c + µaν̇a − µcν̇c) (19e)

M3 , η (µaµ̇c + νcν̇a) (19f)

M4 , η (µaν̇c − µcν̇a) (19g)

Λ1 , η
[
2ν̇a (νcµ̇c − µcν̇c) + µa

(
µ̇2

c + ν̇2
a + ν̇2

c

)]
− µ̈a

(19h)

Λ3 , η
[
2ν̇c (νcµ̇c − µaν̇a) + µc

(
µ̇2

c − ν̇2
a − ν̇2

c

)]
− µ̈c

(19i)

Λ4 , η
[
2µ̇c (µcν̇c − µaν̇a) + νc

(
ν̇2

c − ν̇2
a − µ̇2

c

)]
− ν̈c

(19j)
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